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This paper presents the results obtained with an adaptive finite element solver for the

Fifth Drag Prediction Workshop. The discontinuous Galerkin finite element method is used

for the spatial discretization of the Reynolds-Averaged Navier-Stokes (RANS) equations

with a modified version of the Spalart-Allmaras (SA) turbulence model. Drag convergence

is sought via mesh adaptation driven by an adjoint-weighted residual method. We present

results for the drag polar of the NACA 0012 airfoil under subsonic flow conditions and for

the Common Research Model (CRM) wing-body geometry under transonic flow conditions

and fixed lift. The angle of attack that yields the desired lift is obtained via a Newton solve

using the lift adjoint.

Nomenclature

u = state vector

ψ = adjoint state vector

us = state component s

ρ = density

vi = ith component of velocity

E = mass-specific total energy

ν̃ = working variable for Spalart-Allmaras model

C = convective flux

D = diffusive flux

S = source term for Spalart-Allmaras model

TH = computational mesh

κH = element of computational mesh

VH,p = space of p-order polynomials with support over elements of TH

∗Postdoctoral Research Fellow, AIAA Member
†Assistant Professor, AIAA Senior Member

1 of 24

American Institute of Aeronautics and Astronautics



uH,p = element-wise polynomial representation of the state

ψH,p = element-wise polynomial representation of the adjoint

wH,p = vector of weight functions

M = mass matrix

U = discrete state

Ψ = discrete adjoint state

R(·) = discrete residual operator

κSA = scaling factor for discrete SA equation

µ∞ = freestream laminar dynamic viscosity

M = Mach number

Re = Reynolds number

α = angle of attack

CD = coefficient of drag

CL = coefficient of lift

Cp = coefficient of pressure

MAC = mean aerodynamic chord

J = output of interest

εtol = trimming tolerance

m(i) = merit function

b(i) = benefit function

c(i) = cost function

q = geometric polynomial order

R(·, ·) = weak form of the residual

ηκH = elemental adaptive indicator

fadapt = fraction of elements to adapt

I. Introduction

The use of Computational Fluid Dynamics (CFD) tools in engineering analysis and design has steadily

increased in the past several decades. With the evolution of algorithms and the substantial enhancement of

computational power, CFD tools now provide the ability to explore new configurations and test flow condi-

tions that may be otherwise difficult to produce experimentally. As the range of applications becomes wider

and the number of simulations increases, requirements of high accuracy and robustness present challenges

for the CFD development community.1

One application of CFD that demands high accuracy is drag prediction for a large transport aircraft:

seemingly small variations in drag can significantly impact the aircraft’s payload.2,3 Aerodynamic flow

over an aircraft, as for many other cases, exhibits features with unknown spatial distribution, and the
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range of these features’ length scales can easily span six orders of magnitude. Furthermore, flows can exhibit

singularities that pose additional challenges for the prediction of drag and other outputs. The trivial solution

to these problems is to globally refine the mesh. However, this strategy is generally inefficient due to its

refinement of unnecessary regions and the resulting very large grid sizes.

The American Institute of Aeronautics and Astronautics (AIAA) organizes drag and lift prediction work-

shops (DPW and HLPW) with the purpose of assessing the capability of state-of-the-art computational

methods and turbulence modeling for predicting forces and moments on relevant geometries in the aeronau-

tical industry. In these workshops, starting meshes are generated based on industry’s best practices and

mesh independence is generally sought via uniform-refinement studies. Nevertheless, the spread of results

can be significant.4–7

Solution-based adaptive methods present an attractive opportunity for accurate calculations on affordable

grid sizes. These methods rely on the definition of an adaptive indicator which localizes the regions of the

computational domain that need mesh modification through refinement, coarsening, or node movement. An

effective indicator is obtained through adjoint-based error estimation methods, which have already been

demonstrated for many complex problems, including those in aerospace applications.8 The goal of these

methods is to provide confidence measures in the form of error bars for scalar outputs of engineering interest.

In addition, one can use the error contributions of different elements or volumes of the computational mesh

as an adaptive indicator that specifically targets errors in the outputs of interest.9–14

Adaptive mechanics can include both mesh size, h refinement, and approximation order, p increment.

Choosing the correct mechanics is important for efficient prediction of an output and we employ a systematic

cost/benefit approach to make this decision.15 Increasing p requires high-order capability, and one candidate

discretization that has gained popularity in aerodynamic applications is the discontinuous Galerkin (DG)

method. Its popularity is due in part to its suitability for high-order discretizations of convection-dominated

problems on unstructured meshes. In addition, DG’s finite element formulation naturally supports output

error estimation and handles meshes with hanging nodes, both of which are important for this work.

The structure of this paper is as follows. Section II describes the flow solver and the discretization

method. Section III outlines the output error estimation process that drives the mesh adaptation described

in Section IV. Results are presented in Section V and conclusions and future work are discussed in Section VI.

II. Solver Description

For our simulations, we use the XFlow code, a high-order discontinuous Galerkin (DG) finite element

solver for general equation sets with MPI-based, distributed-memory parallel capabilities. XFlow serves

as a platform for development in research areas such as error estimation, mesh adaptation, and solver
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algorithms.15–17 In the case of this work, the equations are Reynolds-Averaged Navier-Stokes (RANS) with

a modified version of the Spalart-Allmaras (SA)18,19 turbulence model.

The RANS-SA equations are written in their compact, conservative form as

∂tus + ∂iCis(u)− ∂iDis(u,∇u) = Ss(u), (1)

where i ∈ [1, ..,dim] indexes the spatial dimensions, and s indexes the equations of conservation of mass,

momentum, energy, and turbulent viscosity. Accordingly, the state vector is denoted by u = [ρ, ρvi, ρE, ρν̃]T .

The discontinuous Galerkin (DG) spatial discretization of the flow equations approximates the solution

in a space VH,p of piecewise polynomials of degree p with local support on each element κH ∈ TH , where

TH is the set of elements resulting from a subdivision of the spatial domain. The resulting weak form reads

(∂tu
H,p,wH,p) + R(uH,p,wH,p) = 0 ∀wH,p ∈ VH,p, (2)

where (·, ·) denotes an inner product and the semilinear form R(uH,p,wH,p) includes source, convective, and

diffusive terms.

In a DG approximation, the state can be discontinuous between elements, just like in a finite volume

method. The Riemann flux involved in the convective term at element interfaces is approximated with

Roe’s20 solver in which the SA working variable, ν̃, is transported as a conserved scalar, ρν̃. The diffusion

term is discretized using the second form of Bassi & Rebay21 (BR2) and the SA source term is discretized

according to Allmaras and Oliver’s19 modifications to the original SA model.18 These modifications ensure

stability of the model at negative ν̃ and they are specifically suited for discontinuous Galerkin discretizations.

For problems with shocks, we use a modified version of Persson and Peraire’s22 shock-capturing scheme

that uses a switch based on a regularity estimate of the density approximation – this involves the current

pth-order solution and its projection onto VH,p−1. These modifications are described in Reference 23.

The discrete system is obtained by expanding the components the state and the test functions in terms

of basis functions φH,p(x), where VH,p = span{φH,p(x)}. The resulting discrete system reads,

M
dU

dt
= −R(U). (3)

The mass matrix is block diagonal and it consists of volume integrals of basis function products on each

element in the mesh.

We use the Constrained Pseudo-Transient Continuation (CPTC)23 method for marching Eqn. 3 in time.

This method incorporates physical realizability constraints in the solution path and thus improves the ro-
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bustness of the DG solver. At each pseudo-transient continuation step, a linear system is solved to yield a

state update direction, ∆U. The coefficient matrix in this linear system is the residual Jacobian regularized

by a matrix with the same footprint as the mass matrix in Eqn. 3. In this work, we solve the linear systems

using the Generalized Minimal Residual method24 (GMRES) with an element-line-Jacobi preconditioner.3

A. Scaling of the SA Discrete Equation

Most practical cases in the aeronautical industry are in the Reynolds number regime of 106 → 107. In

this regime, the SA working variable, ν̃, typically spans several orders of magnitude. Therefore, it is also

desirable to choose an appropriate scale for ρν̃. The scale used in this work is

(ρν̃)′ =
ρν̃

κSAµ∞
, (4)

where (ρν̃)′ is the scaled conserved variable that is stored and evolved by the solver. Essentially, we are

non-dimensionalizing ρν̃ by a factor larger than the laminar viscosity and the motivation for this scaling is to

make the conserved variable (ρν̃)′ on the order of unity, on par with the other variables, in relevant regions

of the computational domain.

To exemplify the effect of κSA, we show in Figure 1 the residual history for two flows at Re = 6.5× 106,

one subsonic and one transonic. In the transonic case, we use the modified version of Persson and Peraire’s22

shock-capturing scheme mentioned in Section II. We solve the linear system in each nonlinear iteration

to relative tolerances of 10−3 and 10−4 respectively. For each case, we use three scaling factors, κSA =

1, 100, 1000, and we see that κSA significantly affects the convergence history. Note that the initial residual

residual norm for κSA = 1 is higher than for κSA = 100, 1000. Furthermore, when the residual norm for

κSA = 1 drops to a similar order of magnitude as the initial residuals for κSA = 100, 1000, a secondary

transient starts and an the residual climbs again. The larger values of κSA ameliorate this secondary transient

which is also discussed by Burgess and Mavriplis.25

By choosing an appropriate scale for the SA equation, we make the discrete residual for the SA equation

similar in magnitude to the individual discrete residuals corresponding to the other conservation equations.

Therefore, when we solve the linear systems for the state update direction to a finite tolerance, we evolve the

solution to each of individual conservation equations together. This is desirable for implicit methods that

make use of line-searches which is the case of pseudo-transient continuation.

Table 2 and Table 3 show the force coefficients, the maximum values for representative conserved quan-

tities, and solution cost metrics. First, we analyze the effect of κSA on solution cost. The average cost of the

linear solves, measured by the number of GMRES iterations per nonlinear step, is not significantly affected

by the SA scaling. The reason for this cost being approximately constant across κSA is because the linear
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(a) M∞ = 0.3, Re = 6.5× 106, α = 2.31◦.
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(b) M∞ = 0.734, Re = 6.5× 106, α = 2.79◦.

Figure 1. Residual convergence for an RAE 2822 airfoil, using p = 1 for different ν̃ scaling factors (κSA).

solves are not exact at each nonlinear step. Given that this cost is roughly constant, the overall solution cost

is mainly dictated by the number of nonlinear steps. Note that the total number of nonlinear iterations in

Figure 1 correlates with the total number of GMRES iterations and with the total CPU time.

We now analyze the effect of SA scaling on the solution. In the fully subsonic case, the scaling has

virtually no effect on the results while in the transonic case, κSA has a slight effect on the force coefficients.

This effect is due to the highly nonlinear nature of the shock-capturing scheme, which makes the output

computations acutely sensitive to residuals. The difference in drag and lift in this case between κSA = 100

and κSA = 1000 is on the order of the residual tolerance.

Table 2. RAE2822 - M∞ = 0.3, Re = 6.5 × 106, α = 2.31◦ – Force coefficients, maximum values of conserved
variables, and solution cost metrics for different SA scaling factors. The solution costs are normalized by the
corresponding values for κSA = 1.

Quantity κSA = 1 κSA = 100 κSA = 1000

CD 1.2238× 10−2 1.2238× 10−2 1.2238× 10−2

CL 4.5079× 10−1 4.5079× 10−1 4.5079× 10−1

(ρvx)max 1.25222 1.25222 1.25222

(ρν̃)′max 9.64975× 102 9.64975 9.64974× 10−1

GMRES iter. per nonlinear iter. 1.0 (13.5) 1.023 1.1054

Total GMRES iterations 1.0 (648 iter.) 0.9799 0.8982

Total CPU time 1.0 (197 sec.) 0.9728 0.8804

We see from these two results that κSA > 1 can be beneficial for the solver, and we have found that

κSA ≈ 100 → 1000 works well for Reynolds numbers in the range 106 → 107. Determining a general

guideline for setting κSA at other Reynolds numbers is a subject of ongoing work.
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Table 3. RAE2822 - M∞ = 0.734, Re = 6.5 × 106, α = 2.79◦ – Force coefficients, maximum values of conserved
variables, and solution cost metrics for different SA scaling factors. The solution costs are normalized by the
corresponding values for κSA = 1.

Quantity κSA = 1 κSA = 100 κSA = 1000

CD 1.9730× 10−2 1.9755× 10−2 1.9755× 10−2

CL 7.3054× 10−1 7.3164× 10−1 7.3164× 10−1

(ρvx)max 1.11406 1.11178 1.11178

(ρν̃)′max 1.66004× 103 1.63789× 101 1.63789

GMRES iter. per nonlinear iter. 1.0 (23.9) 1.035 1.089

Total GMRES iterations 1.0 (3253 iter.) 0.6394 0.7925

Total CPU time 1.0 (745 sec.) 0.6481 0.7103

III. Output Error Estimation

Output-based error estimation techniques identify all areas of the domain that are important for the

accurate prediction of an engineering output. The resulting estimates properly account for error propagation

effects that are inherent to hyperbolic problems, and they can be used to ascribe confidence levels to outputs

or to drive adaptation. A key component of output error estimation is the solution of an adjoint equation

for the output of interest. In a continuous setting, an adjoint, ψ ∈ V, is a Green’s function that relates

residual source perturbations to a scalar output of interest, J(u), where V is an appropriate function space.

Specifically, given a variational formulation of a partial differential equation: determine u such that

R(u,w) = 0, ∀w ∈ V, (5)

the adjoint ψ ∈ V is the sensitivity of J to an infinitesimal source term added to the left-hand side of the

original PDE. ψ satisfies a linear equation,

R′[u](w,ψ) + J ′[u](w) = 0, ∀w ∈ V, (6)

where the primes denote Fréchét linearization with respect to the arguments in square brackets. Details on

the derivation of the adjoint equation can be found in many sources, including the review in Reference 8.

Specifically, in the present work we employ the discrete adjoint method, in which the system is derived

systematically from the discretized primal system.26,27

An adjoint solution can be used to estimate the numerical error in the corresponding output of interest.

The resulting adjoint-weighted residual method is based on the observation that a solution uH,p in a finite-

dimensional approximation space will generally not satisfy the original PDE. The adjoint ψ ∈ V translates

the residual perturbation to an output perturbation via,
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δJ = J(uH,p)− J(u) ≈ −R(uH,p,ψ). (7)

This expression is based on a linear analysis, and hence for nonlinear problems and finite-size perturba-

tions, the result is approximate.

Although the continuous solution u is not required directly, the continuous adjoint ψ must be approx-

imated to make the error estimate in Eqn. 7 computable. In practice, ψh,p
+

is solved approximately or

exactly on a finer finite-dimensional space Vh,p+ ⊃ VH,p.28–30 This finer space can be obtained through

mesh subdivision and/or approximation order increase19,31,32 – denoted here by changes in the superscript

H and p, respectively.

The adjoint-weighted residual evaluation in Eqn. 7 can be localized to yield an adaptive indicator con-

sisting of the relative contribution of each element to the total output error. In this work, the finer space

is obtained by approximation order increment, VH,p+1 ⊃ VH,p, and ψH,p+1 is approximated by injecting

ψH,p into VH,p+1 and applying element block-Jacobi smoothing iterations. Via experimentation with a va-

riety of flow problems, we found that five block-Jacobi iterations are generally enough to provide good error

estimates while maintaing the computational cost affordable.

The output perturbation in Eqn. 7 is approximated as

δJ ≈ −
∑

κH∈TH

RκH (IH,p+1
H,p (uH,p), ψ̃

H,p+1 − IH,p+1
H,p (ψH,p)), (8)

where IH,p+1
H,p (·) is an injection operator from p to p+ 1 in the coarse mesh TH , ψ̃

H,p+1
is the approximated

fine-space adjoint, and RκH corresponds to the elemental residual as defined in Eqn. 2. Note, the difference

between the coarse-space and fine-space adjoints is not strictly necessary due to Galerkin orthogonality.8

However, when the primal residual is not fully-converged to machine precision levels, the use of the adjoint

perturbation gives better error estimates. Equation 8 expresses the output error in terms of contributions

from each coarse element. A common approach for obtaining an adaptive indicator is to take the absolute

value of the elemental contribution in Eqn. 8,14,29,33–36

ηκH =
∣∣∣RκH (IH,p+1

H,p (uH,p), ψ̃
H,p+1 − IH,p+1

H,p (ψH,p))
∣∣∣. (9)

With systems of equations, indicators are computed separately for each equation and summed together.

Due to the absolute values, the sum of the indicators,
∑
κH ηκH , is greater or equal to the original output

error estimate. However, it is not a bound on the actual error because of the approximations made in the
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derivation.

A. CL Driver

Frequently in the aeronautical industry, CFD simulations are conducted under trimmed conditions, meaning

under fixed, user-defined values of certain outputs – typically lift or pitching moment. This means that

certain boundary condition parameters, e.g. angle of attack, depend on outputs computed from the flow

solution. Thus, a feedback loop must be used to correct those input parameters.

Mesh

Initial Conditions

Jtarget, εtol, αguess

Solve

Solve

R(α,U) = 0
|J − Jtarget| ≤ εtol Finished

True

False

∂R
∂U

T
Ψ = − ∂J

∂U

Compute

δR = R(α+ δα,U)

Update

α ⇐ α+
(J − Jtarget)δα

ΨT δR

Figure 2. Adjoint-based boundary-condition parameter correction, here shown for the angle of attack, α.

The feedback loop used in this work is illustrated in Figure 2, where Jtarget is the target value of the

output for which the parameter, α, is trimmed. The cycle starts by solving the flow equations using an

initial guess for α. Then, J is computed and checked against Jtarget under a trimming tolerance. Until

this tolerance is met, α is corrected using Newton’s method for which the sensitivity of J with respect to

α is needed. This sensitivity is computed via an inner product between an adjoint for J and a residual

perturbation δR resultant from a perturbation δα. This residual perturbation is computed by evaluating

the residual with the boundary condition perturbed by a small, user-defined δα. In this work, δα is one

one-thousandth of a radian. When the output depends directly on the input parameter, ∂J/∂α is added to

the output sensitivity, and this is also computed by finite differences.

In cases where the target value for the output is not achievable or the initial guess is bad, the cycle

in Figure 2 may not converge. In those cases, a contingency plan is needed, e.g., a maximum number of

iterations is assigned or the cycle is restarted with a better initial guess. In the output-based adaptation

framework presented in this work, the boundary conditions are only trimmed if the error estimate for J is

smaller than its trimming tolerance, εtol.
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IV. Mesh Adaptation Mechanics

The elemental adaptive indicator, ηκH , drives a fixed-fraction hanging-node adaptation strategy. In this

strategy, which was chosen for simplicity and predictability of the adaptive algorithm, a certain fraction,

fadapt, of the elements with the largest values of ηκH is marked for refinement. Marked elements are refined

according to discrete options which correspond to subdividing the element in different directions or increasing

the approximation order. For quadrilaterals, the discrete options are: x-refinement, y-refinement, and xy-

refinement, as depicted in Figure 3. Although the option of modifying the local polynomial approximation

order is possible in this framework,15 here we consider only h-adaptation. The directions x and y refer to

reference-space coordinates of elements that can be arbitrarily oriented and curved in physical space. Also,

the subelements created through refinement inherit the approximation order from the original element. In

three dimensions a hexahedron can be refined in seven ways: three single-plane cuts, three double-plane

cuts, and isotropic refinement.

pp

(a) x-refinement

p

p

(b) y-refinement

p

p p

p

(c) xy-refinement

Figure 3. Quadrilateral h-refinement options. The dashed lines indicate the neighbors of the refined element.

In this work, h-refinement is performed in an element’s reference space by employing the coarse element’s

reference-to-global coordinate mapping in calculating the refined element’s geometry node coordinates. The

refined elements inherit the same geometry approximation order and quadrature rules as the parent coarse

element. As a result, there is no loss of element quality when a nonlinear mapping is used to fit the element

to a curved geometry. Therefore, curved elements near a boundary can be efficiently refined to capture

boundary layers in viscous flow. For simplicity of implementation, the initial mesh is assumed to capture

the geometry sufficiently well, through a high enough order of geometry interpolation on curved boundaries,

such that no additional geometry information is used throughout the refinements. That is, refinement of

elements on the geometry boundary does not change the geometry. We note that for highly-anisotropic

meshes, curved elements may be required away from the boundary, and for simplicity we use meshes with

curved elements throughout the domain.

Elements created in a hanging-node refinement can be marked for h-refinement again in subsequent
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adaptation iterations. In this case, neighbors will be cut to keep one level of refinement difference between

adjacent cells. This is illustrated in Figure 4.

Figure 4. Hanging-node adaptation for a quadrilateral mesh, with a maximum of one level of refinement
separating two elements. The shaded element on the left is marked for isotropic refinement, and the dashed
lines on the right indicate the additional new edges formed.

A. Merit Function

The choice of a particular refinement option is made locally in each element flagged for refinement. This

choice is made by defining a merit function that ranks each available refinement option i. This function is

defined as

m(i) =
b(i)

c(i)
. (10)

The benefit and cost measures depend on the method used for solving the flow equations and they should

be tailored for each specific solver.

During calculation of the merit function, local mesh and data structures are created, one for each element,

that include the flagged element and its first-level neighbors along with the corresponding primal and adjoint

states. In these local structures, the central element is refined in turn according to each of the discrete options.

On the refined local mesh, the merit function is computed and the refinement option with the largest value

of m(i) is chosen.

Since we are seeking the most efficient way of locally refining an element amongst the available options,

it is important that the cost and benefit measures in Eqn. 10 are accurate but tractable representations of

the computational expense and gain in accuracy respectively. In Refs. [15, 23], we discuss these aspects at

length.

In an output-based mesh adaptation cycle, the steady-state residual is driven to zero at each adaptive

step. Therefore, mesh modification on the element level can be interpreted as uncovering local residual

perturbations. Since an adjoint solution represents the sensitivity of an output with respect to a residual

perturbation, we define our benefit function as:

b(i) =
∑

κh∈κH

|Rκh(UkTkl(i))j ||ΨkTkj(i)|, (11)
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where Rκh(·)j is a discrete residual component in the embedded element, T(i) is a matrix that transfers the

discrete primal and adjoint states to the local meshes for each refinement i, and Ψ is the discrete coarse-space

adjoint solution. Note that the adjoint variables act as positive weights for each of the perturbations.

In this work, most of the computational time is spent in the GMRES algorithm used to solve the linear

systems that arise at each step of the pseudo-transient continuation method. These systems are sparse,

hence we approximate the number of floating point operations in applying GMRES by the number of non-

zero entries in the residual Jacobian matrix. Based on this observation, we define the cost measure as:

c(i) =
∑

κh∈κH

(p+ 1)2·dim +
∑

Niface(i)

(p+ 1)2·dim

 , (12)

where p denotes the polynomial approximation order and Niface(i) is the number of internal faces associated

with refinement option i. The first term in Eqn. 12 accounts for the self blocks of the residual Jacobian

matrix corresponding to each of the subelements. The second term accounts for the off-diagonal blocks, i.e.

the dependence of the subelements’ residuals on the neighboring states.

V. Results

A. NACA 0012, M∞ = 0.15, Re = 6× 106, Drag Polar

This case is one of the NASA’s Turbulence Modeling Resource cases.37 The purpose of this case is to

validate the modifications made to the SA model. As suggested by NASA’s Turbulence Modeling Resource,

the domain’s outer boundary is located 500 chord-lengths away from the airfoil. We consider eight angles of

attack in the drag polar: α = 0◦, 2◦, 4◦, 6◦, 8◦, 10◦, 12◦, and 15◦. For each angle of attack, an initial quartic

mesh is generated by agglomerating 16 quadrilaterals from a linear mesh. We modify the original NACA

0012 geometry by closing the trailing edge according to Reference 37. The linear meshes are generated so

that the cells downstream from the airfoil are approximately aligned with the wake. Figure 5 shows an

example of an initial quartic mesh. Due to the geometrical simplicity of this case, we can have the first grid

spacing off the wall on the initial mesh such that y+max ≈ 0.06 for α = 10◦, 15◦ and y+max ≈ 0.03 for α = 0◦.

12 of 24

American Institute of Aeronautics and Astronautics



Figure 5. NACA 0012, M∞ = 0.15, Re = 6× 106, drag polar: Initial mesh for α = 10◦ (720 quartic elements).

The scheme’s polynomial approximation order is p = 2 and the discretized SA equation is scaled by

κSA = 1000. The adaptation is driven by drag error with fadapt = 10% and the residual norm is reduced

by 8 orders of magnitude at each adaptive step. To simplify our analyses, we limit the number of the

adaptive steps to 6 for all the angles and measure the error level of the final result. Figure 6 shows the

drag convergence with degrees of freedom for three representative angles of attack. The largest final error

estimate over all the angles of attack is approximately 3 drag counts (∼ 3%) in the α = 15◦ case.
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(a) Lift coefficient versus angle of attack.
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(b) Drag polar

Figure 7. NACA 0012, M∞ = 0.15, Re = 6× 106, drag polar: comparison with experimental data.

Figure 7 compares our adaptive results with Ladson’s experimental data38 and with results computed

with CFL3D39 on a fine, 897× 257 element, structured grid.37 The experimental data consists of three sets

of wind tunnel runs with varying roughness of carborundum strips to force transition to turbulence at the

5% position along the chord. This reduces transition effects and allows for a more adequate comparison with

fully turbulent simulations.
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(a) α = 0◦. (b) α = 10◦.

(c) α = 15◦.

Figure 6. NACA 0012, M∞ = 0.15, Re = 6× 106, drag polar: drag convergence for three angles of attack; solid
lines: drag values; dashed lines: drag corrected by its error estimate; shading: magnitude of the sum of error
indicators.

In spite of the adaptation being driven by drag error, the lift values in Figure 7(a) are in close agreement

with the experimental data. Our computed drag values are within 3% difference with respect to CFL3D’s

results. This difference is within the spread of 4% in the CFD results reported for the SA model in Reference

37. With respect to the experimental values in Figure 7(b), the simulations show slightly larger drag values.

We attribute these differences to the turbulence model and possibly to experimental measurement precision

as the adjoint-based error estimation and adaptation only targets, and provides an error estimate for, the

discretization error.
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(a) 6th drag-adapted mesh and SA-working variable contours. (b) 6th drag-adapted x-momentum adjoint solution for drag.

Figure 8. NACA 0012, M∞ = 0.15, Re = 6 × 106, drag polar: final mesh, ρν̃ contours, and drag adjoint for

α = 10◦.

The adjoint solution offers insight on regions of the computational domain where residual errors affect

the output of interest. Figure 8(b) shows the x-momentum drag-adjoint solution for the α = 10◦ case. The

most notable feature of this adjoint solution is the stagnation streamline which, in the inviscid limit, is a

weak inverse-square-root singularity.40 This sharp variation of the adjoint is reflected in the adapted mesh

in Figure 8(a).

The outer edge of the boundary layer, where ρν̃ exhibits strong variation, is also heavily targeted for

refinement as observed in Reference 15. We note that since the initial solutions across all angles of attack

had small values of y+, the first layer of cells off the wall is scarcely marked for refinement. Yet, between

the initial and final solutions there are large variations in force coefficients. This emphasizes a key aspect

of adjoint-based error localization and adaptation which is the reduced reliance on meshing guidelines for

obtaining accurate results.

Other features that are important for accurate prediction of drag are the upper surface acceleration

region, the trailing edge, and the wake. These regions are also frequently targeted for refinement as they

present large magnitudes and variations of the adjoint variables.

B. CRM - wing-body geometry, M∞ = 0.85, CL = 0.5, ReMAC = 5× 106

This case consists of transonic, turbulent flow over NASA’s Common Research Model.41 This wing-body

geometry mimics a modern passenger aircraft and its purpose is to establish a reference for testing compu-

tational tools for simulation and design. Recently, this case has been added to the International Workshop
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on High-Order CFD methods42 and it is considered a difficult case in the high-order CFD community as it

challenges the robustness of curved mesh generation, nonlinear solution strategies, and adaptation methods.

Here, we consider only p = 1 solution approximation order due to the large cost of higher p-orders combined

with the difficulty in making high-quality, curved, coarse meshes around the CRM geometry. The results

serve as a proof of the concept of adaptive discontinuous finite element methods applied to a problem with

industrial relevance.

The cubic mesh used in this case was generated via agglomeration of linear cells. We do not consider mesh

coarsening in our adaptation mechanics. Hence the initial linear mesh was generated with the tradeoff of

being coarse to use in our adaptation routine but fine-enough to represent the geometry adequately. Figure

9 shows the linear and the agglomerated meshes. The off-wall spacing in the agglomerated mesh is such that

y+ ≈ 1, computed from the initial solution, for most of the fuselage and the wing.

(a) Linear mesh used for agglomeration (1218375 elements). (b) Cubic mesh generated via agglomeration (45125 elements).

Figure 9. CRM - wing-body geometry, M∞ = 0.85, CL = 0.5, ReMAC = 5 × 106: linear and agglomerated cubic
meshes.

The discretized SA equation is scaled by κSA = 1000 and we use the modified version of Persson and

Peraire’s22 shock-capturing scheme mentioned in Section II. The convergence criterion is a residual-norm

reduction of 8 orders of magnitude from its initial value.

We consider anisotropic h-adaptation at fixed p = 1 with fadapt = 10%. Converging the initial solution

for this problem is difficult. The physics-constrained solver with line-search and the mRDM CFL strategy23

is used for the first primal solve. In addition, one step of mesh adaptation based on the physics constraints43

is taken to help the solver to converge. In subsequent solves, converging the residual is significantly easier.

The output used for adaptation is the total drag at a fixed lift. That is, at each primal solve, the angle

of attack is trimmed so that the coefficient of lift is CLtarget
= 0.5 ± 0.001. The method for trimming α is
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described in Section A.

Due to lack of spatial resolution in the initial mesh in the stream wise direction, the flow separates

(Figure 11(a)) before the lift requirement is achieved. The solution in the initial mesh is nearly unsteady

which makes the adjoint problem very ill-conditioned and, consequently, causes the error-estimates to be

very large as shown in Figures 12(a) and 12(b). In this situation, the lift requirement is relaxed and the

adaptive process proceeds. This decision is not yet automated and is one of the aspects of this problem that

could benefit from further research.

After the first drag-based adaptation step, the flow field is significantly different (Figure 11(b)). The

supersonic region is larger and no visible flow separation is present. The lift requirement is now satisfied and

the error estimates for lift and drag are significantly smaller (Figure 12).

The Mach number contours shown in Figure 11 do not present large differences after the second adaptation

step. Also, the areas targeted for adaptation are similar to the regions observed in the DPW III - W1 case

presented in Reference [15]. These regions are: the stagnation streamline, the sonic transition, the shock-

boundary-layer interaction, the wake, and the edge of the boundary layer where ρν̃ transitions from zero its

maximum value. The final off-wall spacing is such that y+ ≈ 0.2 for most of the fuselage and wing surfaces

and the elements immediately attached to the surface are marked for refinement more often than in the

two-dimensional case presented here.

Figure 10 compares the pressure coefficient at two span locations with the corresponding experimental

dataa.44 Note that the initial result is very far from the experiments. However, after one adaptation step

the pressure distribution is much closer to the experimental data and as the adaptation progresses, the shock

profile becomes sharper and the changes in pressure distribution become smaller.

Figure 12 shows the convergence history for drag, lift, and pitching moment. Note that our results for

pitching moment are within the range of data submitted to the workshop, while the drag values are above the

range of results from the workshop. However, it is worth emphasizing that the finest solution presented here

has a factor of 5 to 10 fewer degrees of freedom than the mid-range meshes used in the uniform refinement

studies in DPW-V.

Note that the drag error correction for this case is not as effective as in the two-dimensional results.

Here, two aspects are affecting the quality of the drag error estimate. One is the robustness of the fine-space

approximation of the adjoint solution which is affected by the under-resolution of the mesh. The second

aspect is the angle of attack changing from one mesh to the next due to lift changes caused by the mesh

refinement. This suggests that variations in the free-stream boundary conditions due to lift error should be

incorporated in the drag error estimate, and this is the subject of current work.

aExperimental data was digitized from the 5th Drag Prediction Workshop summary presentation.
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(a) Pressure coefficient at 13.06% of the reference span.
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(b) Pressure coefficient at 50.24% of the reference span.

Figure 10. CRM - wing-body geometry, M∞ = 0.85, CL = 0.5, ReMAC = 5×106: comparison of pressure coefficient
with experimental data. Note: the solution for the initial mesh is at CL = 0.387.

1. High-Order Mesh and Geometric Irregularities

The mesh agglomeration algorithm used in this work receives as input a linear, multi-block, mesh where

each block has a number of nodes that satisfies the following law:

Nnode = (q ·Ni + 1) · (q ·Nj + 1) · (q ·Nk + 1), (13)

where q is the desired polynomial order for the geometry representation and [Ni, Nj , Nk] are the number of q-

th order elements in the [i, j, k] directions. Note that with the above rule for the number of nodes, geometric

irregularities of order g ≤ q on the agglomerated mesh can only exist at element borders. The relevance of this

observation is that the block boundaries in the linear mesh should coincide with the geometric irregularities

of order g ≤ q in the source geometry. A mitigation to this problem is to generate locally finer meshes or

to put block boundaries close to geometric irregularities. However, this is not always possible or easy to

achieve.

Another challenge is managing geometric irregularities as oscillations may occur in the high-order geom-

etry representation. A way to address this problem is to adapt the surface elements of the initial mesh based

on the integrated distance between the high-order elements’ solid boundaries and the source geometry and

to re-project the new nodes created in this adaptation onto the source geometry. This allows for explicit

control over the geometry representation error with the caveat that we need to ensure volume positivity of

the curved elements at the boundary.
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(a) Initial mesh (α = 2.8◦), CL = 0.387. (b) 1st drag-adapted mesh (α = 2.675◦).

(c) 2nd drag-adapted mesh (α = 2.465◦). (d) 3rd drag-adapted mesh (α = 2.37◦).

(e) 4th drag-adapted mesh (α = 2.2665◦). (f) 5th drag-adapted mesh (α = 2.1598◦).

Figure 11. CRM - wing-body geometry, M∞ = 0.85, CL = 0.5, ReMAC = 5 × 106: slice at 37% of the span (428
inches). Note: on the initial mesh, the flow separates at CL = 0.387.
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(a) Drag convergence; dashed line: drag corrected by its error
estimate; red shaded region is delimited by sum of drag error
indicator over the elements.

(b) Lift history; red shaded region is delimited by sum of the
lift error indicator over the elements.

(c) Pitching moment history.

Figure 12. CRM - wing-body geometry, M∞ = 0.85, CL = 0.5, ReMAC = 5× 106: drag, lift, and pitching moment
for the sequence of adapted meshes; gray shaded region: range of data submitted to DPW-V. Note: on the
initial mesh, the flow separates at CL = 0.387.

The irregularities identified on the CRM geometry are: wing trailing edge, wing-fairing junction, cockpit-

nose-cone junction, and fairing-body junction. In the case of our block topology for the initial mesh, a block

boundary is not aligned with the aft portion of the fairing-body junction (Figure 13). This causes oscillations

in the geometry of the agglomerated mesh that affect the computed drag and the robustness of the error

estimates. The slightly wavy geometry where g ≤ q is a possible source of larger drag in our results

(Figure 12(a)), as the geometry is held fixed throughout the adaptation.
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(a) Pressure contours on final adapted mesh. (b) Waviness on fairing-body junction.

Figure 13. CRM - wing-body geometry, M∞ = 0.85, CL = 0.5, ReMAC = 5 × 106: waviness on fairing-body
junction.

VI. Conclusions

We demonstrated the use of an adaptive discontinuous finite element method to predict drag. The two-

dimensional results show that adjoint-based adaptation reduces the discretization error to acceptable levels

and hence allows for quantification of the remaining error due to turbulence modeling and measurement

errors. Furthermore, the increase in the number of degrees of freedom from the initial meshes to the adapted

meshes is roughly 85% which is much less than the increase due to one level of uniform refinement which

would quadruple the mesh size.

The drag prediction results for the CRM geometry show that adjoint-based mesh adaptation can signif-

icantly save degrees of freedom in comparison with the uniform refinement studies performed the DPW-V

participants. The variational formulation of the discontinuous Galerkin method allows for straightforward

output error estimation but our current error estimation framework does not account for the effect of dis-

cretization error on the angle of attack that yields the target lift. This suggests that the adaptation should

be driven by a combination of drag and lift errors.

Finally, three-dimensional RANS simulations using discontinuous finite elements are still very challenging

both in terms of robustness and in terms of computational expense. The results, however, are very promising

and further research in these topics will certainly be beneficial to future codes for aerodynamic performance

prediction.
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