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The paper presents an approach to mesh adaptation suitable for scale resolving simula-
tions. The methodology is based on the entropy adjoint approach, which corresponds to a
standard output-based adjoint method with output functional targeting areas of spurious
generation of entropy. The method shows several advantages over standard output-based
error estimation: i) it is computationally inexpensive, ii) does not require the solution of a
fine-space adjoint problem, and iii) is nonlinearly stable with respect to the primal solution
for chaotic dynamical systems. In addition, the work reports on the parallel efficiency of
the solver, which has been optimized through a multi-constraint domain decomposition
algorithm available within the Metis 5.0 library.1 The reliability, accuracy, and efficiency
of the approach are assessed by computing three test cases: the two-dimensional, laminar,
chaotic flow around a square at Re = 3000, the implicit Large Eddy Simulation (LES) of a
circular cylinder at Re = 3900, and the ILES of a square cylinder at Re = 22 000. The results
show significant reduction in the number of DoFs with respect to uniform order-refinement,
and good agreement with experimental data.

I. Introduction

The growing need for high-fidelity flow simulations and accurate problem-specific output quantities has
paved the way for higher-order methods such as the discontinuous Galerkin (DG) method. Although for
many problems, with typical engineering error tolerances, DG methods are still generally less efficient than
standard industrial codes, the industrial interest is strongly fostering the scientific community to devise
more efficient high-order CFD solvers. These could then reduce the computational time for high-accuracy
solutions, enabling higher-fidelity simulations at acceptable costs.

Previous works contributed to the development of efficient high-order numerical methods for steady and
unsteady flow problems involving adaptation of the space discretization by varying the order of polynomial
approximation throughout the domain2,3 or by performing mesh adaptation.4–7 In this paper a p-adaptation
strategy has been adopted to increase the computational efficiency of a DG solver8 for scale-resolving simula-
tions. The proposed strategy allows changing the polynomial order of the solution representation within each
element according to an error estimate, reducing substantially the CPU time and memory usage, while not
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spoiling the spectral resolution required by this class of simulations. In particular, as the work is focused on
unsteady scale-resolving simulations, such as Large Eddy Simulation (LES), an adaptation procedure suitable
for time-dependent problems is investigated. Previous research efforts9 aimed at adapting the polynomial
degree by combining two simple element-wise indicators based on interface pressure jumps and on the decay
of the coefficients of the modal expansion. These sensors are coupled to guarantee a reasonable behavior
both for high- and low-degree polynomial approximations. Despite not targeting any output quantity, the
strategy showed satisfactory performance involving the solution of statistically steady turbulent flows.

The objective of the present work is to extend the previous approach by using error estimates provided
by the so called entropy-adjoint approach introduced by Fidkowski and Roe.10 The main idea of the method
is to use the set of entropy variables associated with the state as the solution of the adjoint problem for
an output functional that measures the balance, including the inflow, outflow, and generation, of entropy
throughout the domain. By targeting the source of spurious entropy generation, which is closely related
to numerical error, the approach overcomes the drawback of many heuristic sensors, which are generally
not robust for controlling numerical discretization errors. The approach is demonstrated to be able to
target areas of spurious entropy generation, which mainly affect the scalar output that measures net entropy
balance throughout the domain. The method demonstrated several advantages over standard, output-based
adaptive simulations for steady flows,11,12 since the adjoint solution is easily obtained by manipulating the
state vector. This property can be exploited also for unsteady flow problems, avoiding a backward-in-time
integration, typical of unsteady adjoint problems, which is considerably expensive for three-dimensional
simulations. Moreover, the adjoint solution is nonlinearly stable, meaning that the accuracy of the error
estimate is not spoiled by the chaotic nature of the flow.

Output-based error estimation typically involves the computation of a fine-space adjoint solution7,13–15

which can be accomplished solving a fine space problem (few smoothing iterations are typically involved),
or reconstructing the solution. The latter approach has been considered and in this work we explore the
use of a patch reconstruction scheme. The method aims at approximating the fine space adjoint on a k + 1
space by interpolating solutions of polynomial orders k on an extended stencil. The reconstruction process
takes advantage of the hierarchical and orthonormal basis functions.16 Considering the reconstruction of the
higher-order solution space φK on a given element K, the procedure relies on projecting solutions from the
neighboring elements sharing a face with K to the extension of φK over the whole patch. The conservation
of the mean value is also enforced during the reconstruction.

Part of the numerical experiments reported herein are devoted to show the parallel efficiency on multi-core
machines, which is obtained through a dynamic load balancing based on the Metis library and its capability
of generating weighted graphs. Such an implementation handles imbalances in the degrees of freedom on each
partition due to the application of the adaptation algorithm, and provides an optimal scalability, comparable
to that obtained using a fixed number of degrees of freedom.

The reliability, accuracy and efficiency of the approach are assessed by computing two test cases involving
compressible, low Mach number, unsteady flows. First, two-dimensional, laminar chaotic flow around a
square at Re = 1000 is studied. Second, the implicit LES of two span-wise periodic flows is studied: the flow
around the span-wise periodic circular cylinder at Re = 3 900, and around a square cylinder at Re = 22000.
The results show significant reduction in the number of DoFs with respect to uniform order-refinement, and
good agreement with experimental data.

II. The numerical framework

A. Space and time discretization

The governing equations are discretized in space according to the DG method.8 The Navier-Stokes equations
for m variables in d dimensions can be written in compact form as

P (w)
∂w

∂t
+∇ · Fc (w) +∇ · Fv (w,∇w) = 0, (1)

where w ∈ Rm is the unknown solution vector, Fc,Fv ∈ Rm ⊗ Rd are the convective and viscous flux
functions, and P (w) ∈ Rm ⊗ Rm is a transformation matrix that takes into account the possible use of a
set of unknowns w different frp, the conservative set wc = [ρ, ρE, ρui]

T . In particular, in this work, we use
both the conservative and the primitive set of variables, the latter given by w = [p, T, ui]

T .
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For the spatial discretization, the weak form of the governing equations is first obtained by multiplying
Eq. (1) by an arbitrary, smooth test function and integrating by parts. The solution and the test function
are then replaced with a finite-element approximation and a discrete test function, both belonging to the
finite-dimensional set Vh := [Pkd(Th)]m, where Pkd(Th) := {vh ∈ L2(Ω) | vh|K ∈ Pkd(K), ∀K ∈ Th} is the

discrete polynomial space in physical (mesh) coordinates. Pkd(K) denotes the restriction of the polynomial
functions of d = 2, 3 variables and total degree k to element K belonging to a non-overlapping triangulation
Th = {K} of the computational domain. A set of hierarchical and orthonormal basis functions for the space
Pkd(K) is computed according to Bassi et al.16 As the functional approximation space is discontinuous, the
flux functions over mesh faces are not uniquely defined. The convective and viscous flux functions are then
replaced with numerical counterparts according to the exact Riemann solver of Gottlieb and Groth17 and
the BR2 scheme of Bassi and Rebay,18 respectively. In two dimensions, the approximate Riemann solver of
Roe is used.19

By assembling together all the elemental contributions of the DG discretization, the system of ordinary
differential equations (ODEs) governing the evolution in time of the discrete solution can be written as

dW

dt
+ R̃ (W) = 0, with R̃ (W) = MP

−1 (W) R (W) , (2)

where W is the global vector of unknown degrees of freedom, MP is the global block diagonal mass matrix,
and R (W) is the vector of spatial residuals. For sets of variables different than wc, the matrix P couples
the degrees of freedom of the variables within each block of MP, so that this matrix is not diagonal, even
using a set of orthogonal basis functions. Accurate high-order time integration is performed by means of
multi-stage, linearly implicit, Rosenbrock-type, Runge-Kutta schemes. Such schemes require the solution of
a linear system per stage, while the Jacobian matrix needs to be assembled only once per time step:

Wn+1 = Wn +

s∑
j=1

mjYj , (3)

(
I

γ∆t
+ J̃

)n
Yi = −R̃

Wn +

i−1∑
j=1

aijYj

+

i−1∑
j=1

cij
∆t

Yj , i = 1, . . . , s, (4)

where, omitting the dependence on W for the sake of notation compactness,

J =
∂R

∂W
, R̃ = M−1

P R, J̃ =
∂R̃

∂W
= M−1

P

(
J− ∂MP

∂W
R̃

)
,

and mi, aij , cij are real coefficients. Among the variety of Rosenbrock schemes available in the literature,
the three-stage, third-order ROS3P scheme of Lang and Verwer20 is used. An extended review of Rosenbrock
schemes is reported by Bassi et al.21 In our implementation, the Jacobian matrix J is computed analytically
and the preconditioned GMRES algorithm22 is used to solve Eq. (3) at each time step.

B. Evaluation of the basis functions in physical space

The three-dimensional DG solver relies on orthonormal and hierarchical basis functions defined in the physi-
cal space. This particular choice improves approximation properties over basis functions defined in reference
space, and increases the flexibility of the discretization when dealing with agglomerated elements. However,
an efficient evaluation of basis functions to compute the integrals is mandatory when dealing with adaptive,
unsteady, memory-intensive computations. In particular, when relying on a set of orthonormal and hier-
archical basis functions,16 several options can be considered for an efficient implementation. In practice,
this basis is built from a set of monomials defined in a reference frame relocated in the element barycenter
and aligned with the principal axes of inertia, by applying the modified Gram-Schmidt (MGS) orthonormal-
ization procedure. The MGS procedure can be expressed as the application of a set of coefficients, whose
definition involves the calculation of some volume integrals, to the monomial basis when evaluated at any
quadrature point. As these coefficients may be computed once during a pre-processing stage, at least three
possible implementations can be devised (here listed for decreasing memory usage and increasing CPU time):

3 of 17

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d 

by
 K

rz
ys

zt
of

 F
id

ko
w

sk
i o

n 
O

ct
ob

er
 3

, 2
01

9 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/6
.2

01
9-

34
18

 



for each mesh element and face, i) the basis functions and their derivatives are evaluated and stored at each
quadrature point during pre-processing; ii) the coefficients are evaluated and stored during pre-processing,
while monomials are evaluated and orthonormalized on-the-fly at any quadrature point during operators
assembly; iii) both the monomials and the orthonormalization coefficients are computed on-the-fly when
needed during operator assembly. According to our numerical experiments, the second approach, i.e. com-
puting and storing in memory the coefficients during pre-processing and performing the orthonormalization
of the monomials basis on-the-fly at quadrature points during operators assembly, proved to be the best
compromise between CPU time and the memory footprint.9

C. Efficient adaptive quadrature rules

Another key aspect to improve the solver efficiency is represented by a proper choice of the degree of exactness
of the quadrature rules. In fact, the number of integration points rapidly increases when dealing with high-
degree polynomial approximations and curved mesh elements. It is worth noticing that the use of curved
mesh elements is typically limited to the vicinity of a curved boundary, while in the remaining of the domain
straight-sided cells and faces are employed. To avoid over-integration on those elements, it is of primary
importance to recognize the minimum quadrature requirements of each element and face. To this end we
introduce an algorithm to identify the element curvature within the domain by measuring the element-wise
integration error. The algorithm computes, for the diagonal entries of the elemental mass matrix, the relative
error between integrating using a quadrature rule with the theoretical degree of exactness, accounting for the
non-linear mapping, and a quadrature rule with a reduced degree of exactness. According to this definition
and to a user-defined tolerance, a proper set of “reduced” quadrature points is used with significant CPU
time savings when dealing with curved geometries for similar accuracy on the integral evaluation.

III. Adaptation strategy

A. Output-adjoint sensitivity

On practical engineering problems an unsteady output quantity can be generally computed as

J̄ =

∫ T

0

J(W(t), t)dt+ JT (W(T )), (5)

where J(W(t), t), JT are functionals of the unsteady state vector W(t), with T the size of the time window
and JT computed at the final time. The continuous-in-time adjoint solution Ψ(t) is the sensitivity of the
output functional J̄ with respect to perturbations on the unsteady residual

R(W(t), t) = MP
dW

dt
+ R (W) = 0. (6)

An equation for Ψ(t) can be obtained by imposing the stationarity of the Lagrangian,

L = J̄ +

∫ T

0

ΨTR(W(t), t)dt = J̄ +

∫ T

0

ΨT

(
MP

dW

dt
+ R(W)

)
dt, (7)

with respect to the permissible state variations δW, which reads

δL =
dJT
dW

δW|t=T + ΨTMPδW|t=T −ΨTMPδW|t=0 +

∫ T

0

[
∂J

∂W
− dΨT

dt
MP + ΨT ∂R

∂W

]
δWdt = 0. (8)

Note that the third term evaluated at t = 0 vanishes, as the primal solution δW is constrained by the
initial condition of the problem. By taking the transpose of the integrand, the unsteady adjoint differential
equation reads

−MP
dΨ

dt
+

(
∂R

∂W

)T
Ψ +

(
∂J

∂W

)T
= 0, (9)

with the terminal condition at t = T ,

Ψ(T ) = −MP
−1 dJ

T
T

dW
, (10)
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which requires to march backwards in time. To this end, it is useful to define τ = T − t and rewrite the
discrete unsteady adjoint equation as

MP
dΨ

dτ
+

(
∂R

∂W

)T
Ψ +

(
∂J

∂W

)T
= MP

dΨ

dτ
+ RΨ(W,Ψ) = 0. (11)

This technique proved to be efficient and reliable for sensitivity analysis of some classes of unsteady
problems.5,23 However, it has been shown that adjoint approaches compute very large sensitivities when
applied to chaotic dynamical systems such as those arising from scale resolving simulations. Such behaviour
is not only driven by turbulence itself, but it is also observed in two dimensional flow simulations. The
reason for this resides in the very high sensitivity with respect to the initial conditions in the context of
chaotic dynamical systems,24–26 leading to sensitivity parameters and error estimates which are not anymore
effective. Additionally, the backward time integration increases considerably the computational costs of the
the procedure, which then increases dramatically the overall CPU time of the simulation.

To circumvent those problems, we propose to compute an adjoint by neglecting the unsteady nature of
Eq. (9) and following a steady-state approach, being interested in adapting for time-integrated statistically-
steady quantities. The idea of using a steady-state method to target adaptation of quasi-stationary governing
equations was already employed in the literature, see for example Braak et al .27 The adjoint solution in this
case is obtained as the solution of

RΨ(Ŵ,Ψ) =

(
∂̂R

∂W

)T
Ψ +

(
∂̂J

∂W

)T
= 0, (12)

where the residual Jacobian and the output linearization are evaluated using a pre-computed time-averaged
solution. We remark that this approach reduces the computational cost relative to solving Eq. (9), as the
steady-state adjoint is obtained through the solution of a single linear system. However, it does not provide

exact sensitivities with respect to the output, since the average field Ŵ is not a solution of the space-time
problem, R(W(t), t) = 0.

B. Entropy-adjoint sensitivity

The entropy-adjoint approach can be derived from by choosing an output functional such that

J =

∫
∂Ω

fendσ +

∫
Ω

∇vTFvdΩ−
∫
∂Ω

vTFvndσ, (13)

where fe is the entropy flux associated with an entropy function U(wc), and we are the entropy variables
associated with U . The main idea behind the approach is to choose entropy variables that symmetrize
inviscid and viscous terms of the compressible Navier–Stokes equations. This can be achieved by setting

U = − ρS

γ − 1
, S = ln p− γ ln ρ, (14)

where S is the physical entropy and γ is the ratio of specific heats. The entropy variables are then

we = UTwc
=

[
γ − S
γ − 1

− 1

2

ρuiui
p

,
ρui
p
,−ρ

p

]T
(15)

while the corresponding entropy flux is fe,i = uiU .
The three integrals appearing in Eq. (13) can be associated to the flow physics by noting that the first

represents the convective outflow of entropy across the domain boundary, the second term is the generation of
entropy due to the viscous dissipation, and the third is the entropy diffusion across the boundary. Since U is
opposite sign of S, the first term measures the net convective inflow of physical entropy across the boundary,
while the third term computes the net diffusive inflow of physical entropy into the domain. Since the second
integral evaluates the generation of entropy inside the domain, the theoretical value of the functional J
for an exact solution should be zero, meaning that the production of entropy is balanced from the entropy
flux throughout the boundaries. Since the imbalance is not strictly verified in a discrete sense, the output
functional J targets areas of spurious entropy production by the numerical discretization.
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The choice of such output functional and entropy variable is particular attractive. First, it is worth
pointing out that under, under the assumption of limited entropy generation over the domain ∆S/R � 1,
where R is the gas constant coefficient, adapting using the objective function defined in Eq. (13) can be
connected to a drag-adaptation, where the objective function is calculated integrating entropy, as proposed
by Oswatitsch.28 As demonstrated by Fidkowski et al.,11 adapting using entropy variables can be considered
equivalent to a farfield drag output adjoint for inviscid cases. For viscous cases, the equivalence of the error
estimate can be recovered through an additional fine space residual evaluation involving the viscous terms,
which is however neglected in the current study.

In fact, Fidkowski and Roe10 demonstrated that the entropy variables serve as solution of the adjoint
problem formulated as in Eq. (8). This means that the solution Ψ is obtained from the state variable
directly, and hence at extremely low computational cost. The residual’s linearization is not required for its
computation, meaning that the adjoint solution remains bounded for chaotic flow problems. Finally, the
average adjoint value can be obtained directly from the average state, similarly to what is performed in
Eq. (12).

C. Error localization

In the results, we compare entropy-adjoint and output-adjoint adaptive indicators for a two-dimensional
problem. These indicators take the following form for element K:

ηψK ≡
∣∣∣δΨ̂T

K,hR̂h(WH
h )
∣∣∣ , (16)

where δΨ̂T
K,h is the steady-state, fine-space entropy or output adjoint solution computed from the coarse-

space, time-averaged primal solution injected into the fine-space. The δ indicates that the coarse-space
projection of this output or entropy adjoint is removed prior to error estimation. R̂h(WH

h ) is the time-
averaged unsteady residual, computed during the unsteady primal solution by injecting the coarse-space
solution into the fine-space and calculating the residual. The residual is then averaged in time, and cancella-
tions between residuals at different times are allowed. The purpose of using an averaged, unsteady residual
is to obtain an accurate representation of the extent to which the fine-space unsteady equations are not
satisfied using the coarse-space solution. A static sensitivity field computed from the steady-state entropy
and output adjoint then provides the weight on this residual. The error indicator drives a fixed-fraction
adaptive strategy, and a burn-time is used prior to each unsteady simulation.

Eq. (16) shows that a fine space adjoint solution is necessary to compute δΨ̂K,h = Ψ̂K,h − Ψ̂K,H . In
general, two methods are commonly used to this end:13,29

• the computation of a fine space adjoint Ψ̂K,h on a finer space or using higher order polynomials,

Vh ∈ VH , and then subtracting Ψ̂K,H obtained through standard Galerkin projection operators;

• the interpolation of the finer space solution through interpolation on a wider patch, also known as
patch reconstruction, as Ψ̂K,h = IhHΨ̂Kp,h, where Kp is the union of the elements sharing a face with
K.

In this work the auxiliary problem on a finer solution space is avoided by following the second approach:
the global vector of degrees of freedom of entropy variables is computed, and then reconstructed element-
by-element on a higher polynomial degree (kK + 1, ∀K ∈ Th) using information on the patch.

D. Adaptation algorithm

The adaptation of the elemental polynomial degree is driven by an error estimator that identifies regions of
the domain that lack/exceed a required resolution. These regions can be refined/coarsened by increasing/de-
creasing the degree of the polynomial approximation of the solution. In this work only refinement has been
considered. Although performing the adaptation at each time step could be considered as the best choice,
this would lead to a significant overhead related to the need of continuously balance the computational load
over the processes. For this reason, in this work the error estimators are computed with the time-averaged
solution, W. Regardless of the adopted error estimator, the pseudo code of the adaptation procedure (in-

cluding coarsening) is reported in Algorithm 1. Here, k̂ is the polynomial degree at the beginning of the
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Algorithm 1 Adaptation algorithm

1: l = 0
2: kK = k̂ ∀K ∈ Th
3: for icyc = 1 to Ncyc do
4: integrate the governing equation in time
5: evaluate the time-averaged solution, W
6: if mod(icyc,N ) = 0 and l ≤ nadp then
7: l← l + 1
8: compute and normalize the estimators η∗K ∀K ∈ Th
9: for K ∈ Th do

10: if POSK ≥ (1− Gr)card(Th) then
11: kK ← min(kK + 1, kmax)
12: else if POST ≤ (Gc)card(Th) then
13: kK ← max(kK − 1, 1)
14: end if
15: end for
16: balance the load among processors via re-partitioning
17: L2 projection of the solution on the new space
18: end if
19: end for

computation, Ncyc is the total number of time steps of the simulation, kmax is the maximum allowable poly-
nomial degree defined by the user, N is the number of time-steps between two adaptation cycles or between
the simulation beginning and the first adaptation cycle, Gr is the percentage of the total number of elements
that will be marked for refinement, Gc is the percentage of the total number of elements that will be marked
for coarsening, nadp is the number of adaptation cycles to be performed, POSK is the position of the element
numbered from zero and sorted in increasing order according to the estimator ηTOTK or ηEAK . We remark
that orthonormal and herarchical modal bases greatly simplify the L2 projection operators. In practice,
the DOFs of the restricted solution are equal to the low-order subset of their high-order representations,
while the DOFs of the prolongated solution are the same as the low-order solution with zero high-order
components.

IV. Load balancing approach

Any adaptation algorithm applied to parallel simulations generally induces a strong imbalance of the
load per partition and a drastic reduction of the parallel efficiency. In such cases, an effective repartition of
the computational grid is mandatory to achieve good load balancing. The approach used here exploits the
ability of the Metis1 library to optimize, enforcing multiple constraints, the partition of a weighted graph,
where graph vertices correspond to mesh elements, while minimizing the number of faces of the partition
boundaries. It is worth noting that the multi-constrained mesh partitioning approach has a significant
impact on the parallel efficiency of simulations, as the floating-point operation count in different phases of
the solution scales differently with the polynomial degree. For instance, the Jacobian matrix evaluation
scales approximately as k3d, while the residual evaluation as k2d. Moreover, it turns out that the additional
simultaneous balancing of the operation count related to the volume and surface integrals evaluation improves
the parallel efficiency. A good balance of the computational costs related to the different solution phases was
achieved by using five constraints. Four constraints stem from balancing the computational cost of residual
evaluation and Jacobian assembly on different element and face types, which require different numbers of
Gauss integration points. The last constraint balances the computational cost of matrix-vector products.
Figure 1 shows the results of some numerical experiments aimed at assessing the parallel efficiency of the
p-adaptation strategy for a three-dimensional model test case computed on a grid with 768 elements. The
tests were run on an AMD Opteron machine with 2 computational nodes, each with two AMD 6276 Opteron
CPUs, for a total of 64 cores. The solutions were advanced in time using the backward-Euler scheme, which
requires the solution of one nonlinear system per time step. The solution of the linear system required in
the Newton-Raphson approach was obtained using a block-Jacobi preconditioned GMRES iterative solver.
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Figure 1. Parallel efficiency of the solver on AMD Opteron processors. k = 1, 4 stands for the fixed-p solver,
Adp stands for the adaptive solution without employing the load balancing algorithm, LB − Adp refers to the
adaptive run with load balancing approach, and LB−Adp(40) refers to scalability obtained using the CPU time
required by the final 40 iterations on the adapted discretization.
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Figure 2. Load of the processors without (left) and with (right) the use of the load balancing approach after
six p-refinements for the BTC0 test case.

The curves labeled k = 1 and k = 4 refer to the computation of solutions for 10 time steps using first-
and fourth-degree polynomials, and serve as reference. Considering the rather small number of elements, the
lower-order computations scale poorly as proven by the k = 1 curve. The p-adaptive solutions were run for
100 time steps by using the backward-Euler scheme, starting from a k = 1 approximation and performing
6 adaptation cycles (each time adapting 20% of the elements marked for adaptation), every 10 time steps
and setting to k = 4 the maximum polynomial degree. In the last 40 time steps no further p-adaptation
was performed. The scalability of the p-adaptive solver, running on the unweighted partition of the grid
and without load balancing (Adp), is clearly quite poor. Activating the load balancing (LB − Adp), the
scalability improves and the curve gets closer to the uniform k = 4 polynomial degree case computed on
the unweighted partitioned gird, even if the final number of Dofs is more than three times smaller for the
adaptive computation. The graph in this case was obtained using the multi-constraint partitioning strategy.
It is worth noting that the parallel efficiency of the p-adaptive computation, evaluated over the last 40
time-steps, when the solution is already adapted, is even higher, as shown by the LB − Adp(40) curve in
Figure 1. Finally, Figure 2 shows the load per processor, after six p-adaptation cycles without (left) and
with (right) load balancing.

V. Numerical results

Numerical experiments are devoted to assess the robustness and the accuracy of the proposed method-
ology in the context of unsteady, chaotic flow problems. First, we assess the methodologies on a two
dimensional laminar chaotic flow problem, i.e. the two-dimensional flow around a square at Re = 3 000,
where the performance of the averaged entropy and output adjoint sensors are compared. Second, we val-
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(a) Mesh: 4454 elements (b) Mach contours (0, 0.2)

Figure 3. Flow around a square. Mesh and Mach contours.

(a) Adjoint norm time history (b) Conservation of mass component of the adjoint at t = 0.
Scale is O(1017).

Figure 4. Growth of the adjoint for the time-averaged drag output in reverse time for the two-dimensional
square case.

idate the entropy-adjoint adaptive strategy on the implicit LES of the flow around a circular cylinder at
Re = 3 900. Third, as proof of concept, we report preliminary results of a higher-Reynolds number test case,
the Large Eddy Simulation of the flow around a rectangular cylinder at Re = 22000. The results show the
effectiveness of the averaged entropy-adjoint based sensor to capture transitional and separated region of the
flow, providing an efficient distribution of the degrees of freedom and throughout the domain and a good
comparison with experimental data.

A. Two-dimensional square test case

In this section, we compare the performance of the averaged entropy and output adjoint indicators for a
two-dimensional simulation. The problem of interest is a unit-square in horizontal flow at Mach number
M = 0.1 and Reynolds number Re = 3 000. The flow is initialized to free-stream and allowed to develop
into a statistically-steady regime, as illustrated in Figure 3, which also shows the mesh used for all of the
runs. The output of interest is the time-averaged drag coefficient on the square. We remark that standard
unsteady adjoint solutions for this output quickly grows without bound and becomes impossible to use for
adaptation, as shown in Figure 4.

Order-adaptive simulations are performed starting from p = 1 on every element. At each adaptive
iteration, 15% of the elements with the highest error indicator have their order incremented by 1. A burn
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(a) Averaged state (x-momentum) (b) Steady adjoint (conservation of x-momentum)

Figure 5. Flow around a square: averaged state and the steady-state adjoint computed about this state.

(a) Adapted on the entropy adjoint (b) Adapted on the entropy adjoint (zoom)

(c) Adapted on the drag adjoint (d) Adapted on the drag adjoint (zoom)

Figure 6. Flow around a square: order distribution (1–5) on the final adapted meshes.

time of 10 convective time units (here CTU, where 1 CTU is the time taken by flow at free-stream speed to
traverse the length of the square) is used prior to the averaging for each unsteady run. The averaging time
is also 10 CTU. A sufficiently small time-step and high-order time-stepping scheme are used to minimize
temporal errors, so that the dominant source of error is spatial. The temporal discretization is therefore not
adapted.
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(a) Adapted on the residual

(b) Adapted on the entropy adjoint

(c) Adapted on the drag adjoint

Figure 7. Flow around a square: instantaneous drag coefficient time histories and average values (thick lines)
on adapted meshes.

Figure 5 shows the time-averaged state and corresponding steady-state adjoint solution from the last
adjoint-based adaptive simulation. Note the lack of symmetry, particularly in the adjoint solution, which
can be addressed to some extent by increasing the averaging time.

Five adaptive iterations were run using three indicators: the entropy-adjoint weighted residual, the
output-adjoint weighted residual, and an unweighted residual. The latter was computed by using the L1

norm of the time-averaged residual on each element as the indicator, without any adjoint weight. The other
adaptive indicators also use the time-averaged residual, but with entropy or output adjoint weights. Figure 6
shows the order distributions on the final adapted meshes for each indicator. We see that a common area
to refine includes the corners of the square, particularly in the front and extending along the dominant flow
direction towards the rear of the square. The entropy-adjoint indicator additionally targets elements behind
the square, whereas the output-adjoint indicator targets elements ahead of the square. This difference is
caused by the opposite orientation of the primal versus adjoint wake – the adjoint wake extends ahead of
the square.

Once the adapted order fields were obtained, they were tested in long-time simulations. In each such
simulation, a burn time of about 100 CTU was first run starting with the final solution from the adaptation
sequence. Then, an averaging time of about 300 CTU was simulated to compute the average drag coefficient.
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Figure 8. Flow around a square: convergence of the average drag coefficient output on adapted and uniformly-
refined order fields.

Figure 7 shows the instantaneous drag coefficient time histories computed using the various adapted order
fields. The solid horizontal lines indicate the average drag coefficients, and we observe the smallest difference
between the last two adaptive iterations.

Finally, Figure 8 compiles the average drag coefficient results for all of the adaptive simulations and plots
them versus the spatial degrees of freedom of the order field. Included in this plot is the convergence of
uniform order refinement. Note that this plot shows the drag coefficient itself, not the error. We see that
both the entropy and output adjoint adaptations yield order fields that quickly converge to an average drag
coefficient in the vicinity of what appears to be the true value (which is lower than the starting point). The
unweighted residual, on the other hand, does not converge well, and this is due to the lack of a weight that
cuts off adaptation far away from the square: many of those areas still have high residuals due to large
elements and passing transient/acoustic waves, even though their order has little impact on the output.
These results suggest that for this class of simulations involving bluff bodies and separated flow regions,
there exist a similarity between entropy and output adjoint indicators for statistically-steady, yet chaotic
simulations. We note however that although the outputs are similar, the order fields differ, suggesting that
the optimum distribution of orders may not be overly narrow.

B. Three dimensional test cases

The robustness and efficiency of the proposed approach are evaluated by computing the implicit LES of two
problems: i) three-dimensional flow past a circular cylinder at Re = 3 900 and M = 0.1; ii) turbulent flow
over a square cylinder at α = 0◦ and Reynolds number Re = 22 000 and M = 0.1. Span-wise periodicity is
assumed for both test cases. The meshes used in this work have been generated with a 2D high-order version
of a fully-automated hybrid mesh generator based on the advancing-Delaunay strategy30 and extruded in
the span-wise direction. We remark that we didn’t specify any refinement in the wake region, as we aim at
adapting the wake through the use of higher-order polynomials.

In both cases the simulations have been initialized by computing, in sequence, uniform P0 and P1 solutions.
After initialization, the adaptation process is activated and driven the entropy adjoint approach. In all the
computations, coarsening was disabled, i.e., Gc = 0, and Gr was set to 0.2 to refine the 20% of elements with
the highest estimated error. Both the simulations were performed using 15 KNL nodes, with 68 CPUs each,
on the MARCONI A2 HPC system provided by CINECA, the Italian Supercomputing Center.

1. Turbulent flow around a circular cylinder

The transitional turbulent flow around a circular cylinder at Re = 3 900 has been solved on grid made of
41865 mesh elements, with quadratic edges in the vicinity of the walls. The grid was obtained by extruding
a two-dimensional using 12 elements in the span-wise direction. A circular farfield boundary has been placed
at 30R, with R the radius of the cylinder. Figure 9 shows a snapshot of the computational domain, as well as
the instantaneous Mach contour of a fully-developed solution. The problem was analyzed in several previous
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(a) Mesh: 41 865 elements (b) Q-criterion iso-contours coloured by the vorticity magni-
tude

Figure 9. LES solution of the flow around a circular cylinder. Computational mesh, 41 865 elements with
quadratic edges (left). Istantaneous field (Q-criterion) coloured by the vorticity magnitude (right).

(a) Polynomial order distribution (b) Polynomial order distribution (zoom)

(c) Average Mach contour (d) Average entropy variable (x-momentum)

Figure 10. LES solution of the flow around a circular cylinder: polynomial order distribution, Mach number
and x-momentum entropy variable contours.

papers and it is part of the test case suite of the International Workshop on high-order methods.31 The
simulation was adapted on 7 consecutive cycles, where the 20% of the elements was targeted for polynomial
order increase at each cycle. The final adapted setting was used to compute an average solution over
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Figure 11. Circular cylinder Re = 3900. Span-wise and time-averaged pressure coefficients cp (left) and non-
dimensional wall vorticity Ω/2Re0.5 (right) along the cylinder.
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Figure 12. Circular cylinder Re = 3900. Mean stream-wise ux and cross-wise uy velocity at different locations
in the wake of the cylinder.

T = 11.36 CTU, here defined as R/(V∞). The final number of DoF obtained from the adaptation process
and used to compute the average is 6.95 · 105.

Figures 10(a) and 10(b) show the polynomial distribution obtained on the temporal average T . The
time and span-wise average flow field over the period T is reported in Figures 10(c) and 10(d). The results
show that the entropy adjoint approach based on the averaged entropy variables and averaged residual
vector is able to increase the resolution on the shear layer and wake regions of the domain, similarly to
what happens in the two-dimensional case. Figures 11 shows the pressure coefficient and the wall vorticity
profile on the wall, which compare favourably with experimental data from Norberg32 and previous numerical
simulations.33 Figures 12 and 13 extend the comparison to the average velocity, velocity fluctuation and
pressure on different stations along the wake region.
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Figure 13. Circular cylinder Re = 3900. Mean stream-wise velocity ux/uref along the centerline in the wake of
the cylinder.

(a) Mesh: 62 328 elements (b) Q-criterion iso-contours coloured by the vorticity magni-
tude

(c) Polynomial order distribution (d) Polynomial order distribution (zoom)

Figure 14. LES solution of the flow around a square cylinder. Detail of the computational mesh with linear
edges (top-left); Istantaneous field (Q-criterion) coloured by the vorticity magnitude (top-right); polynomial
order distribution (bottom-left); detail of the polynomial order distribution in the vicinity of the wall (bottom-
right).
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2. Turbulent flow around a square cylinder

As proof of concept, the performance of the adaptive indicator is tested on the flow over a square cylin-
der. The case is computed for a Reynolds number of Re = 22 000, with an angle of attack α = 0◦. The
hybrid 3D mesh consists of 62 328 elements, with linear edges. The farfield is rectangular of extension
[−10.5D, 20D]×[−21D, 21D]. The mesh was extruded in the span-wise direction using 15 elements while
imposing a periodicity of 4D. A detail of the computational mesh and the preliminary results of the compu-
tation are depicted in Fig. 14, which shows Mach number contours after six adaptation cycles after an initial
burn-time of 2.75 CTU. In particular, Figure 14(c) shows how high order polynomials are clustered in the
shear layer and in the wake, which is shifted upstream with respect to the cylinder test case. This is con-
sistent with the instantaneous flow field, where the breakdown to turbulence is shifted upstream due to the
higher Reynolds number. The computation of the long-time average results using the adapted polynomial
distribution is left for future work.

VI. Conclusions

In this work, a strategy based on an adjoint p-adaptation approach is presented to increase the compu-
tational efficiency of a high-order DG solver in the context of unsteady compressible flows simulations. In
particular, the entropy-adjoint approach10 is applied to the run-time average field is adopted to drive the
adaptation. The fine space adjoint solution is computed using a patch reconstruction approach, which avoids
the need of assembling a finer space problem and maintains the computational costs low. A dynamic load
balancing strategy after each adaptation iteration is proposed, based on a multi-constraint domain decompo-
sition algorithm. The application to two-dimensional flow around a square cylinder shows that the approach
performs similarly to a drag-based averaged adjoint adaptation method at a cheaper computational cost for
simulations involving separated flows, demonstrating the benefits of using the proposed adaptation method.
Three dimensional simulations involving the implicit LES of compressible turbulent flows show the suitability
of the solver to reduce the computational costs of scale-resolving simulations involving bluff bodies and sep-
arated flows using massively parallel platforms. Comparisons of output quantities of engineering interest are
also be considered, highlighting the accuracy of the adapted discretization. Future work will be devoted to
the extension of the current methodologies for the simulation of incompressible flows, the use of matrix-free
iterative solution strategies37 and preconditioners38 to further increase the computational efficiency.
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