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SUMMARY

This paper presents a method for improving the robustness of implicit steady-state solvers for fluid flow
problems discretized with the discontinuous Galerkin finite element method. This method does not help
in situations where no steady-state solution exists, for example due to an under-resolved discretization.
However, an often overlooked situation is one in which the steady-state solution exists but cannot be
reached by the solver, which typically fails due to a non-physical state error during state iterations. This
is a shortcoming that we address by incorporating physical realizability constraints (i.e. positive density and
pressure) into pseudo-time marching steady-state solvers. While we focus on the discontinuous Galerkin
method, the technique relies only on implicit time marching and hence can be extended to other spatial
discretizations. We analyze the sensitivity of the method to a range of input parameters and results for
compressible turbulent flows show that the constrained method is significantly more robust than a standard
unconstrained method while on par in terms of cost. Copyright © 0000 John Wiley & Sons, Ltd.

Received ...

1. INTRODUCTION

Much recent research in computational fluid dynamics has focused on high-order methods, which
have been loosely defined as those methods that have a formal rate of convergence higher than
second order with respect to mesh size [1]. A high-order convergence rate is useful for many
problems of engineering interest, especially ones requiring a level of accuracy that is not easily
attained using traditional second-order discretizations. Even in the presence of non-smooth solution
features, high-order approximations can often maintain their advantage when combined with
solution-based adaptivity that isolates those features [2, 3, 4].

Under this backdrop, one may ask why high-order adaptive methods have not yet taken over as
the preferred discretization for practical, large-scale, engineering applications. The answer to this
question is certainly multi-faceted and in this work we do not propose a panacea. Instead, we focus
on one specific but pervasive problem: solver robustness. High-order discretizations yield systems of
nonlinear equations that are generally much more difficult to solve compared to those encountered
when using, for example, second-order finite volume methods. Moreover, when used in combination
with mesh adaptation, solutions are required on coarse, under-resolved initial meshes. In such cases,
even if a zero-residual solution exists, it may be very difficult to attain that converged solution using
existing solvers.

Current “standard” solvers for nonlinear systems arising from high-order discretizations consist
of some form of preconditioned Newton-Krylov [5]. Initial states for these solves are generally
rudimentary, such as a constant free-stream state for external aerodynamics, and hence continuation
strategies are crucial. Here, a popular choice is pseudo-transient continuation (PTC) [6, 7, 8], in
which artificial time dependence is added to even steady-state discretizations in order to make
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the state follow a hopefully physically-valid trajectory from initial condition to final state. The
hope is founded in the argument that an exact unsteady solution to any physically-valid initial
condition should remain physical, so that capturing these transients is a safeguard against straying
into possibly non-physical states — a common failure mechanism for highly-nonlinear problems.
However, this argument assumes that the discretization is a good approximation to the exact
solution, which may not be the case, especially for under-resolved coarse meshes in the initial stages
of adaptation.

The conservation equations, once discretized, do not guarantee positivity for physical quantities
such as pressure and density in a gas dynamics simulation. Hence, a time-accurate but spatially
under-resolved solution can violate these constraints. To exemplify this phenomenon, consider a
one-dimensional Euler shock-tube in the domain z = [—1, 1], where the boundary conditions on
both ends of the tube are flow in the positive z-direction at a Mach number of M = 0.5 (Figure 1).
We specify the full boundary state in convenient units by setting the density and velocity to unity
and by computing momentum and total energy accordingly. Riemann solves at the outer boundaries
ensure that the problem is well-posed. Upon initializing the flow at M = 0.747 in the negative z-
direction, a shock occurs on the left end of the domain and an expansion occurs on the right end.
Eventually, if all goes well, the flow settles to a steady state equal to the boundary condition. In
order to verify this discretely, we divide the tube into 10 equal elements and discretize the Euler
equations spatially with the discontinuous Galerkin method. We then evolve the solution in time
with a first-order backward difference scheme. In order to resolve the transients, we chose the time-
step adaptively such that at each step the maximum value for the CFL number is 0.1. We employ
a dual time-step approach to solve the nonlinear systems for each physical time-step. These solves
include primitive variable checks at every nonlinear update. However, these checks can only verify
physics constraint satisfaction at selected points in each element and the only mechanism to avoid
them is limiting the magnitude of the state updates.
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Figure 1. Setup for a shock-tube problem testing solver robustness.

For element-wise constant solution approximation (p = 0), the discrete solution reaches the
expected steady state while for linear and quadratic (p = 1, 2) approximations, the state violates
pressure positivity as the shock moves into the domain. Figures 2(a) and 2(b) show the pressure
distributions just before violating pressure positivity and figures 2(c) and 2(d) show the pressure
distributions for p = 0 at the approximate times of failure.

Under-resolved flow features such as shocks and boundary layers can cause oscillations in
the numerical solution whose amplitudes may lead to non-physical values [9]. The use of well-
established limiters in second-order finite-volume schemes substantially increases the robustness
of these flow solvers. However, the application of limiters to high-order discretizations such as
DG has had mixed success, with particular difficulties on unstructured adapted meshes. Problems
include extension of the computational stencil, robustness for high-order, and lack of a zero-residual
solution. An alternative remedy for oscillations is the introduction of artificial viscosity [10, 11],
which addresses many shortcomings of limiting, but which is not without its own challenges, such
as those concerning the amount of appropriate viscosity. Another alternative for problems without
steady-state discontinuous features is a more sophisticated Newton continuation strategy, such as
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(a) Last p = 1 state before violating pressure positivity.  (b) Last p = 2 state before violating pressure positivity.
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(c) p = 0 solution at approximately the time of failure for (d) p = 0 solution at approximately the time of failure for
p=1 p=2.

Figure 2. Pressure distributions for under-resolved, time-accurate shock-tube simulations.

parameter/order/boundary-condition sequencing [12, 13, 14, 15]. A challenge here is that for under-
resolved simulations, runs with different parameters or lower orders may not be any easier to solve
than the original problem [16].

In the present work we propose an alternative approach to improving solver robustness, one that
is often less invasive relative to limiting or even artificial viscosity and that targets the root cause
of robustness breakdown — the violation of physics constraints. Keyes et al. [17] point out that
methods for handling these constraints are generally ad hoc. Here, we embed the constraints in
the PTC solution path. The crux of the method is the incorporation of physics constraints in the
form of residual penalties in the nonlinear system. These penalties are introduced multiplicatively
so as to not modify the final steady-state solution. Instead, the penalties serve to “steer” the solution
away from non-physical states during the pseudo-transient integration, so as to prevent the solver
from stagnating at or near these problematic states. This constrained version of PTC, CPTC,
thus artificially augments the inherent robustness of time-accurate integration that under-resolved
discrete approximations do not necessarily inherit. The penalties provide a natural mechanism for
communicating to the solver simple physical constraints that can have a significant impact on the
solution trajectory. We show through practical examples that these penalties can be formulated in
a general manner that minimizes tuning and user involvement, so that the solvers can be used in a
“hands-off” adaptive framework.

The setting for our work is the discontinuous Galerkin (DG) discretization of the Reynolds-
averaged compressible Navier-Stokes (RANS) equations. DG is a finite element discretization that
uses element-wise discontinuous high-order trial and test functions. While our presentation assumes
DG and RANS, many of the ideas presented in the paper can be extended to other high-order
discretizations and other equations. The outline for the remainder of the paper is as follows. In
Section 2, we review the DG spatial discretization of the RANS equations and present the relevant
physics constraints. In Section 3, we review PTC, and in Section 4 we present the augmentation of
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PTC with constraints. Section 5 discusses implementation considerations related to treatment of the
solution update. We show results in Section 6, and we finish with conclusions in Section 7.

2. SPATIAL DISCRETIZATION

The Reynolds-averaged Navier-Stokes (RANS) equations with the Spalart-Allmaras (SA)
turbulence model are written in their compact, conservative form as

Ous + 0;Cis(u) — 0;D;s(u, Vu) = S (u), (1

where C;; and D, are the convective and diffusive fluxes respectively, S; is the SA source term,
i € [1,..,dim] indexes the spatial dimensions, and s indexes the equations of conservation of
mass, momentum, energy, and turbulent viscosity. Accordingly, the state vector is denoted by
u = [p, pvi, pE, p]T, where p is the density, v; are the spatial components of the velocity, E is
the specific total energy, and v is the working variable for the SA model.

The discontinuous Galerkin (DG) spatial discretization of the flow equations approximates the
solution in a space VH'? of piecewise polynomials of degree p with local support on each element
kf € TH, where TH is the set of elements resulting from a subdivision of the spatial domain. The
resulting weak form reads:

(O wh) + R(ufl, wf) =0 vwi e pHr, )
where (-, -) denotes an inner product and R(u?’, wl)
source, convective, and diffusive terms.

The Riemann flux involved in the convective term is approximated with Roe’s [18] solver in which
the SA working variable, 7, is transported as a conserved scalar, pr. The diffusion term is discretized
using the second form of Bassi & Rebay [19] (BR2). We adopt modifications by Allmaras et al. [20]
to the original SA model [21] as these modifications ensure stability of the model at negative . Also,
we discretize the SA equation in (p) form by combining it with the mass conservation equation.

The discrete system is obtained by expanding the state u? in terms of the basis functions that span
VH:P and by using these basis functions as the test functions w . The resulting discrete system reads

is a weighted residual statement that includes

dU
M~ = —R(U), 3)

where U is the discrete state, R is the discrete residual operator and M is the block diagonal mass
matrix that corresponds to the volume integral of basis function products on each element in the
mesh.

2.1. BR2 stabilization

The diffusive flux, D;,, can be written as
Dis(u) = Ajgjr(u)0juy, “4)

where the tensor A, is a nonlinear function of the state vector, 4, j index the spatial dimensions,
and s indexes the state vector components. For simplified notation, we omit the dependence of A;,
on the state vector in the remainder of the text.

DG requires flux evaluations at element interfaces, where the state approximation is generally
discontinuous. In the BR2 [19] treatment the diffusive flux is averaged across the interface and
augmented by a stabilization term that spreads (lifts) the interface state jumps across the adjacent
elements. A constant factor in front of this stabilization term dictates stability — a linear analysis
indicates that the minimum value for this factor is the maximum of the number of faces on the
two adjacent elements. However, for increased robustness, we scale this number by a “stabilization
augmentation factor”, kgry > 1.
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2.2. Physics constraints

The flow field is subject to physics constraints that are not guaranteed to be satisfied as the
discretized equations only enforce the conservation of state quantities and the entropy condition.
Thermodynamic realizability constraints ensure that the equation of state is valid. In the case of
fluid flow, these constraints are:

p(u(t,x))
Poo

p(u’ (t,x))
Poo

> 0,
5)
> 0,

where p., and p., refer to free-stream pressure and density, respectively. These denominators
are included here only for non-dimensional convenience and they clearly do not alter the
constraints. Note that p is a conserved variable and, therefore, its extrema match the extrema of the
corresponding position in the conserved state u’’. Pressure, as a nonlinear function of the state, does
not have this property, with the exception that linear states one only needs to check end points [22].
In this absence of a closed-form constraint condition on the discrete state vector, Eqn. 5 is verified
at a discrete set of points, which in this work are the quadrature points used for the element and face
integrals involved in the residual calculation. Note, for Reynolds-averaged turbulent simulations,
intuition dictates that the eddy viscosity should be constrained similarly to pressure and density,
i.e. vy > 0 and the modifications in Ref. [20] impose this constraint by modifying the definition of
v¢(u) from its original form in the baseline SA model — hence, no additional constraints are imposed
on v;.

3. PSEUDO-TRANSIENT CONTINUATION

Since we are interested in the steady-state solution of the flow equations, high accuracy is not
required for discretizing the unsteady term of Eqn. 3. Instead, stability is the main attribute which
makes backward Euler an attractive choice. The fully discrete form of Eqn. 3 is then:

1
ME(U”“ —U") 4+ R(U™ =0, (6)

where M is the mass matrix and n indexes the time step.
For steady calculations, the residual at the future state in Eqn. 6 is expanded about the current
state and the steps in the iterative procedure require linear solves for the update AU*,

1 OR
<Mm t o

) AU* = _R(U"), (7
Uk

where k is used for the nonlinear iteration number to distinguish the method from the backward
Euler case. Note that for At — oo the iterative procedure of Eqn. 7 reduces to Newton’s root-
finding method. In this work, a restarted Generalized Minimal Residual (GMRES) linear solver
[23, 24], aided by an element line-Jacobi preconditioner [15], solves the linear system at each step
to a relative tolerance, ;. Here, 108 < 1, < 1072, is the ratio between the final and the initial linear
residual norms.

The DG discretization described in Section 2 produces a residual Jacobian that is block-sparse,
which means that degrees of freedom in an element are coupled only to degrees of freedom in
neighbor elements. Within each block, sparsity may exist for certain choices of basis functions, but
we do not take advantage of such sparsity.

In the first stages of calculations initialized by states that do not satisfy all boundary conditions,
strong transients occur due to the propagation of boundary information into the domain. To alleviate
those transients and to avoid robustness problems, small time steps are used in an attempt to make
the solution follow a physical path. This causes a diagonal dominance in the coefficient matrix
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in Eqn. 7 and makes the calculation closer to time-accurate if At does not vary spatially. As an
alternative to global time stepping, element-wise local time steps can be used by setting a global
Courant Friedrichs Lewy (CFL) number and then calculating different time steps on each element
according to,

Lyon

max ’
AV

At,n = CFL

®)

where A% is the maximum wave speed in element xH, and L, x is a measure of the element’s size,
here taken as the hydraulic diameter.

At each iteration, k, the flow state vector U* is updated with AU For robustness purposes, an
under-relaxation parameter, w”, is used to ensure a physical solution at the next iteration,

UM = UF + WFAUF. 9)

As discussed in Section 5, the value of the under-relaxation parameter is typically set based on a
user-prescribed maximum allowable variation of physical quantities such as pressure and density.

Alternatively, pseudo-transient continuation (PTC) can be interpreted as a globalization strategy
for Newton’s method [25] where a series of problems defined by Eqns. 7 and 9 are solved for
k=1,2,...,until R(U*) = 0. Its globalization character comes from the fact that |R(U¥)|., is not
required to decrease at each step, hence, it can escape from local minima.

3.1. CFL evolution strategy

In the pseudo-transient continuation method, the continuation parameter is the CFL number. Hence,
a strategy must be chosen to evolve the CFL from its initial value to a large value such that Eqn. 7
becomes Newton’s method and the state approaches the steady solution.

Many strategies for evolving the CFL are available [26, 6]. Among them, a widely used strategy
is the Switched Evolution Relaxation (SER) method proposed by Mulder and van Leer [27]. The
general idea of SER is to change the time step or the CFL number based on a measure of convergence
which is inferred from the relative reduction in the residual L,-norm between consecutive iterations.
Specifically, SER attempts to resolve transients by reducing the CFL number whenever the residual
increases and, conversely, increasing the CFL as the solution approaches the basin of attraction of
R(U) = 0. Resolving transients, however, may require many iterations leading to slow convergence
or, sometimes, impeding convergence [22].

Alternatively, the CFL can evolve based on the value of the under-relaxation parameter. In this
strategy, the CFL increases by a factor 5 > 1 if a full update (w = 1) happened in the previous step
of the solver. On the other hand, if the update had to be limited too much, w < wyiy, the CFL is
reduced by multiplying it by x < 1 and the solver step is repeated. In summary,

B-CFL* forg>1 if wh=1
CFL**' = { CFL* if Wi <wh <1 . (10)
k-CFL* fork <1 if wkf < wyum

Here, we set the parameters to: wp,i, = 0.01, 1.05 < 8 < 2.0, and x = 0.1.

This strategy accounts for the physical feasibility constraints for the state update. However, it is
an indirect way of avoiding non-physical states in the flow field since the direction AU* may still
produce states that are closer to becoming non-physical even at very small CFL. In particular, this
is observed on highly under-resolved meshes.

3.2. Optimization aspect of PTC

Assume the matrix in front of AU* in Eqn. 7 (call it A) is real and non-singular and that the update
direction AU¥ is not zero. Multiplying the left-hand side of Eqn. 7 by its own transpose gives

T 1  OR T
AU AT (M— + = AU* = —AU* ATR(U%) > 0, 11
(M55 * 70 ATRUY an
of
A —_
oU lux
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where the inequality arises from the fact that the left hand side is the dot product of a nonzero vector
with itself, which is always positive. Therefore, AU* is a descent direction for the scalar function

f(U) defined by its gradient in the right-hand side of Eqn. 11. This function is

. 1 . 1 . .
f(U) = S IRi(U)[Z, = SR(U)" Ry (V). (12)
where the unsteady residual is defined by
- 1 - ) .
Rt(U)EME(U—Uk)JrR(U), (13)

Consequently, there is a trial state U along the direction AU* such that f(U) < f(U¥).

4. INCORPORATING CONSTRAINTS

The minimization character of the PTC method motivates the use of constraint handling techniques
from optimization to incorporate the physics constraints from Section 2.2 into the solution path since
non-physical states (e.g. negative pressure) can lead to instability [28]. Interior penalty methods [29]
are attractive because of their simplicity and efficiency in acknowledging feasibility constraints.
These methods augment a scalar objective function with a term — the penalty — that tends to infinity
as the solution path approaches a feasibility boundary, creating a repelling effect with respect to
prohibited regions of the domain.

A different approach for incorporating constraints into pseudo-transient methods is proposed by
Kelley et al. [8]. Their approach involves a step that projects the state into the feasible domain after
each non-linear iteration and the fundamental difference between their method and the method we
propose here is that we incorporate the constraints when computing the solution update.

A simple way of incorporating the realizability constraints in the solution path is to formulate an
optimization problem that minimizes |R,(U)|7, by varying U, subject to the constraints. However,
this least-squares minimization problem gives an ill-conditioned (approximate) Hessian matrix due
to a squaring of the residual Jacobian matrix [16]. In addition, factorizing the Hessian would
generally require its explicit construction, which would be computationally intensive even for small
problems. For these reasons, the least-squares optimization approach is inadequate for any realistic
problem.

As an alternative to constrained least-squares, we augment the residual with a penalty vector to
account for the constraints [16]. The augmented residual is

R,(U) =R(U) +P(U, up), 14)

where up is a penalty factor. In order to have a repelling effect with respect to non-feasible regions
of the domain, the penalization vector P must have a positive projection on the direction of the
residual vector R. To satisfy this requirement, we define the penalization vector as

P(U, ,UP) = (b(U?.LLP) R(U)7 (15)

where @ is a diagonal matrix of the same size as the residual Jacobian with the elemental penalties
PP, for each row corresponding to an element £

pp P.u(U) if i = j € dof(kH)

D, = : 1
(U, pe) { 0 otherwise (16)
Note that j € dof(x) denotes the degrees of freedom, in global ordering, pertinent to element # .
P,.= is an element-specific barrier function that imposes the constraints similarly to interior penalty
optimization methods. Here, we consider an inverse barrier where the penalty function is a sum of
inverses of the constraints ¢;. Since the constraints are applied to a functional representation of the
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state, an integral of the inverse barrier would have to be evaluated in order to enforce the constraints
everywhere in the domain; we approximate this integral by using a quadrature rule and the penalty
function is written as

IPHH(U)ZZZCZ_(UZ*‘EX”. (17)

where N, is the number of quadrature points z, with weights w,, and .. is the number of constraints
indexed by . Note that P.# in tends to infinity as the constraints approach zero from the positive
side.

Eqgn. 17 involves a summation over quadrature points, x;, that lie inside k¥, with weights w;
This summation corresponds to integrating the inverse barrier function in a reference element. The
primed points and weights are determined by an enhanced quadrature rule used for integrating the
barrier function. That is, if the quadrature rule for the residual calculation as a function of the
polynomial order is QuadRule(g), the rule used for the barrier is QuadRule(q + Aq), where Aq = 4
for all cases presented in this article.

Note that the projection of P — as defined in Eqn. 15 — onto the residual vector is always positive
for non-zero R since the elemental penalties are strictly positive in the feasible domain, i.e. the
physical states.

Furthermore, a root of the residual operator corresponds to a root of R,,, so that the steady-state
solution is independent of the values of the elemental penalties. We emphasize that the objective of
this method is to change the path to the solution, not the solution itself. By applying the pseudo-
transient continuation procedure (Eqn. 7) to R, we are including physics constraints in the solution
path from the initial condition to steady state. The update direction along that path at step k satisfies

M OR o
ky—1v4 o ky—1[ 9% k k__ k
(I+ ") At+8U Uk+(I+<I> ) (6U UkR(U )> AU R(U"Y), (18)
N—————
@ b

where I is the identity matrix and ®* = ®(U*, 1ik). The equation above is derived by substituting
R, into Eqn. 7 and by separating the terms such that the unpenalized residual, R, is on the right-
hand side. This adds the implementation convenience of simply adding entries to the coefficient
matrix of the linear systems solved at each step k.

The globalization and penalization terms — respectively “a” and “b” in Eqn. 18 — are block
diagonal for the DG method in this work. In addition, the elemental CFL number gets amplified
by (14 pp P.r) as I+ ®F is a diagonal matrix. In the limit of an infinite time step, the solution
path seeks a minimum of |R,|.,. Similarly, the globalization term vanishes locally at elements
where the solution approaches a non-physical region while the penalization term does not vanish
because the function value of inverse barrier penalties (Eqn. 17) tends to infinity at a slower rate
than the magnitude of its derivative. In the remainder of the text, we will refer to the method in
Eqn. 18 as Constrained Pseudo-transient Continuation (CPTC).

The final value of pup is not specified a priori as it controls the effect of penalization with respect to
the globalization term. The choice of initial value for up balances the globalization and penalization
terms for the first nonlinear iteration. Assuming the state is initialized by uniform free-stream
conditions, we can equate the coefficients multiplying the globalization and penalization matrices,

1
CFLY"

1 us
_ P
(14 ulPy) - CFL (14 pgPo)

= pp = (19)

wp in the numerator of the right-hand side of Eqn. 19 comes from 0® /90U in Eqn. 18 and CFL' in
left-hand side is factored out of the elemental time step. As for PTC, in Eqn. 19 we assume that the
residuals are properly scaled so that a single-CFL time continuation globalizes all of the equations.
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As the solution evolves, the balance between penalization and globalization may change. This
balance should shift depending on how close the current state iterate is from being non-physical.
One possible strategy is a form of Switched Evolution-Relaxation (SER) for pp:

it Lt (e (UY))
T T (e (TR

(20)

where (-) indicates an average over all the elements. The evolution strategy in Eqn. 20 makes the
solver acknowledge the presence of a feasibility constraint by increasing its repelling effect as the
solution path goes towards a non-physical state. Conversely, if the solution path is moving away
from a feasibility boundary the repelling effect decreases.

Note that in Reference [22] we evolve up using SER based on the maximum elemental penalty.
Although successful in avoiding non-physical states in many difficult flow problems, that strategy
tends to produce ill-conditioned linear systems in the Newton steps that sometimes leads to GMRES
failure. Also, we found that varying up between nonlinear iterations is not strictly necessary and the
method still attains satisfactory robustness with constant pp. Section 6.1 compares the method’s
performance for these two strategies.

The CPTC method is summarized in Algorithm 1. The unconstrained PTC follows a similar
algorithm, where the steps related to the penalty factor (steps 3 and 16) are ignored and the update
direction (step 6) is computed using Eqn. 7. For all the cases presented here, the CFL is reduced
by a factor k = 0.1 when the under-relaxation factor is below wy,;, = 0.01. At that point the state is
reverted to a safe state, Ugye, stored when the last full update occurred.

Algorithm 1 Constrained PTC

1: Set a residual tolerance, &g

2: Choose initial CFL and its increase factor 3 (Eqn. 10)

3: Initialize pQ according to Eqn. 19

4: Initialize Ug,ge to initial condition

5. while |R(U¥)| > g5, k < maximum iterations do

6: Compute AU* by solving Eqn. 18 using GMRES

7: Compute under-relaxation parameter w” (Section 5)

8: if wF > w,i, then

9: Urr « Uk + Wk AUP.
10: if w* = 1 then

11: Ugype — UFL > Store a safe state
12: end if

13: else

14: Uk < Ugpe > Revert to last safe state
15: end if

16:  Update pp™ with Eqn. 20

172 Update CFL**! with Eqn. 10
18: k<« k+1
19: end while

5. SOLUTION UPDATE

In optimization problems, line searches are used to find a step size along a descent direction that
sufficiently reduces the value of the objective function and its gradient. These conditions are known
as the Wolfe conditions. When solving systems of nonlinear equations, line searches improve the
global convergence properties of Newton-based methods [30].

The line search described here uses two main ingredients. First, it requires interpolating the state
and its update at certain points, Z,,. This involves evaluating the basis functions at Z,, and using
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10

the discrete vectors U and AU to yield the field representations, u! (#) and Au! (#). The second
ingredient is an update limiter that restricts the unsafe changes in the constrained variables (pressure
and density) to a maximum fraction, nyax, Of the current values. This procedure is described in
Algorithm 2.

Algorithm 2 Limit physical update

1: Given ufl(#,,)| .1, Aufl (%,,)| ., and a fraction 7. < 1

2: wer 1

3: for all Z,, € k™ do

4: wy 1 > w,, 1s the step size for density
5 pmo=pf(Z,)].n) > Current density at &,
6 Apm = p(Au (T, > Change in density at Z,,

Apm,

8: ifw, <0 OR w, > 1 then

9: w, 1
10: end if
11: Wp — W) > w)p, is the step size for pressure
12: Pm = p(at (T,)| ) > Current pressure at &,
13: P = p(u (T e + wpAul (Z,,)| o) > Trial pressure at Z,,
14: while p,,, < (1 — Nmax) * Prm do

15: Wp %

16: P = p(uP(Z,)|or + wp AU P(Z,,)| o)

17: end while

18: Wy 4— min(w,, wp, wx)

19: end for

20: return w =

Some clarifications are in order. First, the maximum fractional change is fixed at 7y, = 10% —
based on experimentation — for all cases presented in this work. Also, for the points @,,, we reuse
the quadrature points from computing the interior and boundary integrals involved in the residual
calculation. Finally, the bisection method is used in step 14 of Algorithm 2 because pressure is a
nonlinear function of the state.

5.1. Line search

The line-search algorithm presented in this work is based on the work of Modisette [31], and it
relies on the optimization character of pseudo-transient continuation (Section 3.2). In short, both
algorithms satisfy Armijo’s rule [32] by back-tracking from an initial step size until an update leads
to a reduction in |Rt|%2. Here, we relax Armijo’s rule by a factor ks and we select the initial
step-size as the minimum w,.» over all the elements. The effect of kg is discussed in Section 6.2.
Algorithm 3 summarizes the line-search procedure.
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Algorithm 3 Line search

Wphys < 1 > Initial guess for physical update
for all < do
Select limit points, Z,,
Evaluate u’'?(%,,)|,.» and Au’?(Z,,)|,.#
Call Algorithm 2 > Limit physical update
Wphys — MiN (W # , Wphys)
end for
Wk < Wohys > Set initial step size
U « UF 4 wkAU* > Trial state vector
while |R;(U)|., > #Ls/R(U*)|r, OR U is not physical do
k
11: wk %
122 U+ U+ ukAUF
13: end while
14: return w”

R e A A R o ey

_
e

Note that step 10 in Algorithm 3 checks if the trial state, U, is physical. This check involves
verifying if the physics constraints are satisfied at the limit points. Also, when the line search is
used with CPTC, the residual operator is penalized according to Eqn. 14, and hence R is replaced
by R,.

In references [31, 33, 22] the Lo-norm in step 10 of Algorithm 3 is separated into residual
norms for each of the conservation equations and a drop is required in each of those norms. This
improves robustness with respect to badly-scaled discrete systems that cause the residual norm to be
dominated by the worst residual component. The poor scaling is frequently present in flow problems
involving turbulence models. Specifically, in the case of the Spalart-Allmaras model, a simple scalar
scaling [34, 35] of SA’s discrete equation is very effective in bringing the equation-specific residuals
to similar magnitudes. In such a case, requiring the reduction of individual residual norms restricts
the step-sizes to small values thus requiring many iterations in the globalization phase. For this
reason, we do not separate the residual norms in this work and, instead, we rescale the additional
discrete equation corresponding to the SA turbulence model.

5.1.1. Greedy algorithm The physical update limiter in Algorithm 2 is heuristic and the line search
described above can prematurely exit with wh = Wphys While wpnys < 1. This can slow down the
convergence and increase the susceptibility to limit cycles. To address this possibility, a greedy
algorithm is introduced. This algorithm amplifies w* while Armijo’s rule is satisfied or until a full
update is obtained, w* = 1. The algorithm is summarized below.
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Algorithm 4 Greedy algorithm

1 if Wk = Wphys then

2 while w* < 1 do
3: wh B, - wh > For all cases, we use 3, = 1.1
4: U + U* +wFAU*
5: if U is not physical then
6 wh w—k

2
7: return w”
8 end if
9 if |Rt(U)|L2 > IiLs|R(Uk)|L2 then

k wh

10: WY = —

B
11: return w”
12: end if
13: end while
14: end if

k

15: return w

Since the greedy algorithm is an extension of the line search, the same remarks made above apply
here. Specifically, the residual operator is penalized in step 9 when this algorithm is applied to
CPTC.

6. RESULTS

6.1. One-dimensional shock tube

We now revisit the shock-tube problem presented in Section 1 for which time-accurate integration
results in non-physical states. The purpose here is to assess the ability of PTC and CPTC to skip
the non-physical transients and to reach steady-state. The assessment considers a range of mesh
resolutions, approximation orders, initial CFL, and CFL growth factors (3 in Eqn. 10). Table I shows
the values for the parametric study which consists of a total of 300 parameter combinations for each
method. The linear systems at each nonlinear step are solved to a relative tolerance of 7, = 1072
and Armijo’s rule relaxation factor is xLg = 1.05 for all runs. The nonlinear residual convergence
tolerance is 105,

Table I. One-dimensional shock tube: variable parameters.

Parameter Values
Number of elements 10, 20, 40, 80, 160
Approximation order p=0,1,2,3

CFL’ 0.1, 0.5, 1, 5, 10
CFL growth factor 5 =1.05, 1.5, 2

Since the solution transient undergoes a shock, one should consider including some form of
shock-capturing scheme in the residual operator in order to improve robustness. Here, we compare
the pseudo-transient continuation methods for two forms of the residual operator. One where the
residual includes only the convection term from Euler’s equation and another where the residual
consists of both convection and artificial diffusion. We use Persson and Peraire’s [11] shock-
capturing scheme for which solution regularity is sensed by density jumps between the current
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p-order solution and its projection onto V:P~1_ The added diffusion is discretized with BR2 for
which xgr2 = 1. Note, the p = 0 runs do not include any shock-capturing term.

We consider CPTC in two modes. One where the penalty factor, up, varies according to Eqn. 20
and another where we keep its value constant. In both modes, we initialize up according to Eqn. 19.
Table II compares the success rate — percentage of runs that reach steady-state — of CPTC and
PTC. Note that the inclusion of physics constraints in the solution path significantly improves the
robustness in converging to steady state. Also, the simplification of holding pp constant has a small
impact (< 3%) on the method’s success rate.

Table II. One-dimensional shock tube: success rate for PTC and CPTC over the 300 parameter combinations

in Table 1.
Description PTC CPTC, variable up  CPTC, constant up
w/o Artificial diffusion  66.33% 91.67% 88.67%
w/ Artificial diffusion  89.67% 96.00% 94.67%

From a robustness perspective, CPTC with variable penalty factor produces a better improvement
than the use of the artificial diffusion term. This observation, however, is reserved to cases where
a shock occurs only during the solution transient and is not present in the steady solution as CPTC
does not change the final steady solution. Furthermore, the inclusion of a diffusion term governed by
a regularity sensor in the residual operator produces nonlinear algebraic systems that are generally
more difficult to solve. The latter point is supported by Table III which shows that converged runs
with PTC take, on average, approximately three times more nonlinear iterations when the residual
includes the artificial diffusion term. Conversely, CPTC’s negative impact is on the average cost of
the linear systems at each nonlinear step. This is measured by the average number of GMRES
iterations per nonlinear iteration. CPTC takes, on average, between 9% to 14% more GMRES
iterations than PTC at each nonlinear step for this shock-tube problem. Note that this negative
impact is compensated by fewer nonlinear iterations such that the total number of GMRES iterations
is generally smaller than the same metric for PTC with the exception of CPTC with variable pp
without artificial diffusion.

Table III. One-dimensional shock tube: cost metrics for all converged runs normalized by PTC’s
performance (absolute values in parentheses).

Average cost PTC CPTC, variable up  CPTC, const. up
Without artificial diffusion
Nonlinear iterations 1 (40.78) 0.95 0.84
GMRES iterations 1(59.81) 1.02 0.92
GMRES iter. per nonlinear iter. 1 (1.67) 1.10 1.09
With artificial diffusion

Nonlinear iterations per run 1 (120.75) 0.61 0.64
GMRES iterations per run 1 (146.28) 0.69 0.71
GMRES iter. per nonlinear iter. 1 (1.59) 1.12 1.14

We now analyze the effect of the parameters in Table I on the success rate of the continuation
methods. For this, we compute marginal success rates, one for each parameter value within each
class while marginalizing the other classes — e.g.: success of all runs with CFL® = 1.0. Note, the
average of the success rates over all parameter values within a class recovers the global success rate.
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Figure 3 compares the marginal success rates for CPTC against PTC. Note that PTC suffers more
than CPTC from increasing approximation order regardless of the form of the residual operator. The
magnitude of the oscillations caused by the shock increases with the polynomial order and these
oscillations are the root cause of violation of the physics constraints. Including these constraints
in the solution path improves the ability of the pseudo-time procedure to skip the non-physical
transients. Another mechanism that allows the pseudo-time procedure to skip transients is increasing
the CFL number. This is supported by Figures 3(d) and 3(c), which show, respectively, that PTC’s
success rate increases with the CFL growth factor and PTC without artificial diffusion is more
successful with CFL® > 1. Increasing the CFL, however, is not a selective mechanism as it washes
all transients and it can affect the globalization character of pseudo-transient continuation.

100% [ 100%
90% 90%
80% 80%
° 70% ° 70%
g 60% E 60%
§ 50% 5 PTC w/o art. diff. § 50% |mPTC w/o art. diff.
S 0% CPTC w/o art. diff. & 40% |"CPTC w/o art. diff.
30% " CPTC const. 'up w/o art. diff. 30% |™CPTC const. pup w/o art. diff.
20% PTC w/ art. diff. 20% PTC w/ art. diff.
0% CPTC w/ art. diff. 109 CPTC w/ art. diff.
10% CPTC const. pp w/ art. diff. % |5 CPTC const. up W art. diff.
10 20 40 80 160 0 1 2 3
Number of elements Polynomial approximation order
(a) Runs divided in different mesh resolutions. (b) Runs divided in different p-orders.
100% 100%
90% — B 90% e —
80% — B 80% 1 —
° 70% - . 70% —
g 60% - E 60% —
& s0% = PTC w/o art. diff. g 0% = PTC wio art. diff.
% 40% CPTC w/o art. diff. é 40% CPTC w/o art. diff.
30% B CPTC const. up w/o art. diff. 30% H CPTC const. pp w/o art. diff.
20% PTC w/ art. diff. 20% PTC w/ art. diff.
CPTC w/ art. diff. CPTC w/ art. diff.
0, 0,
]Z; CPTC const. pup w/ art. diff. 13; CPTC const. up w/ art. diff.
0 0
0.1 0.5 1 5 10 1.05 15 2
CFL? CFL? growth factor
¢) Runs divided in different CFLY. d) Runs divided in different CFL growth factors.
g

Figure 3. One-dimensional shock tube: success rates with varying parameters. Results are marginalized over
all other parameters in each case.

CPTC’s success without artificial diffusion decreases with increasing mesh resolution for this
flow problem (Figure 3(a)). The reason for this behavior is that the shock becomes steeper as the
mesh gets finer and, in the absence of the shock capturing term, the pressure undershoots to lower
values making it harder to circumvent non-physical regions of the solution space. Note that teaming
CPTC with artificial diffusion practically eliminates the dependence of the marginal success rates
on mesh resolution.

6.2. Effect of ks

We now analyze the effect of relaxing Armijo’s rule on the success rate of the solver. In order
to properly exercise both PTC and CPTC methods, we choose two turbulent flows in which DG
methods typically use parameter continuation and order sequencing. The first case is transonic flow
at Mo, = 0.734, a = 2.79°, and Re = 6.5 x 10% over the RAE2822 airfoil. The steady solution for
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this problem presents a shock on the upper surface of the airfoil, and hence the residual operator
includes the artificial diffusion term of Persson and Peraire [11]. The main difficulty of this case is
the fast flow acceleration over the upper leading-edge region that causes the pressure to reach very
low values in the solution transient. The second case is turbulent flow at M, = 0.2, = 16°, Re =
9 x 105 over the MDA 30P30N high-lift configuration. Here, the residual operator does not include
the artificial diffusion term and the main cause for difficulty is the high angle of attack which causes
the flow to experience strong shear while contouring the airfoil shape.

In both cases, we rescale the discrete SA equation to bring the nonlinear residuals to similar
magnitudes [35] and we keep pp constant as described in Section 6.1. We consider krg =
{0.9,0.95,1.0,1.05,1.1} and we assign the remaining parameters to the values listed in Table IV.
In each run, the flow is initialized with the free stream condition throughout the domain and the
nonlinear residual is considered converged when |R| < 1078,

Table IV. Fixed parameters for the xg sensitivity study.

p-order  KgRro CFL? B m GMRES Vectors
RAE2822, M., = 0.734, o = 2.79°, Re = 6.5 x 106

p=1 150 1.0 20 1073 80
p=2 100 1.0 20 1073 80
MDA 30p30n, M, = 0.2, = 16°, Re = 9 x 108
p=1 20 10 15 1073 80
p=2 20 1.0 1.5 1078 100

The mesh chosen for the transonic case (Figure 4) is publicly provided by the High-Order
Workshop committee [1] and its purpose is to establish an appropriate reference for testing the
accuracy and efficiency of high-order methods. Here, our purpose with choosing it is to test
the robustness of PTC and CPTC on a reasonably — but not fully — resolved mesh instead of
comparing the methods on an inappropriately coarse mesh such that the flow features and not even
representable. Each edge of the mesh is a quartic polynomial and the off-wall spacing is such that
Y i A~ 8 for both p = 1 and p = 2. Note in Figure 4(b) the mesh clustering in the shock region.

Table V shows the success of both methods in reaching the steady solution for the transonic case.
First, we note that CPTC converges all cases but that the solver’s performance varies significantly
with the value of kg — larger values require fewer nonlinear iterations. Within the PTC runs, strictly
enforcing Armijo’s rule (ks < 1.0) makes the solver resolve certain transients that lead to violating
physical realizability (Figure 5). The exception here is the p = 2, ks = 0.9 run that converges
while its p = 1 counterpart does not. This an example where order continuation would fail with
PTC because the supposedly easier p = 1 solution is effectively harder to obtain.

Atkins and Pampell [28] examine an instability that occurs for DG when the pressure goes
negative while solving the Euler equations. Here, we note a similar instability manifesting in the
residual norm (Figure 6(a)) when the minimum pressure and density become negative in the PTC
run with kg = 0.95. Note in Figure 6(b) that the maximum penalty peaks in the transition from
time-continuation to the full Newton stage, when the CFL ramps from O(1) to O(10%). The residual
norm at that point has already dropped 2 orders of magnitude (Figure 6(a)) which demonstrates that
non-physical states can occur not only during the initial transients, but at any point in the solution
path.

We now analyze the performance of the two methods in the high-lift case. The mesh used for
this case is shown in Figure 7 and it consists of 4070 quartic elements generated via structured
agglomeration of linear cells. The off-wall spacing, excluding the flap cove region, is such that
Y & 50 for p =1 and p = 2. This mesh is publicly provided by the High-Order Workshop
committee [1].
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(a) Global view of the mesh mesh (2024 elements). (b) Mach contours. Thick dashed lines: p = 1; thick
continuous lines: p = 2.

Figure 4. RAE2822, Moo = 0.734, o = 2.79°, Re = 6.5 x 10: quartic mesh used for x g study.

Table V. RAE2822, Moo = 0.734,a« = 2.79°, Re = 6.5 x 108: success of all runs for various KLS-
C = converged; LM = local minimum; NP = nonphysical.

KLS Success Nonlinear iterations GMRES iterations
p=1 p=2 p=1 p=2 p=1 p=2
PTC
0.9 NP C 279 499 1892 8128
0.95 NP NP 412 125 3287 861
1.0 C C 215 323 4734 8035
1.05 C C 116 345 2893 8709
1.1 C C 93 153 2153 3817
CPTC
0.9 C C 301 568 4231 9388
0.95 C C 209 571 3311 9405
1.0 C C 186 431 4692 10703
1.05 C C 197 184 4852 4946
1.1 C C 101 156 2399 4123

Table VI compares the success of PTC and CPTC for the high-lift case. First we remark
that, similarly to the transonic case, the added spatial resolution of p = 2 reduces the number of
nonphysical problems encountered by PTC. This is somewhat counter-intuitive as it opposes the
idea of order continuation which assumes that at higher approximation orders the problem becomes
more difficult. In contrast to the transonic case, however, relaxing Armijo’s rule here makes PTC
violate the physical constraints for p = 1 as seen in Table VI and exemplified in Figure 8. CPTC, on
the other hand, is less sensitive to xrg as the constrained solver is successful with nearly all of the
values of x1 g with the exception of kg = 0.9 for p = 2, with which both methods fail to converge.

Given that both methods are successful with x s = 0.9 and p =1 but not with p =2, we
investigate if order continuation is successful in this condition. Figure 9 compares PTC and CPTC
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Minimum Density  -1.3381e-04
Minimum Pressure -2.8992e-02
Pressure: 02 04 06 08 1 12 14 16 1.8 2 22 24 26

(a) Pressure distribution with location of constraint violation. (b) Zoom on pressure constraint violation.

Figure 5. RAE2822, M = 0.734,a = 2.79°, Re = 6.5 X 108, p = 1, ks = 0.95: PTC state iterate that
violates physics constraints.
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(a) Residual histories. (b) Penalty and CFL histories for CPTC run.

Figure 6. RAE2822, Moo = 0.734,« = 2.79°, Re = 6.5 x 10, p = 1: PTC versus CPTC for x5 = 0.95.

(a) Global view of the mesh mesh (4070 elements). (b) Mach contours. Thick dashed lines: p = 1; thick
continuous lines: p = 2.

Figure 7. MDA 30p30n, Moo = 0.2, = 16°, Re = 9 x 10°: quartic mesh used for g study.
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Table VI. MDA 30p30n, Moo = 0.2, = 16°, Re = 9 x 108: success of all runs for various rs.
C = converged; LM = local minimum; NP = nonphysical.

KLS Success Nonlinear iterations GMRES iterations
p=1 p=2 p=1 p=2 p=1 p=2
PTC
0.9 C NP 158 179 3913 2387
0.95 C C 132 243 3453 40406
1.0 NP C 142 268 411 46494
1.05 NP C 198 287 1246 47205
1.1 NP C 271 153 4512 31670
CPTC
0.9 C LM 159 400 3748 59539
0.95 C C 148 238 3360 37822
1.0 C C 138 327 3640 53295
1.05 C C 114 244 3487 43110
1.1 C C 162 171 4353 35962

Minimum Density 2.3742e-02

~&—————Minimum Pressure -1.5590e+00

Pressure: 0 2 4 6 8 10 12 14 16 18

(a) Pressure distribution with location of constraint violation. (b) Zoom on pressure constraint viola-
tion.

Figure 8. MDA 30p30n, Mo = 0.2, = 16°, Re = 9 X 106,p =1,kLs = 1.05: PTC state iterate that
violates physics constraints.

starting from free stream and solving directly for p = 2 against order continuation. In the latter case,
we initialize the solution with free stream conditions and solve for a p = 1 solution, then we use this
solution as a starting point for a p = 2 calculation. For an appropriate comparison, we re-solve the
initial p = 1 flow using the same parameters used for direct p = 2 listed in Table IV. Note that both
PTC and CPTC are successful with order continuation for this case.

As noted in the transonic case, Figure 9(a) shows that violating the physics constraints with PTC
and direct p = 2 leads to the residual norm climbing several orders of magnitude. Note that since
Armijo’s rule is strictly enforced for the norm of the unsteady residual (Equation 13), the spatial
residual norm only climbs because the unsteady term dominates the unsteady residual as the CFL
is reduced (Figure 9(b)). Figure 9(a) also shows CPTC stagnating for direct p = 2 after the residual
norm drops approximately 2 orders of magnitude.
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Figure 9. MDA 30p30n, Moo = 0.2, = 16°, Re = 9 X 106, kLs = 0.90: order continuation for PTC and
CPTC.

7. CONCLUSIONS

We augmented the PTC method with nonlinear inequality constraints that enforce physically valid
thermodynamic states. This augmentation is possible because the solution update direction at each
nonlinear step is a descent direction for the unsteady residual. The challenge, however, is to penalize
the residual in a computationally efficient manner. To this end, we use a vector penalization approach
that does not increase the memory footprint of the residual Jacobian. The latter point is due to the
local nature of the physics constraints.

We presented an example in which following the time-accurate path incurs in negative pressure.
The residual penalties, as formulated here, are a natural mechanism to locally amplify the CFL and
skip the transients that lead to non-physical states. Because this mechanism is selective and local, it
does not affect the global convergence property of pseudo-transient continuation.

The results show that CPTC’s success in reaching steady-state is significantly less sensitive to
input parameters in comparison to its unconstrained counterpart. This property makes CPTC a good
candidate for “hands-off” adaptive frameworks. The caveat is the linear systems at each non-linear
step are generally more expensive with CPTC than with PTC. In some cases, this is compensated
by fewer non-linear iterations.

We anticipate further improvements in the line-search algorithm, especially with regard to
eliminating the ~rs factor. Defining a general rule for relaxing Armijo’s condition is a difficult task
in non-linear problems and using gradient information in the line search would involve updating

the residual Jacobian which is computationally expensive. Our choice here leans towards simplicity
while maintaining reasonable robustness.
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