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Introduction

Complex CFD simulations are made possible by
@ Increasing computational power
@ Improvements in numerical algorithms

New liability: ensuring accuracy of computations

@ Management by expert practitioners is not feasible for
increasingly-complex flow fields

@ Reliance on best-practice guidelines is an open-loop solution:
numerical error is unchecked for novel configurations

@ Output calculations are not yet sufficiently robust, even on
relatively standard simulations
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Errors in simulations come from various sources
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Improving CFD robustness

Error estimation

@ Error estimates on outputs of interest are necessary for
confidence in CFD results

@ Mathematical theory exists for obtaining such estimates

@ Recent works demonstrate the success of this theory for
aerospace applications

Mesh adaptation
@ Error estimation alone is not enough

@ Engineering accuracy for complex aerospace simulations
demands mesh adaptation to control numerical error

@ Automated adaptation improves robustness by closing the
loop in CFD analysis
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Why not just adapt “obvious” regions?

Fishtail shock in M., = 0.95 inviscid flow over a NACA 0012 airfoil

Adapted using residual
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hp Mesh adaptation

@ Adaptation can isolate singularities with small elements
@ In many high-order methods, local p-enrichment is possible

@ Combination of both can yield a powerful method for
efficiently improving accuracy

log(error)

high-order

uniform h
elements

adaptive h

adaptive hp

= log(dof)
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Conservation equations

r(u)z%qLV-ﬁ(u,Vu):O

@ u € R’ is the state vector
@ H c [R']¢ is the total flux with spatial components

H, = F;(u) +G;(u,Vu)
~—— ——
inviscid flux viscous flux

@ | <i < d = spatial dimension
@ The viscous flux is linear in the state gradient

Gi(u, Vu) = —Kj;(u) dju
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Finite-element solution approximation

Polynomials of order p, on each element:

Ne NPe

uh(f) ~ Z Z Uen¢en (f)

e=1 n=1

N. = # of elements
N,, = # of basis fcns on element ¢
5 den(X¥) = n™ basis fcn of order p, on e
e . .
pe. = approximation order on element e
U,, = vector of s coefficients on n
. | basis function on element e
domain Q2 element e
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Discontinuous basis functions
Continuous Galerkin (CG) Discontinuous Galerkin (DG)

‘ ula.y)

@ DG approximation space: no inter-element continuity,
ueVy=Wl, Vi={uel*Q):ulq, € P*(Q)VQ € Ty}
@ Equations: multiply by test functions and integrate by parts

Ry(ap, vp) = / V}{r(uh)dQ =0, Vv,€V,
Q

@ Elements coupled together through upwind flux functions
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Discrete system

@ Discrete residual on element e for n'" test function,

Ren = {Rh(uhv gbenef)}r:l...s € R‘Y

@ We lump all residuals and states into single vectors (size N),

R(U) = 0
Uel
: U, U, state aPprox.
U= } | ¢ : U, coefficients for
-k clemente U, D basis fcn n : element e and
E U, basis function n
UE[V]M

numbers needed to describe s order p
polynomials inside element e
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Local sensitivities

@ Suppose N,, parameters affect our PDE, but we only have
one scalar output, J(U):

m —-RU,p)=0— U — J(U)
~—~— N—_— —_—— ~~ ——
inputs € RNu N equations state € RY output (scalar)

@ We are interested in how J changes with p,
daJ

—— € R"Mu = N, sensitivities
dp

@ Brute force approach: perturb each entry in p individually,
re-solve the PDE, and measure the perturbation in the output

This is inefficient for large N,
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The discrete adjoint
@ We can efficiently compute sensitivities using a discrete

adjoint vector, ¥ ¢ RV,
ﬁ —_ \11763
du op

@ Each entry in W is the sensitivity of J to residual source
perturbations in the corresponding entry in R

7 R U J
OR | 18
o . .| oU
| solver :
\ (expensive) /
_ .
6J = B'SR
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The discrete adjoint equation

@ Consider a small perturbation ¢R to the residual
@ The resulting (linearized) state perturbation, §U satisfies

IR
—O0U+R=0
au’ "

@ Also linearizing the output we have,

linearized equations
-

oJ OR
= _—U=9TR=-wT_—
0J = 5500 5 550U
R e e ——

adjoint definition

@ Requiring the above to hold for arbitrary perturbations yields
the linear discrete adjoint equation

OR\ 7 oI\
(au) ‘“(au) =0
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Consider flow over an airfoil:
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Output sensitivity to residuals: the adjoint

The lift adjoint W is the sensitivity of lift to residual sources.

Lift= J(U)
We have a solution U when R = 0

element e

state U
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Output sensitivity to residuals: the adjoint

The lift adjoint W is the sensitivity of lift to residual sources.

Lift= J(U)
We have a solution U when R = 0
element e
oR,
What if we add a residual source, R, ? U
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Output sensitivity to residuals: the adjoint
The lift adjoint W is the sensitivity of lift to residual sources.

Lift=J(U) 4 oJ
We have a solution U when R = 0

element e

oR,
. . 9 ]
What if we add a residual source, R, ? U sU

\/

resolving for the state ...
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Output sensitivity to residuals: the adjoint

The lift adjoint W is the sensitivity of lift to residual sources.

6J = WIsR,

Lift=J(U) 4 oJ
We have a solution U when R = 0

element e

OR, v,
. . 9 ]
What if we add a residual source, R, ? U sU

\/

resolving for the state ...
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Another steady adjoint solution

RAE 2822, M, = 0.5, Re = 10°, a = 1°

——

x-momentum primal state cons. of x-mom drag adjoint

@ Adjoint shares similar qualitative features with primal
@ Note wake “reversal” in adjoint solution

@ The discrete adjoint solution approximates the continuous
adjoint when the discretization is adjoint consistent
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Adjoint implementation

@ The discrete adjoint, ¥, is obtained by solving a linear system
@ This system involves linearizations about the primal solution,
U, which is generally obtained first

@ When the full Jacobian matrix, g—ﬁ, and an associated linear
solver are available, the transpose linear solve is
straightforward

@ When the Jacobian matrix is not stored, the discrete adjoint
solve is more involved: all operations in the primal solve must
be linearized, transposed, and applied in reverse order

@ In unsteady discretizations, the adjoint must be marched
backward in time from the final to the initial state
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Output error estimation

We want: 6J = J,(Uy) — J(U)

This is the difference between J computed with the discrete
system solution, Uy, and J computed with the exact solution, U

We’'ll settle for: 6J = JH(UH) = Jh<Uh)
This is the difference in J relative to a finer discretization (k)

coarse space: — Ry(Uy) =0 — Uy —  Ju(Up)
N ——’ S~~~ N——
Ny equations state € RVH output (scalar)

fine space: — R, (Uy) =0 — U, = Jn(Up)
R e N —
Nj, equations state € RV output (scalar)
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Fine-space injection

@ The fine space can arise from 4 or p refinement

@ Define an injection of the coarse state into the fine space
Coarse space Fine space

injection: T}

@ U will generally not satisfy the fine-space equations,

R, (U;) # 0
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@ A finer space (e.g. order enrichment) can uncover residuals
in a converged solution

@ Example: NACA 0012 at a = 2° in Re = 5000, M, = 0.5 flow

Coarse space state, Uy Coarse space residual, Ry (Up)

_ e AN L P O i A

"""~-q-‘—v—{;‘§'§ﬁﬂ7

NSAYAVAN
\

IRV (RSN
il
pu =1 Zero as expected
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@ A finer space (e.g. order enrichment) can uncover residuals
in a converged solution

@ Example: NACA 0012 at a = 2° in Re = 5000, M, = 0.5 flow

Injected state, U Fine space residual, R, (U#)
h h

K

e

AR Vo
SRS
KIASA

Nonzero: new info
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The adjoint-weighted residual

@ U solves a perturbed fine-space problem

find U}, such that: R, (U},) —R,(U¥) =0 = answer: Uj, = U/
——

oRy,

@ The fine-space adjoint, ¥, then tells us to expect an output
perturbation of

Tn(Uj1) = Jn(Up) = ¥R, = —W[R,(U}))
~doJ
[4: Becker and Rannacher, 2007] [9: Giles and Pierce, 1997]
@ This equation assumes small perturbations (e.g. if nonlinear)
@ In summary, we have an adjoint-weighted residual:

6J =~ —WIR, (U
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t-weighted residual example

join

Ad

(U}

Ru,

)

T
h

€e

3

Error indicator

i)

U
is high

(

Output error: 6J ~ —¥]R,,

to

H

Idea: adapt where ¢,

reduce the residual there
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Two more definitions

Corrected output

J;:Iorrected =Jy —6J

@ Should converge faster than Jy
@ Remaining error = error left in corrected output

Error effectivity

 Ju(Up) — Jy(Uy)
= (Un) —J

@ J = exact output
@ We want ny close to 1
@ Effectivity is affected by choice of fine space
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Drag error in viscous flow over an airfoil

Drag coefficient error
>

38 =B-error in output
5 -©-error in corrected output
=) =

10 10
h = (number of elements)'”2
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107 10
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Approximations

How do we calculate ¥, = the adjoint on the fine space?

Options:
@ Solve for U, and then ¥, — expensive! Potentially still useful
to drive adaptation. [14: Solin and Demkowicz, 2004]

@ Solve for the coarse space adjoint, ¥, and:

@ Reconstruct ¥4 on the fine space using a higher-accuracy
stencil. Smoothness assumption on adjoint.
[13: Rannacher, 2001] [3: Barth and Larson, 2002]
[15: Venditti and Darmofal, 2002] [10: Lu, 2005] [8: Fidkowski
and Darmofal, 2007]

@ Initialize ¥, with ¥, and take a few iterative solution
(smoothing) steps on the fine space.
[2: Barter and Darmofal, 2008] [11: Oliver and Darmofal, 2008]
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Corrections and remainders

@ Define ¥} = I/ ¥y = injection of ¥y into A.
@ Define the adjoint perturbation, 6%, = ¥# — ¥,
@ Reuwrite the adjoint-weighted residual as:
57 = — (U R, (U + (68,)" Ry (U) + O(5Uy, 5%5)?

computable correction remaining error error in estimate

@ The computable correction is tempting to use directly, but:

e It does not incorporate fine-space information = it performs
poorly as an adaptive indicator
e ltis zero for FEM with Galerkin orthogonality

@ For nonlinear problems the “error in the estimate” can be
reduced to third-order via [13: Rannacher, 2001]:

1 1
87 ~ — (T]!)" Ru(U}) + 5 (0%)" Ru(U})) + 5 (9U,)" R} (2}))
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Error estimation summary

@ Solve the coarse-discretization forward and adjoint problems:
Uy and ¥y

© Pick a fine discretization “4” (mesh refinement or order
enrichment)

© Calculate or approximate ¥, = adjoint on the fine space

© Project Uy onto the fine discretization and calculate the
residual R, (UH)

© Weight the fine-space residual with the fine-space adjoint to
obtain the output error estimate

© The computed output error 4J is an estimate of the true error,
not a bound
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Mesh adaptation

Initial coarse mesh & error tolerance

i
—»[Flow and adjoint solutionj

v
[ Output error estimate J

Tolerance =[ Done ]
Y

met?

{ Error localization }

A\ 4

4[ Mesh adaptation j
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Error localization

@ Recall that the adjoint-weighted residual expression for the
output error involves a sum over elements (e)

Ju(Un) = Jy(Up) ~ —B[Ry(UY) = =) [ Ry (U})
e

@ The absolute-value of each element’s contribution to the error
is the error indicator on that element

€e = ‘ \I’f{eRhe (U;) ‘

Right : plot of error indicator for a
viscous DG simulation, py = 1, p, =2

36/83
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Output-based mesh adaptation

Motivating ideas

@ The error indicator (¢.) identifies elements with large
adjoint-weighted residuals

@ Locally refining a mesh reduces local residuals

@ So we can reduce the output error by refining those elements
that have a high e,

Adaptation choices
@ Local refinement versus global re-meshing
@ Which/how many elements should be targeted?
@ |sotropic versus anisotropic refinement
@ A, p, or hp mechanics
@ Should coarsening be allowed?
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Local mesh modification

@ Modify the mesh incrementally (mesh generation is hard)

@ Often more robust than global re-meshing

@ With node movement, can be flexible for unstructured meshes
@ Hanging nodes easily supported in DG

targeted
2" element
i g

<t

Edge Swap Edge Split Edge Collapse
Unstructured local mesh operators

o
T

1 hanging
3P~ node

Hanging-node refinement
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NACA 0012, Euler, M, = 0.5, o = 2°

Mach number contours Drag adjoint (x—momentum)

@ Output J = drag (expect ~ 0)
@ Compare hanging-node adaptation to uniform refinement
@ Look at approximation ordersp=1andp =2
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Inviscid flow: hanging-node adaptation

@ Isotropic hanging-node

refinement L
@ Finespace=p+1
@ Fixed fraction fdart = 5%
@ 20 adaptive iterations
@ No coarsening ‘_‘.’
@ Use adjoint-weighted residual

0J as correction

@ “Exact” output fromap =3
fine-mesh solve

@ Right: p = 2 first adaptation

First adapted mesh
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Inviscid flow: p = 2 mesh sequence

o 10 o ‘
s . -@- Actual error|]
= 10 ¢ : : 3
9 ]
S 1070 1
3
© 107 .
e
g
a 10 S S

10° 10° 10

Number of elements
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Inviscid flow: p = 2 mesh sequence

5 10 ‘

qt, ? -@-Actual error 1
2 102 - Estimated error;
0 ]
£ 107
3

© 10°°; 3
©

a10° S— ‘

e 10° 10

Number of elements
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Inviscid flow: p = 2 mesh sequence

s 10 T
s \ B. -@-Actual error |
= 10 —&—Estimated error;
(0] 3
2 107t
3
O 197k 4
(@]
g &
Q10 e ‘
10° 10° 10
Number of elements
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Inviscid flow: p = 2 mesh sequence

|
N

5 10 ‘

qt, % -@-Actual error 1
2 102 - Estimated error;
0 ]
2107k
3

© 107 E
I

a10° S— ‘

e 10° 10

Number of elements

Error Estimation and Mesh Adaptation using Output Adjoints

Adaptation

41/83



Inviscid flow: p = 2 mesh sequence
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Inviscid flow: p = 2 mesh sequence
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Inviscid flow: p = 2 mesh sequence

s 10 T
5 X. -@-Actual error |}
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Inviscid flow: p = 2 mesh sequence
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Inviscid flow: p = 2 mesh sequence

s 10 T
5 -@-Actual error |}
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Inviscid flow: p = 2 mesh sequence

5 10 ‘
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Inviscid flow: p = 2 mesh sequence

s 10 T
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Inviscid flow: p = 2 mesh sequence

5 10 ‘

e -@-Actual error |
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Inviscid flow: p = 2 mesh sequence
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Inviscid flow: p = 2 mesh sequence
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Inviscid flow:

|
N

p = 2 mesh sequence

—_
o

-
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Inviscid flow

|
N

p = 2 mesh sequence
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Drag coefficient error
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Inviscid flow: p = 2 mesh sequence

-@- Actual error E
-~ Estimated error |
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Inviscid flow

p = 2 mesh sequence

Adapt ref 10 | T8y

-@- Actual error
-l Estimated error
—A— Uniform refinement ;

s Uniform ref 1

Drag coefficient error

_
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Inviscid flow: adapted/uniform comparison

Farfield region

Uniform refinement 1

0

!/

il

\\
N

Adapt refinement 10

672 elements




Inviscid flow: adapted/uniform comparison

Near-field region

Uniform refinement 1 Adapt refinement 10

672 elements 659 elements
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Inviscid flow: adapted/uniform comparison

Leading edge

Uniform refinement 1 Adapt refinement 10

672 elements 659 elements
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Inviscid flow: adapted/uniform comparison

Trailing edge

Uniform refinement 1 Adapt refinement 10

x%
x

+i_

i

672 elements 659 elements

Error Estimation and Mesh Adaptation using Output Adjoints Adaptation 42/83



Inviscid flow: drag convergence (exact v,)

0

10 w
=B- Adapt, p=1
= = =Adapt, p=1 (corrected)
=0~ Adapt, p=2
5 = = = Adapt
£ 102l =& Unifor i
o =57 Unifor
c
Q0
Q
D 1o |
8 10
o 2.5
©
S
(@]
107 :
107 107

(degrees of freedom)‘” 2
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Inviscid flow: drag convergence (exact v,)

10° (== | Rate summary:
R 2p + 1 output-adapted
= = =Adapt, p=1 (corrected)
-6~ Adapt, p=2 2p + 2 corrected
o = = =Adapt, p=2 (corrected)
g 1072/ =& Uniform, p=1 |
o =~ Uniform, p=2
€ &
.0 ) .
Q X
D 194 |
S 10
o 2.5
©
S
a
107° |

10 10
(degrees of freedom
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Inviscid flow: drag convergence (approx ;)

0 (

10 : ; - . :
—B8- Adapt, p=1 Flve plock Jaqobl smoothing
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Inviscid flow: drag convergence (approx ;)

0 = ; -
10 : §
—B8- Adapt, p=1 Flve plock Jaqobl smoothing
- - - Adapt, p=1 (corrected)| | it€rations on fine space
-0~ Adapt, p=2
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Q .
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©
P
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Inviscid flow: timing comparison (exact v,)

10
1072 .
S
B 10737 |
c
.0
2 107 :
(O]
o
©
2 10 " =8~ Adapt, p=1 E
5 = = = Adapt, p=1 (corrected) >
_|| =©—Adapt, p=2 s
10 " - = = Adapt, p=2 (corrected) . 3
=& Uniform, p=1 N
[ =¥=Uniform, p=2 .
10 T T Il Il
107" 10° 1 10 10° 10°
CPU time (s)
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Inviscid flow: timing comparison (approx ;)

10° | Five block-Jacobi smoothing
: ‘ iterations on fine space
1072 5
S
E 10737 |
c
.0
2 107 ;
©
o
o
o 10 " =g~ Adapt, p=1 E
© .
5 = = = Adapt, p=1 (corrected) .
_|| =©—Adapt, p=2 .
10 "} - - - Adapt, p=2 (corrected) . 3
=& Uniform, p=1 ‘\
_,[| == Uniform, p=2 S
10 T T Il Il
107" 10° 1 10 10° 10°
CPU time (s)
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Inviscid flow: timing percentages
I Primal I Fine Adjoint [] Adaptation

—_
o 0 O
o o o

% CPU time
S

n
o

Exact fine-space adjoint solve

2 4 6 8 10 12 14 16 18 20
Adaptation iteration

I Primal I Fine Adjoint [ Adaptation

% CPU time

Approximate fine-space adjoint solve

T T
2 4 6 8 10 12 14 16 18 20
Adaptation iteration
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Incorporating anisotropy with hanging nodes

@ Crucial for high-Reynolds number simulations, esp. in 3D
@ Create anisotropy by cutting in only one direction

@ Solve local sub-problems to determine impact of anisotropy
directly on the output error

targeted

choice 2
2 element

choice 3 = both

| hanging
=P~ node

Hanging-node refinement Discrete choices
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Choosing the right cut [6: ceze + Fidkowski, 2012]

@ On an element, pick the cut i with the highest merit

@ For each cut i define,
merit(i) = beneﬁt'(z)
cost(7)

benefit(i)
@ error addressed by cut i
@ estimated using adjoint-weighted residual:
benefit(i) = > [®R,(UF)]y,
KhERH

h denotes the error estimation fine space, e.g. p + 1

cost(i)
@ degrees of freedom (may be too simple)
@ number of nonzeros in Jacobian (~ cost of linear solve)
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@ NACA 0012
@ M=038,a=1.25°
@ Re=10°

@ 10% fixed fraction

@ ¢ =3 curved
geometry

@ p = 2 solution
approximation

@ RANS-SA model

@ Adapt on drag, lift

@ Discrete-choice h
cut optimization vs.
isotropic

Mach number contours
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Transonic RANS airfoil: output convergence

0.0587
0.0586¢
T
Q
© 0.0585¢
©
Q
(&)
20.0584|
5 -8 Drag adjoint (isotropic)
-©-Lift adjoint (isotropic)
0.0583¢ Drag adjoint (anisotropic) ||
- Lift adjoint (anisotropic)
——Uniform refinement
0.0582", ~ 6
10 10 10

Degrees of freedom
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Transonic RANS airfoil: output convergence

0.38
<t 0.375¢
Q
Q
©
Q
(@]
5 0.37f -8 Drag adjoint (isotropic)
-©-Lift adjoint (isotropic)
Drag adjoint (anisotropic)
- Lift adjoint (anisotropic)
——Uniform refinement
0.365-, = 6
10 10 10

Degrees of freedom
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Transonic RANS airfoil: drag-adapted meshes

Isotropic
Adapt iter 6
8736 elems

Anisotropic
Adapt iter 10
4816 elems
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Transonic RANS airfoil: drag-adapted meshes

@ Isotropic
@ Adapt iter 6
@ 8736 elems

@ Anisotropic
@ Adapt iter 10
@ 4816 elems
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Transonic RANS airfoil: drag-adapted meshes

Isotropic
Adapt iter 6
8736 elems

Anisotropic
Adapt iter 10
4816 elems
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Transonic RANS flow over a wing

DPW Il wing-alone case: My, = 0.76,Re = 5 x 10°

@ Initial mesh: cubic hex
elements generated by
agglomeration of linear
multiblock meshes (first
element y* ~ 1)

@ Atrtificial viscosity shock
capturing

@ Spalart-Allmaras turbulence
model with negative ©
modification [1: Allmaras et al,
2012]

@ Drag-adaptive simulation using
hp discrete choice algorithm Contours of ¢, and v
[7: Ceze + Fidkowski, 2013]
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: adapted meshes

DPW wing

Original mesh, with ¢, contours

7™ drag-adapted mesh

=

Mach/mesh using non-zero entries cost

Mach/mesh using DOF cost

54/83

Adaptation
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DPW wing: comparison to uniform refinement
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DPW wing: comparison to uniform refinement
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Mesh adaptation using a metric field

@ Unstructured meshes offer more geometric and adaptive
flexibility over structured ones

@ Resolution information: size and shape of an element
@ This can be encoded in a metric field [5: Borouchaki, 1995]
[12: Pennec, 2006] over the domain

@ We are interested in an adaptive method where the mesh is
regenerated at each iteration using the current mesh and
information from the solution

@ Key ingredients:

@ Metric-conforming mesh generator
@ Solution-based metric specification
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A Riemannian metric field

M(X) € R
A symmetric positive definite (SPD) tensor field that provides a
“yardstick” for measuring distances in different directions

metric distance between X and X + 0x : 3¢ = vV oxL MJX

set of points equidistant

from O under metric measure
T

@ Eigenvectors of M are principal stretching directions
@ Eigenvalues: \; = 1/h?; h; is the “stretching magnitude”: the
distance along the eigenvector for unit metric measure
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Mesh-conforming mesh generation

ldea
Make mesh in which each edge has the same metric length

B B
metric distance from A to B: fap = / al = / VdxT Mdx
A A

@ e.g. BAMG = Bi-dimensional Anisotropic Mesh Generator
[5: Borouchaki, 1995]

@ Input: background mesh and desired metric at nodes
@ Output: metric-conforming mesh
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Affine-invariant metric modification

Need a systematic way to alter M: must keep SPD
@ M, = current metric
@ M = new metric = /\/lé exp(S)Mé
@ S € R¥*4 = metric step matrix (symmetric)

©initial
©new
Example (Mo = 7):
05 0
§= [o 0.5}

Positive values on diagonal
produce a contraction
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Affine-invariant metric modification

Need a systematic way to alter M: must keep SPD
@ M, = current metric
@ M = new metric = /\/lé exp(S)Mé
@ S € R¥*4 = metric step matrix (symmetric)

©initia
©

Example (Mo = 7):

0 05
S‘[o.s o}

Positive values off diagonal
produce negative shear
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Affine-invariant metric modification
Need a systematic way to alter M: must keep SPD
@ M, = current metric
@ M = new metric = /\/lé exp(S)Mé
@ S € R?*? = metric step matrix (symmetric)

©initial
©new

Example (Mo = 7):

0 —05
§= [—0.5 0 ]

Negative values off diagonal
produce positive shear
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Affine-invariant metric modification
Need a systematic way to alter M: must keep SPD
@ M, = current metric
@ M = new metric = /\/lé exp(S)Mé
@ S € R?*? = metric step matrix (symmetric)

©initial
©new

Example (Mo = I):

0.5 —0.5
&= [—0.5 0 ]

Combination of positive shear
and contraction in x
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Affine-invariant metric modification

Need a systematic way to alter M: must keep SPD

@ M, = current metric

1 1
@ M = new metric = | M exp(S) M

@ S € R¥*4 = metric step matrix (symmetric)

©initial
©new

Error Estimation and Mesh Adaptation using Output Adjoints

Example (Mo = 7):

5 05
5= [0.5 0 ]

Combination of positive shear
and a lot of contraction in x
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Affine-invariant metric modification
Need a systematic way to alter M: must keep SPD
@ My = current metric
@ M = new metric = /\/lé exp(S)Mé
@ S € R4 = metric step matrix (symmetric)

©initial
©new

Example (Mo = 7):

0 -05
§= [—0.5 5 ]

Combination of positive shear
and a lot of contraction in y
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Mesh-implied metric

@ We need to “back out” a metric given a mesh, since we will be
prescribing changes to the metric

@ Calculate elemental metric, M., by enforcing that each edge
length is of unit measure under the metric

C
4 AW pM AR = 1

AXE M AXpe = 1
z A¥AMAZcy = 1
B
A
@ This gives 3 equations for the three independent unknowns in
the symmetric matrix representation of M,

@ Note: the elemental metric can be mapped to nodes via an
affine-invariant average [12: Pennec et al, 2006]
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A mesh optimization algorithm [16: Yano, 2012]

@ Given: current mesh, primal and adjoint solutions
@ Determine: metric step matrix, S,, at each mesh vertex, v,
that produces a mesh with the smallest output error at a fixed
solution cost
@ Key ingredients
@ Error convergence model: S, — output error
@ Cost model: S, — solution cost
@ lterative algorithm that equidistributes the marginal
error-to-cost ratio
@ Expect multiple iterations of optimization until error “bottoms
out” at a fixed cost; can then increase allowable cost to
further reduce error
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Error convergence model

@ &, = current output error indicator on element e (from AWR)
@ S, = proposed metric step matrix on element e
@ Model for error after metric modification with S,:

ge - 5@0 €Xp [tr(RESE)] ‘

@ R, = error convergence rate tensor (identified by sampling)

@ Note, this is a generalization to anisotropic shape changes of
the more familiar isotropic model,

h r
o= £a (i) = Ewexplrio(h/i)
@ Sum over elements to get the total error on the mesh,

£E=) &
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Cost model

cost = degrees of freedom (do£) in solution approximation

@ Assume p = approximation order = same for all elements
@ C, = current cost on elemente, e.g. (p+1)(p+2)/2
@ New cost after application of step matrix S,,

Ce = Ceo eXp I:;tr(se):|

Areay/Area

@ Note, the cost is just scaled by Areay/Area = # new elements
occupying the original area of element ¢

@ Sum over elements to get the total cost on the mesh,
c=> C
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From elements to vertices

V. = set of vertices
adjacent to

s 1 ZS element e
o ’Ve‘ veV, '
FE, = set of elements
adjacent to vertex v
Error Cost
£ =Y & ¢ = Y &

oE o0&, 08, aC _ 0C. 08,
oS, oS, 9S,’ oS, aS, 9S,’
e€E N~~~ eCbi ~ ~~
ERe 1/|Ve] CAz 1/|Ve|
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Optimization algorithm

Given:
@ M, = mesh-implied metric (elements — nodes)
@ &, = error indicators on elements (AWR)
@ R, = error rate tensor (sampling)

Calculate:
S, = step matrix at vertices that minimizes error at a fixed cost

@ We separate S, into size (trace) and shape (trace-free)
contributions, N
S, =s5,Z7+S,

@ Derivatives of the error with respect to s, and S, are
o (9€N  0e _oe 0T
ds,  \0S,)’ oS, 08, 0Os,d
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Optimization algorithm (continued)

Use an iterative approach [16: Yano, 2012]

@ Initialize S, = 0,Vv, set s = smax/Nsiep = 210g2/20
@ Loopi=1": ngep,

Qs S — gé ,gg linearizations w.r.t s, and S,

@ Define \, = §5/3* = marginal error to marginal cost ratio of
mesh refinement

@ Refine 30% of vertices with the largest |\,|: S, = S, + dsT
@ Coarsen 30% of the vertices with the smallest |\, [:
S =8, —0sT

© Update the trace-free part of S,, S, = S, + 0s(9€/9S,) /(D€ | Ds,)

© Rescale S, — S, + 5Z, to meet total cost constraint via
B = 2log C”"ge‘ , Where Cure is the target cost
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Error sampling to obtain R,

@ An a-posteriori data-driven approach

@ |dea: cut an element in different ways, measure change in
error indicator, and fit model via least-squares regression

ENIENGAN

Original Option 1 Option 2 Option 3 Option 4

@ Determine entries of R, (symmetric) that minimize misfit
between the model and observed errors for reach refinement
option i

2

misfit = E [log % — tr(R.Sei)
e0

E.i = output error for refinement option i
S.i = average metric step matrix for refinement option i
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Estimating errors after refinement

@ Error left after refining via option i,
gei = Ce0 — Agei
@ A&, = error between coarse solution and refinement option i

~p
A&y = ‘RZ+1(uz7¢hi}Qe)’

° J;Zl = adjoint after refining via option i, obtained by projecting
the fine-space adjoint ¢/ "

AN

p+1 p+1
l/) hl W h]

Note, can use pre-calculated projection matrices for each
refinement option
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Combining adaptation and optimization

@ Start with a coarse mesh at a certain cost = dof

© Run multiple (~ 10) mesh optimization iterations at fixed cost
e Each iteration requires primal and adjoint solves
@ Solves are quick since starting from good initial guesses
e Error will drop, then stagnate/oscillate
e Use results from final run or average of last few runs

log(error) increase dof log(dof)
/ ~

0 16 2’() solution iteration

© Increase dof cost by a prescribed factor if need more
accuracy and can afford more cost; return to step 2
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Euler equations, M, = 0.5,« = 2°,v = 1.4, output = drag

Mach number contours
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Example: NACA 0012 in inviscid flow

Euler equations, M, = 0.5, = 2°,+v = 1.4, output = drag
Initial mesh: 356 triangles, farfield @2000c¢

‘hgkmvféhvl{

L A
SRERRRLE

/

Mesh Optimization




NACA 0012 in inviscid flow: sample run

p = 2, 15 optimization iterations at each dof

Drag coefficient error

10”
0 40 50 60

.80
Adaptive iteration

Degrees of freedom

Adaptive iteration
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NACA 0012 in inviscid flow: output convergence

Compare to uniform refinement at different orders p

10
_ 107 :
)
=03 ]
f_,’ 10 - = Optimized: p=1
o 1074 = ] Optimized: p=2
© A Optimized: p=3
D 107° | | === Uniform: p=1
8 —e—Uniform: p=2
O 4 b —#—Uniform: p=3
& 10 5
o

107¢ ]

-8 ;
10 e
1/sqrt(dof)
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NACA 0012 in inviscid flow: optimized meshes
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NACA 0012 in inviscid flow: optimized meshes
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NACA 0012 in inviscid flow: optimized meshes
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Example: RAE 2822 in transonic flow

RANS-SA, M, = 0.73,a = 2.79°, Re = 6.5M, output = drag

Mach number contours
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Example: RAE 2822 in transonic flow

RANS-SA, M, = 0.73,a = 2.79°, Re = 6.5M, output = drag
Initial mesh: 758 triangles, farfield @2000c¢

<7

b
A

L
SRR
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RAE 2822 in transonic flow: sample run

p = 2, 15 optimization iterations at each dof

107 -

Drag coefficient error

10°

30 ] 40 50 60
Adaptive iteration

Degrees of freedom

Adaptive iteration
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RAE 2822 in transonic flow: output convergence

Compare to uniform refinement at different orders p

10
. 1077 .
o
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RAE 2822 in transonic flow: optimized meshes
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RAE 2822 in transonic flow: optimized meshes

p =2, dof = 5000

p =2, dof = 10000

/) ’, PR

e —

p =2,dof =20000
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RAE 2822 in transonic flow: optimized meshes
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Summary

@ We can quantify numerical error and adapt the mesh to
reduce it at its source

@ This requires an adjoint and fine-space calculations

@ Exact fine-space adjoints yield effective error estimates that
we can use as corrections

@ Approximate fine-space adjoints (e.g. via Jacobi smoothing)
are still good for adaptation

@ Mesh anisotropy is critical for efficiently resolving boundary
layers

@ Hanging-node anisotropy through single cuts is limited by
structure of original mesh

@ Unstructured metric-based mesh regeneration offers an
opportunity to globally optimize meshes for accurate output
prediction at minimal cost
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