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Abstract. We present a method for concurrent mesh and polynomial@daptation with
the objective of direct minimization of output error usinge@ection process for choosing
the optimal refinement option from a discrete set of choibasihcludes directional spatial
resolution and approximation order increment. The schesrgeared towards compressible
viscous aerodynamic flows, in which solution features mak&in refinement options more
efficient compared to others. No attempt is made, howeveretsure the solution anisotropy
or smoothness directly or to incorporate it into the scheRather, mesh anisotropy and ap-
proximation order distribution arise naturally from the tpization of a merit function that
incorporates both an output sensitivity and a measure ofctiraputational cost of solving
on the new mesh. An adjoint state is used to translate theuakperturbation resulting
from each refinement option into an output sensitivity watspect to each mesh modification
option. Two measures of computational cost are exploredersegc measure that accounts
for the number of degrees of freedom of the discrete state,ome that accounts for the
number of floating-point operations involved in solving thecrete problem. We restrict the
mesh refinement mechanics to quadrilateral and hexahedeahes. Many such meshes and
associated meshing programs exist from the structured Céidneunity, and these can be
leveraged to produce the starting meshes for the proposegtation. Additionally, we dis-
cuss implementation challenges of hp-adaptive methodaeimdynamic problems, such as
load balancing on distributed-memory systems. The methagplied to output-based adap-
tive simulations of laminar and Reynolds-averaged congiioés Navier-Stokes equations on
body-fitted meshes in two and three dimensions. Two-dimeaisiesults show significant
reduction in the degrees of freedom and computational tonachieve output convergence
when the discrete choice optimization is used comparediforamh or p adaptation. Three-
dimensional results show that the presented method is ardatile way of achieving output
convergence on notoriously difficult cases such as the ey Prediction Workshop W1
configuration.
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1. INTRODUCTION

Aerodynamic flows exhibit features in a wide range of lengtiless and singular fea-
tures whose distributions are not knoavpriori. Hence, it is key for an efficient computation
that the adaptive algorithm is capable of generating stegtelements in areas where the solu-
tion exhibits anisotropy and choosing a local approxinraticder appropriate to the smooth-
ness of the solution. Anisotropic features include bounttarers, wakes, and shocks, where
the disparity of length scales is such that stretching saticthe hundreds or thousands are
common. Singular or near-singular features, at least #®iptimal solution, include shocks,
trailing edges, edges of boundary layers and wakes, anich¢raortices,

The choice between subdividing an element or locally changhe scheme’s dis-
cretization order is not trivial and has been the subject efmprevious research [3, 22, 34,
24,16, 4]. Bey [3] uses the error equidistribution prineifd first subdivide elements and then
increase the polynomial order where the solution is deenmreabth. Conversely, Heuveline
and Rannacher [22] propose a process that priorifizefinement and only subdivides an
element when the previous step leads to an increase in timeptal error indicator. Houston
and Suli [24] introduced two methods for assessing thd kroaothness of the solution using
Legendre series expansions and estimates of the local S&obmlex. In that same atrticle,
they also provide an overview of different strategies fa tiecision of the refinement type.
Burgess and Mavriplis [4] use a solution-jump indicator exide betweert andp refine-
ments. Following a different approach, Rachowetal [34] chooseh or p refinement based
on an estimated lowest interpolation error.

Anisotropic mesh adaptation in aerospace applicationsasagprolific research topic.
The dominant method for detecting anisotropy has reliedstimates of the directional in-
terpolation error of a representative scalar, such as thehMamber [32, 28]. When used
alone, this technique reduces to equidistributing therfrai@tion error of the chosen scalar
over the computational domain, with the absolute level tarpolation error prescribed by the
user [5, 19]. Alternately, this technique can be combinetth wutput-based error estimation
by using the output adaptive indicator to set the elemeetaim the directional interpolation
error to set the element stretching [38, 40]. The same ideabeaextended to high-order
discretizations [11, 9], although the measurement of tdoeal interpolation error becomes
more tedious. A more fundamental problem with this appraac¢he context of output-based
adaptation is the assumption that mesh anisotropy shouighzerned by the directional in-
terpolation error of one scalar quantity. This assumptsonauristic because it does not take
into account the process by which interpolation errorstereasiduals that affect the output
of interest. As a result, recent research has turned to atitapalgorithms that directly target
the output error.

Formaggieet al [15, 14, 13, 29] combine Hessian-based interpolation exstimates
with output-basee posteriorierror analysis to arrive at an output-based error indictuat
explicitly includes the anisotropy of each element. Sctleeand Jimack [36] calculate the
sensitivities of the output error estimate with respectddenpositions and formulate an opti-
mization problem to reduce the output error estimate bysteduting the nodes. They then
combine this node repositioning with isotropic local mesfinement sequentially in a hy-
brid optimization/adaptation algorithm. Park [31] intraes an algorithm that directly targets



the output error through local mesh operators of elemenpping, node movement, element
collapse, and element splitting. Using the output erroiciair to rank elements and nodes,
these operations are performed in sequence and autorhatesllt in mesh anisotropy.

Following a similar approach presented by Houstbal[23], we proposed in Ref. [6]
a direct mesh optimization technique in which a particulasmrefinement is chosen from a
discrete number of possible choices in a manner that dyrésntfets reduction of the output
error. That strategy is specifically suited for hanging@atkshes, in which a handful of re-
finement options is typically available for each elementiarnthich the adaptation mechanics
are relatively simple. We extended our previous worlipeadaptation of quadrilateral and
hexahedral meshes in Ref. [8].

In order to fully use the potential gfp-adaptive methods in practical aerodynamic
flows, the computational resources must be used efficievypresent in this paper a method
for balancing the computational work in distributed-meynsystems that aims to equalize
the number of floating point operations of each processorrapdove the effectivity of the
preconditioner.

2. PROBLEM STATEMENT

Let U denote a discrete state vector and consider the semi-gisystem,
U, = -R(U), (1)

whereR(U) is a discrete residual operator derived from a weighteithies statement of a
set of partial differential equations. In this work, we cioles laminar and Reynolds-averaged
compressible Navier-Stokes equations [30].

The field representation of the state is given by an expamsi@nms of basis functions

§1P(x) € Vi,

it z) = 3 U (067 (), )

whereV? is the space of polynomials of ordemwith local support on each of the elements
xf in a non-overlapping discretizatiai’ of the domainD.

We are interested in the steady-state solution of the flovaigapus, therefore high-
accuracy is not required for discretizing the unsteady teriagn. 1. Instead, stability is the
main attribute which makes backward Euler an attractivecehorl he fully discrete form of
Eqgn. 1 is then:

M (UM —U") 4 R(UM) =0, 3)
whereM is a block-diagonal mass matrix for discontinuous Galedkstretizations.

In time-accurate calculations, Eqn. 3 is solved for thereitstate using a nonlinear
solver such as Newton-Raphson. For steady calculatioegeidual at the future state in
Egn. 3 is expanded about the current state and the steps itethBve procedure require
linear solves for the updatdU* = U**! — U,
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Uk) AUF = —R(U"), (4)



where k is used for the linear iteration number to distinguish thehoé from the time-
accurate backward Euler case.

In principle, Newton'’s root-finding method could be useddtve R(U) = 0 directly.
However, the unsteady term in Eqn. 1 is kept to alleviate peeal conditioning of the linear
systems in the initial stages of the calculation and to impitbe global convergence property
of the solver.

The linearization of the residual operator involves siffiqditions due to non-differentiable
terms in numerical flux functions and artificial dissipateensors. Additionally, the sparse
structure of the linear system given in Eqn. 4 depends onyitedf spatial scheme used for
R, and an appropriate choice of iterative solver and predmmair must be made. In this
work, we use the Generalized Minimal Residual (GMRES) algor with a line-Jacobi pre-
conditioner [10]. Note that foA¢t — oo the iterative procedure of Eqn. 4 reduces to Newton'’s
root-finding method.

3. OUTPUT ERROR ESTIMATION

Output-based error estimation techniques identify athaua the domain that are im-
portant for the accurate prediction of an engineering dufplie resulting estimates properly
account for error propagation effects that are inherenypztbolic problems, and they can be
used to ascribe confidence levels to outputs or to drive atlapt A key component of output
error estimation is the solution of an adjoint equation fardutput of interest. In a continuous
setting, an adjoint) € V), is a Green'’s function that relates residual source peatigbs to a
scalar output of interest(u), whereu € V denotes the state, and whéfés an appropriate
function space. Specifically, given a variational formuaatof a partial differential equation:
determinea € V such that

R(u,w) =0, Yw eV, (5)

the adjointyy € V is the sensitivity of/ to an infinitesimal source terdr € )V added to the
left-hand side of the original PDE/ satisfies a linear equation,

R'[u](w, ) + J'[u](w) = 0, Yw eV, (6)

where the primes denote Fréchét linearization with resfgethe arguments in square brack-
ets. Details on the derivation of the adjoint equation cafobed in many sources, including
the review in Ref. [12]. Specifically, in the present work wamoy the discrete adjoint
method, in which the system is derived systematically froengrimal system [18, 27].

An adjoint solution can be used to estimate the numerical émrthe corresponding
output of interest. The resulting adjoint-weighted reaidmethod is based on the observa-
tion that a solutioma”"? in a finite-dimensional approximation spagé&? will generally not
satisfy the original PDE. The adjoimt € V translates the residual perturbation to an output
perturbation via,

§J = J(u"?) — J(u) ~ —R(u’? ). (7)



This expression is based on a linear analysis, and henceofdinear problems and
finite-size perturbations, the result is approximate.

Although the continuous solutiam is not required directly, the continuous adjoint
must be approximated to make the error estimate in Eqn. 7 ctabfe. In practicez/;h’p+ is
solved approximately or exactly on a finer finite-dimenslapace)”*" > VZr [35, 1, 37].
This finer space can be obtained either through mesh sulmtivis approximation order
increase [26, 20, 30] — denoted here by changes in the suip¢érScandp, respectively.

The adjoint-weighted residual evaluation in Eqn. 7 can lballeed to yield an adap-
tive indicator consisting of the relative contribution afod element to the total output error. In
this work, the finer space is obtained by approximation oigrementV7»+1 5 YHr and
Pt is approximated by injecting™? into V#»t1 and applying 5 element block-Jacobi
smoothing iterations. The output perturbation in Eqn. 7Jigraximated as

0J ~ — Z RHH (Igzzﬁ-l(uH,p)’ ,I’Z;H,p-l-l . Igzz-l-l(lpH,p))7 (8)

wHeTH

WhereIZ:§+1(~) is an injection operator from to p + 1 in the coarse mest’?, andR,.»
corresponds to the residual of elemert. Note, the difference between the coarse-space
and fine-space adjoints is not strictly necessary due toridalerthogonality [12]. However,
when the primal residual is not fully-converged to machimnecjsion levels the use of the
adjoint perturbation gives better error estimates. Equaiexpresses the output error in terms
of contributions from each coarse element. A common apprdéacobtaining an adaptive
indicator is to take the absolute value of the elementalrdmriton in Eqn. 8 [39, 2, 21, 17, 1,

6],

Mot = R (T2 (@17), gp 04t — T (1)) | ©)

With systems of equations, indicators are computed sepqrfar each equation and
summed together. Due to the absolute values, the sum ofdi@ators,> 7.z, is greater
or equal to the original output error estimate. Howevers mot a bound on the actual error
because of the approximations made in the derivation.

4. MESH ADAPTATION MECHANICS

The elemental adaptive indicatoy, =, drives a fixed-fraction hanging-node adapta-
tion strategy. In this strategy, which was chosen for sioifyliand predictability of the adap-
tive algorithm, a certain fractionf2#@ of the elements with the largest values:pf: is
marked for refinement. Marked elements are refined accotdidigcrete options which cor-
respond to subdividing the element in different directionsncreasing the approximation
order. For quadrilaterals, the discrete options areefinementy-refinement;zy-refinement
andp-increment, as depicted in Figure 1. Nateandy refer to reference-space coordinates
of elements that can be arbitrarily oriented and curved ysmal space. Also, the subele-
ments created through refinement inherit the approximatider from the original element.
In three dimensions a hexahedron can be refined in eight vlarese single-plane cuts, three
double-plane cuts, isotropic refinement, andcrement.
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Figure 1. Quadrilateral refinement options. The dashed lindicate the neighbors of the
refined element.

h-refinement is performed in an element’s reference spacepjoging the coarse el-
ement’s reference-to-global coordinate mapping in caling) the refined element’s geometry
node coordinates. The refined elements inherit the sameeajgpapproximation order and
quadrature rules as the parent coarse element. As a résu#,is no loss of element quality
when a nonlinear mapping is used to fit the element to a cureechgtry. Therefore, curved
elements near a boundary can be efficiently refined to capturedary layers in viscous flow.
For simplicity of implementation, the initial mesh is assdrto capture the geometry suffi-
ciently well, through a high enough order of geometry intéaion on curved boundaries,
such that no additional geometry information is used thhowg the refinements. That is, re-
finement of elements on the geometry boundary does not ciihaggometry. We note that
for highly-anisotropic meshes, curved elements may bemedjaway from the boundary, and
for simplicity we use meshes with curved elements througtiedomain.

Note that elements created in a hanging-node refinemenecasatked for.-refinement
again in subsequent adaptation iterations. In this casghiners will be cut to keep one level
of refinement difference between adjacent cells. Thisusitated in Figure 2.

Figure 2. Hanging-node adaptation for a quadrilateral megh a maximum of one level of
refinement separating two elements. The shaded elemeng ¢eftis marked for refinement,
and the dashed lines on the right indicate the additionalediyes formed.

5. MERIT FUNCTION

The choice of a particular refinement option is made locallgach element flagged
for refinement. This choice is made by defining a merit functid:) that ranks each available



refinement option. This function is defined as
mii) = 20 (10)

whereb andc respectively correspond to measures of the benefit and thpwational cost

of the refinement option indexed byThese measures depend on the method used for solving
the flow equations and they should be tailored for each spegfver. We define them further

in this section in the context of the applications preseirigtis paper.

During calculation of the merit function, local mesh andedgttuctures are created that
include the flagged element and its first-level neighbora@lweith the corresponding primal
and adjoint states. In these local structures, the cer&nadent is refined in turn according to
each of the discrete options. On the refined local mesh, thig fuection is computed and
the refinement option with the largest valuenofi) is chosen.

5.1. Cost

We consider two measures of computational cost. The firssureas solution storage
that is proportional to the number of degrees of freedom endiscrete state vector. For
tractability, we consider only the degrees of freedom pertt to the flagged element’,

coor(i) = D, (per(i) + 1), (11)

wherH

wherex”" ¢ k! denotes the subelements embedded in the original elemleatexk for re-
finement and,. (i) is the element’s approximation order after the refinememntegscted in
Figure 1. Note thap,» = p.= for h-refinement while the number of embedded elements
changes. Conversely,» = p.» + 1 for p-refinement and there is only one embedded ele-
ment,i.e. the original element. Also, we are not considering the ranthe conserved state
vector N, because it is a constant throughout the mesh. It is worth asipihg that this mea-
sure of cost is insensitive to the type of time integratioadi® solve Eqn. 1, and therefore it
is a generic measure of cost.

The second measure of computational cost incorporatesmaton about the time
integration method. In this work, most of the computatidimak is spent solving the linear
system in Eqn. 4 using the GMRES algorithm. In a sparse strecuch as in Eqn. 4, we
approximate the number of floating point operations in apgl\GMRES by the number of
non-zero entries in the Jacobian matrix. Based on this vagen, we define the second
measure of cost as:

enz(i) = Y 3 (0w (@) + 1P 7 [(pen(8) 1) - (pn(0) + 1] 5 (12)

rkhert OkM\oD

wherep_, denotes the approximation order of the neighboring elemenoss facéx", which
must not be part of the boundary of the domain). The first term in Eqn. 12 accounts for
the self-blocks of the residual Jacobian matrix correspantb each of the subelements. The
second term corresponds to the dependence of the subetemesndual on the neighboring



states. The cost function does not take into account pessyiarsity within the blocks of the
Jacobian matrix, as such sparsity is not taken into accautitebsolver. Note thatyz is more
sensitive to the number of spatial dimensions thst.

5.2. Benefit

The benefib(i) is a measure of how much improvement in the prediction of apuwu
results from refinement optian Evidently, the definition of benefit is not unique and it may
be tailored for different applications and solution methodowever, it is desirable that such
a definition is tractable and computationally inexpensive.

In an output-based mesh adaptation cycle, the steady+s&ithial is driven to zero
at each step. Therefore, mesh modification on the elemegitdan be interpreted as a local
residual perturbation. Since an adjoint solution reprisére sensitivity of an output with
respect to a residual perturbation, we define our benefitiumas:

b(i) = Y [Rer(UkTwa(d));] - [WaTw(0)], (13)

kherH

whereR,.(-); is a discrete residual component in the embedded elemgiit) © a matrix
that transfers the discrete primal and adjoint solutionsabd ¥, to the local meshes for
each refinement. Note that the adjoint variables act as positive weightsefach of the
perturbations.

The definition in Egn. 13 relies on the following observasion

e At each step of the adaptation cycle, a discrete primal solus found so that the
residual vector is machine-zero. Therefore, the benefitefiset in Eqn. 13 is also
machine-zero if computed before refining the central elémen

¢ Inthe limit of the discrete solution representing the exattition to machine precision,
the result of Eqn. 13 will be of the order of machine precigmrany refinement option.

e The refinement option with the largdsgt) is expected to be the option that produces
the largest change in the output of interest.

Note that Eqn. 13 is inexpensive to compute since only a wesicalculation in the
local mesh and data structures is required for each refineopdion. Also, this framework
is different than a residual-based decision because thevalf the discrete adjoint provide
information on the distribution of output sensitivity.

6. MESH PARTITIONING

At higherp-orders, the time taken to solve the primal and dual problecreases and
the non-homogeneity of affects the distribution of computational work amongstpheces-
sors. Therefore, dynamic load-balancing fgradaptive methods is important for efficient
use of computational resources. However, such balancet isivial and, in fact, is a topic
of research rarely explored. The difficulty is that the cotagional effort for the residual
operator, and its Jacobian, is not constant between elsnretite mesh and the performance



of the line-Jacobi preconditioner deteriorates [10] wheltsawith strong coupling reside in
different processors.

Typically in CFD, the mesh is represented as an irregulgrlgr@here each element
x* is a node in the graph and the interior faceg’ \ 0D are edges in the graph (Figure
3). This graph is then partitioned using a multilevel algori in which sequences of smaller
graphs are systematically generated and partitioned tinetipartitions are as close to equal
size as possible.

REFae

Figure 3. Example of mesh (continuous lines) and correspgngraph (dashed lines); the
sets of elements circled in red represent lines of the piditioner.

In our work, we use the multilevél-way graph partitioning algorithm implemented
in the ParMETIS library [25] which permits the attributioh weights to nodes and edges
of the graph. The node weights are used to represent the ¢atigmal effort for each ele-
ment due to non-uniformity gf-orders. The edge weights are used to make the partitioning
algorithm avoid separating elements with strong couplmg@roving the effectivity of the
preconditioner.

The inter-domain communication stores the data in one lajdictitious elements
neighboring each inter-domain boundary. This informatgoanough for the residual calcu-
lation and the assembly of its Jacobian due the compactiktém¥G discretizations.

The node weights are computed based on the number of noreagfes in the self-
blocks of the Jacobian matrix,

WeH = (an + 1)2.dim7 (14)

wherep,.x is the polynomial order of element’ .
The edge weights are computed in the following sequence.

1. Loop through edges of the graph and compute:
WakH\OD — (p:H + 1)dim + (p,:H + 1)dim7 (15)

wherep?,, andp_, are the polynomial orders of the elements on both sides of the
interior face.

2. Loop trough edges of the graph that are part of lines of tkegnditioner (red node
groups in Figure 3) and augmeny, = sp With

WarH\oD = Wari\pp - Max(v v ), (16)



wherev:H andv_; are the number of edges that are connected to the nodes oarehch
of edgedxt \ dD.

Equation 15 gives weights to the edges that are proportimnede amount of data
transferred in each exchange of information between psoces The second step (Eqn. 16)
makes the partitioner prefer to separate elements thabastnongly coupled.

7. RESULTS

In this section, we assess the performance offguadaptation framework using the
cost measuregyor andceyz. The performance is measured in terms of number of degrees
of freedom and wall-clock time. In the output-based adamtamnethods, the time stamps
include the solution of both the primal and adjoint solved Hre time taken to estimate the
output error, while for the uniform refinements only the pairsolve time is included.

At each step of the adaptive proceg¥@” = 10% of the elements with largest,» are
selected for refinement. The output of interest is drag andteu¢ from ap = 1 solution for
all the results presented.

7.1. NACA 0012 -M,, = 0.5,a = 1.0°, Re = 5 x 10?

The first case is two-dimensional flow &f,, = 0.5, = 1.0° andRe = 5 x 10% over
the NACA 0012 airfoil. We compare thigp-adaptation framework using both cost measures
against uniformh and p refinements. Figure 4 shows the initial mesh and Mach costour
This case used 1 Nehalem 8-core node from the Nyx clusteeafiversity of Michigan.

[
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(a) Initial mesh for the NACA 0012. (b) Initial Mach contours obtained on the initial
mesh withp = 1.

Figure 4. NACA 0012 M, = 0.5, = 1.0°, Re = 5 x 10%: Initial quartic (; = 4) mesh and
Mach contours.

Figure 5(a) shows the drag coefficient convergence in tefmsimber of degrees of
freedom. While bothp-adaptation runs present similar convergence historieght® cor-



rected output (dashed lines), the uncorrected drag vakadsl (ines) converge faster with
cpor than whereyz is employed. Additionally, thép-adaptation runs converge the corrected
output with significantly fewer degrees of freedom than thiégasm refinements. Figure 5(b)
shows the performance in terms of wall-clock time of épr adaptation method without the
adaptive repartitioning described in Section 6. This comspa favors the uniform refinement
strategies.

0.0585 — 0.0585

0.0581 0.0581

0.05751 0.05751

0.0571 0.0571

S 0.05651 S 0.0565F

0.056 0.056

0.0555 0.0555

0.0551 1 0.0551

0.0545
1

3 0.0545
0 1

I I I
o° 3

10° 10' 10° 10
Wall-clock time (seconds)

10* 10*
Degrees of freedom

(a) Drag coefficient evolution with respect to degré@s Drag coefficient evolution with respect to wall-
of freedom clock time

Figure 5. NACA 0012M, = 0.5, = 1.0°, Re = 5 x 103: drag coefficient convergence;
o: uniform h-refinement; A: uniform p-refinement;o: hp-adaptation withcpor; +: hp-
adaptation witheyz. The dashed lines correspond to the drag values correctadiva error
estimate.

Table 1 shows the percentage of choice of the different nef@me options for each
of the cost measures. Note thaincrement is chosen significantly more often whggr is
used, whilecyz prefers single-cut-refinement. Additionallygnz performs slightly better
in terms of time (Figure 5(b)), whilepor converges faster in terms of degrees of freedom
(Figure 5(a)).

Table 1. NACA 0012M,, = 0.5,a = 1.0°, Re = 5 x 103, drag-driven adaptation: per-
centage of choice for each refinement option; Asasotropich-refinement; s single-cut
h-refinements; isgx isotropicp-refinement.

CDOF CNz
Adaptation step iso-h | sc+h | iSO | iSO-h | SCHh | iSOp
1 0.0 |351|649| 0.0 |86.5| 135

0.0 | 316|684 | 0.0 | 85.0( 15.0
0.0 |27.5| 725 | 0.0 | 70.4| 29.5
0.0 | 195/ 80.5| 0.0 |91.7| 8.3
0.0 | 31.0|/ 69.0| 0.0 | 70.4| 29.6
0.0 | 20.0| 80.0| 0.0 | 82.7| 17.2

OO WN

Figure 6 shows the final meshes andrder distributions. The adaptive scheme pro-



duces a larger area of the domain with higher order cells wpgnis used to measure cost
(Figure 6(c)). In contrast, the adaptive algorithm, wheingigyz, chooseg-increment mostly
in the wake region combined with anisotropgiaefinement as seen in Figures 6(d) and 6(b)
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(a) 61" Mesh with Mach contours fafpor. (b) 6™ Mesh with Mach contours fafy;.
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(c) 6™ p-order distribution forcpor; blue indicategd) 6™ p-order distribution foreyz; blue indicates
p = 1; red indicate® = 3. p = 1; red indicate® = 3.

Figure 6. NACA 0012/, = 0.5, = 1.0°, Re = 5 x 103: hp-adapted meshes for drag.

We now analyze the effect of the mesh partitioning algoritteacribed in Section 6.
Figure 7(d) shows that the weighted partitioning saveseclod 000 GMRES iterations in the
last 2 adaptation steps. This is mostly due to using the elehmes of the preconditioner to
assign weights to the edges of the graph. We use block-Jaouadmthing for the fine-space
solves involved in error estimation, therefore, the sasisigown in Figure 7(c) are due to a
better distribution of computational work amongst the pssors. Figures 7(a) and 7(b) show



the timings for the primal and adjoint solves. The weightadiponing runs are significantly
faster then the baseline unweighted partitioning method.
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Figure 7. NACA 0012)M,, = 0.5,a = 1.0°, Re = 5 x 10%: effect of weighted partitioning
- the points correspond to each of the adaptation stepsp-adaptation withcpor;, +: hp-
adaptation withyz; solid lines: unweighted partitioning; dashed lines: vinggl partitioning.

7.2. Third Drag Prediction Workshop W1 geometry - M, = 0.76, o = 0.5°, Re = 5 x 10°

In this case study, we consider the baseline wing geomet®yA(BW1) from the third
AIAA Drag Prediction Workshop. This case consists of tudmtj transonic flow over a ta-
pered wing and the mesh adaptation routine is driven by thg dutput. The initial curved
mesh, shown in Figure 8(a), was obtained through agglomaratf cells from a finer struc-
tured linear C-grid generated specifically for this purpdedhe agglomeration, each curved
hexahedral element was obtained by merging twenty sevearlielements using a distance-
based Lagrange interpolation of the nodal coordinateslitneg in cubic ¢ = 3) geometry in-
terpolation. Also, the spacing of the linear mesh is suchtttagglomerated mesh presents
y* =~ 1 for the first element off the wall as recommended in the waoskshnd the outer
boundary is located at 100 mean-aerodynamic-chord-lsraytlay from the wing.



We used the Spalart-Allmaras turbulence model withoutterms and we assumed
the flow as fully turbulent. Also, Persson and Peraire’s [@8)ck-capturing method is used
to improve stability. The flow was initialized with free-sim values and, due to the difficulty
of this case, the constraint handling technique presemdref. [7] was used to compute
the baseline flow with linearp(= 1) approximation order. As a basis of comparison, all
the adaptive schemes started from the same initial solsbahat all methods are compared
against the same initial time-stamp. For the adjoint-baskeghtation methods, the wall-clock
time taken for the initial adjoint solve is also included Iretinitial starting time. Similarly
to the previous case, the adaptive runs used unweighteitigrartg and this favors uniform
refinement. We assess the effect of weighted partitionitay Ia this section.

All of the calculations for this case were executed on 180pHdown 8-core nodes
from NASA's Pleiades supercomputer. Due to the computatierpense of these runs, we
did not perform a statistical study to account for machirmégesmance variability in the CPU-
time measurements.

(a) Initial pressure contours (29310 cubic eleme(i},Pressure contours on thé& level of uniformh-
p=1). refinement (234480 cubic elements+ 1).

(c) Pressure contours on th# drag-adapted megi) Pressure contours on th& drag-adapted mesh
usingcpor (59503 cubic elements). usingenz (85377 cubic elements).

Figure 8. DPW Wing 1 M., = 0.76,a = 0.5°, Re = 5 x 10°: Initial and drag-adapted
meshes with pressure contours.

We compare three mesh improvement strategies startingtfremitialp = 1 solution
shown in Figure 8(a). As reference, one of the strategiesifonm A-refinement (Figure
8(b)) in which all hexahedra are divided into 8 elements. & cost measures described
earlier are compared fdip-adaptation in whichf@¥@t = 10% of the elements is selected for
refinement at each adaptation step. Additionally, we fixedaverall budget of CPU wall-



time for each of the three runs and the last converged salotitained within that budget are
shown in Figure 8.
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Figure 9. DPW Wing 1 M, = 0.76, « = 0.5°, Re = 5 x 10°: drag coefficient convergence;
o: uniform h-refinementp: hp-adaptation withepor; +: hp-adaptation witheyz. The dashed
lines correspond to the drag values corrected with the estimate.

Figure 9 shows the drag coefficient convergence for the mefairement strategies.
The solid lines in Figures 9(a) and 9(b) are the computed datiges and the dashed lines
correspond to the output corrected with the error estimdtiee difference between these
corrected values for the last two adaptation steps of theutditased strategies is withinl 5
counts of drag. Note that the performance in terms of degrefesedom of the output-based
strategies is very similar. However, in terms of CPU times tlse ofcyz leads to faster
output convergence. This difference is due to the more septative measure of solution
cost byenz. This effect is illustrated in Table 2 where we show the fiay at which the
refinement options were chosen for each cost measure at daptation step. Note that for
cnz, p-refinement is chosen significantly less often thandgsr and both methods have a
propensity to choosg-refinement more often in the later stages of adaptation ebhaar, the
large increase in CPU time between the third and fourth adiapt steps forpor (Figure
9(b)) is an effect op-increment being chosen more often &gpr (Table 2) which makes the
primal and adjoint solves more expensive.

Figure 10 shows the effect of the weighted partitioning radtbiNote in Figure 10(a)
that the first primal solve was the longest, this is due to RAWSbeing very stiff. In the first
primal solve, the weighted partition runs took about twadkiof the time taken by the un-
weighted runs, even though the preconditioner lines usetthécedge weights were computed
with the free-stream initial condition. Additionally, tleavings withcpor increases as the
adaptation progresses and the number of higher-ordericetlsases. The complete adaptive
sequence is not presented in Figure 10 because the dispanibde weights increases with
higherp-orders in 3 dimensions and the partitioner creates submhsmathout elements. The
solution to this problem is part of our ongoing work.



Table 2. DPW Wing 1 M, = 0.76,a = 0.5°, Re = 5 x 10°% percentage of choice for
each refinement option; islo- isotropich-refinement; sa:: single-cuth-refinements; deé:
double-cuth-refinements; isgx isotropicp-refinement.

CDOF CNZ
Adaptation step iso-h | sc+ | dc-h | isop | iso-h | sch | dc-h | iSO
1 0.0 199.3| 0.0 0.7 0.0 | 100.0 | 0.0 0.0

00 [{973] 00 | 27 | 0.0 [ 999 | 0.0 | 0.1
0.0 [949]| 00 | 5.1 0.0 | 998 | 0.0 | 0.2
00 |91.8| 04 | 7.8 0.0 | 991 | 03 | 0.6
0.0 [{90.6| 03 | 9.1 00 | 987 | 0.5 | 08
- - - - 00 | 986 | 0.5 | 09
- - - - 00 | 986 | 04 | 1.0

NOO bW

8. CONCLUSIONS

We demonstrated the use of an optimization-bdgeddaptation method in aerody-
namic problems. The objective function used for rankingréfsement options uses a mea-
sure of output sensitivity and a measure of computationsil. d/e compared two measures
of cost: number of degrees of freedom and number of floatimgt pperations. The latter is
correlated to the number of non-zero entries in the resida@dbian.

The cost measures presented here are not perfect as they dccoant for stiffness
effects of different refinements in the iterative solutioethod. These effects have a direct im-
pact in the CPU time, but they are difficult and computatitynakensive to estimate because
they are global measures and their effect depends on theofypaver and preconditioner
used. Since the merit function is computed multiple timesdoh refinement cycle, the local
property of cost and benefit measures is attractive.

We proposed a method for assigning weights to the nodes ayas$ @d the graph used
for partitioning the mesh. The method accounts for the nmmdgeneity of computational
cost of the elements in the mesh and uses preconditionematmn to improve parallel
efficiency. The results show speedup of up to 2 with the weigjipartitioning in 3 dimen-
sions. Although not yet fully robust due to the possibilifyeonpty partitions, the weighted-
partitioning algorithm is an attractive option for the ekam-line preconditioner. Extension to
other preconditioners, such as the incomplete lower-u@pe)) factorization, is a subject of
future work.
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