
High-Order Output-Based Adaptive Simulations of

Turbulent Flow in Two Dimensions

Marco A. Ceze∗

NASA Ames Research Center, Moffett Field, CA, USA

Krzysztof J. Fidkowski†

Department of Aerospace Engineering, University of Michigan, Ann Arbor, MI 48109, USA

We present output-based high-order adaptive results for several benchmark two-
dimensional turbulent-flow simulations. The discretization is a high-order discon-
tinuous Galerkin (DG) finite element method, and the equations solved are com-
pressible Navier-Stokes, Reynolds-averaged with a modified version of the Spalart-
Allmaras (SA) one-equation model. We study mesh refinement requirements through
automated output-based adaptation in which a discrete adjoint solution associated
with an output, e.g. the drag coefficient, weights a fine-space residual and automat-
ically selects the elements that need more resolution. The roles of high-order and
mesh anisotropy are also investigated. Finally, we investigate differences between
two mesh refinement strategies: hanging-node refinement of structured meshes ver-
sus metric-based remeshing of unstructured triangles.

I. Introduction

Although improvements in computing capabilities have made advanced computational fluid
dynamics techniques such as large-eddy simulation (LES) possible for a range of applications, the
Reynolds-averaged Navier-Stokes equations remain an invaluable tool routinely used in analysis and
design. Compared to LES, RANS simulations are much cheaper because they can take advantage
of anisotropic (stretched) computational elements that reduce the degrees-of-freedom required to
accurately resolve thin boundary and shear layers. This advantage is not always easy to realize,
in particular for high-order methods that require curved elements, which are difficult to keep from
tangling/inverting when stretched.

High-order methods for RANS suffer from additional debate and scrutiny: RANS solutions of-
ten possess singular features that do not lend themselves to high-order approximation, and RANS
modeling errors are generally viewed as dominant compared to numerical resolution (discretization)
errors that high-order would address. Regarding the latter point, our position is that both mod-
eling and numerical errors need to be estimated and controlled through methods appropriate for
each error. For instance, modeling errors may be addressed through an uncertainty quantification
study, and this study may require simulations with different model parameter settings but low
discretization errors to isolate the effects of the parameters on the model.

Regarding the former point of RANS solutions containing singular features, these features can be
resolved via small elements using a mesh adaptation technique: most flowfields will still possess large
smooth regions where high-order will be advantageous.1 In particular, output-based methods2–5

∗Postdoctoral Fellow, Oak Ridge Associated Universities, marco.a.ceze@nasa.gov
†Associate Professor, AIAA Senior Member

1 of 24

American Institute of Aeronautics and Astronautics



offer a systematic approach for identifying regions of the domain that require more resolution for
the prediction of scalar outputs of interest. These methods also return error estimates that can
improve robustness of solution verification and uncertainty quantification studies. It is for these
reasons that we consider output-based methods in the present study.

In this paper, we apply a high-order adaptive solution technique to several test cases modeled
with the two-dimensional Reynolds-averaged Navier-Stokes (RANS) equations, closed with a recent
modification of the Spalart-Allmaras (SA) one-equation model.6 Many previous works have inves-
tigated the RANS-SA equations, including in a high-order adaptive setting.1,7–10 The majority of
the latter work has focused on demonstrating benefits of adaptive refinement and/or high-order
over uniform or heuristic refinement for such flows. These comparisons have been done in solely
structured and solely unstructured settings. The present work distinguishes itself in that we com-
pare both structured and unstructured mesh refinement techniques, and that we consider a set of
well-defined benchmark test cases with available previous (typically second-order) data.

The remainder of this paper is organized as follows. Section II presents the RANS-SA equations,
and Section III discusses their discretization. Sections IV and V describe the output error estima-
tion and adaptation techniques, and Section VI presents results for the several benchmark cases
considered. Section VII concludes with a summary and a discussion of possible future directions.

II. Turbulence Model

We use the Spalart-Allmaras turbulence model, modified for stability for negative values of the
turbulence working variable, ν̃.6 The Reynolds-averaged Navier-Stokes (RANS) equations closed
with this turbulence model read

∂tρ + ∂j(ρuj) = 0

∂t(ρui) + ∂j(ρujui + pδij) = ∂jτij

∂t(ρE) + ∂j(ρujH) = ∂j(uiτij − qj)
∂t(ρν̃) + ∂j(ρuj ν̃) = ∂j

[
1
σρ(ν + ν̃fn)∂j ν̃

]
− 1

σ (ν + ν̃fn)∂jρ∂j ν̃ + cb2ρ
σ ∂j ν̃∂j ν̃ + P −D

= 1
σρ∂j [(ν + ν̃fn)∂j ν̃] + cb2ρ

σ ∂j ν̃∂j ν̃ + P −D

(1)

where ρ is the density, ρuj is the momentum, E is the total energy, H = E+ p
ρ is the total enthalpy,

p = (γ− 1)
(
ρE − 1

2ρukuk
)

is the pressure, γ is the ratio of specific heats, and i, j index the spatial
dimension, dim. The Reynolds stress, τij , is

τij = 2(µ+ µt)ε̄ij , ε̄ij =
1

2
(∂iuj + ∂jui)−

1

3
∂kukδij .

µ is the laminar dynamic viscosity, obtained using Sutherland’s law,

µ = µref

(
T

Tref

)1.5(Tref + Ts
T + Ts

)
, (2)

where T is the temperature, and the eddy viscosity, µt, is

µt =

{
ρν̃fv1 ν̃ ≥ 0

0 ν̃ < 0
fv1 =

χ3

χ3 + c3v1
, χ =

ν̃

ν
.

The heat flux, qj , is given by

qj = (k + kt)∂iT, k = Cpµ/Pr, kt = Cpµt/Prt

2 of 24

American Institute of Aeronautics and Astronautics



The production term, P , is

P =

{
cb1S̃ρν̃ χ ≥ 0

cb1Sρν̃ χ < 0
,

where the modified vorticity S̃ is written as

S̃ =


S + S S ≥ −cv2S

S +
S(c2v2S + cv3S)

(cv3 − 2cv2)S − S
S < −cv2S

, S =
ν̃fv2
κ2d2

, fv2 = 1− χ

1 + χfv1
. (3)

In Equation 3, S =
√

2ΩijΩij is the vorticity magnitude (summation implied on i, j), and Ωij =
1
2(∂ivj − ∂jvi) is the vorticity tensor. d is the distance to the closest wall. The destruction term,
D, is given by

D =


cw1fw

ρν̃2

d2
χ ≥ 0

−cw1
ρν̃2

d2
χ < 0

, fw = g

(
1 + c6w3
g6 + c6w3

)1/6

, g = r + cw2(r
6 − r), r =

ν̃

S̃κ2d2

Finally, the coefficient fn in Eqn. 1 is 1 for positive ν̃ and

fn =
cn1 + χ3

cn1 − χ3
, when χ < 0. (4)

Relevant closure coefficients are

cb1 = 0.1355 cw1 =
cb1
κ2

+
1 + cb2
σ

cv1 = 7.1

cb2 = 0.622 cw2 = 0.3 κ = 0.41

σ = 2/3 cw3 = 2 Prt = 0.9

cn1 = 16 cv2 = 0.7 cv3 = 0.9

III. Discretization

We discretize Eqn. 1 using a discontinuous Galerkin (DG) finite element method.9,11 Defining
the state vector as u = [ρ, ρui, ρE, ρν̃]T , we write Eqn. 1 in compact conservative form,

∂tu +∇ · ~F(u,∇u) + S(u,∇u) = 0, (5)

where ~F is the combined inviscid/viscous flux vector, and S is the source term associated with
the turbulence closure equation. We approximate the state as uh ∈ Vh, where Vh is the space of
element-wise discontinuous polynomials of order pa. Multiplying Eqn. 5 by test functions vh ∈ Vh,
integrating by parts on each element, and using the Roe12 convective flux and the second form of
Bassi and Rebay (BR2)13 for the viscous treatment, we obtain the following semilinear form:

Rh(uh,vh) = 0. (6)

Note in Eqn. 1 and Eqn. 5 that the RANS source term depends on the gradient of the state.
For the present work we use an adjoint-inconsistent treatment in which the gradient is taken
pointwise directly from the polynomial solution approximation, without consideration of interface
jump contributions.14 Much of the DG discretization is standard; the sections below outline a few
practical details.

athis order may change from element to element in p-refinement

3 of 24

American Institute of Aeronautics and Astronautics



III.A. Wall distance calculation

The wall distance, d(~x), required in the SA model is approximated on each element by a polynomial
of the same order, p, as the solution. The procedure for calculating d(~x) is brute force: Lagrange
interpolating polynomials are used, and at each node associated with a Lagrange polynomial in
every element, the wall distance is calculated. This calculation considers all of the boundary faces
associated with the walls in the domain. The distance to each boundary node is calculated to pre-
select the closest boundary faces. For each of these boundary faces, which are high-order/curved,
the wall distance is estimated by calculating the minimum distances to a set of facets obtained by
subdividing the high-order face into 2(Q + 1) linear segments. Once the minimum-distance facet
is found, reference-space coordinates on the face corresponding to a projection onto this facet are
used to compute a point on the true high-order geometry. The wall distance is then the distance to
this point on the true geometry. Although this distance function calculation could be made more
efficient, its cost is negligible compared to the flow solution.

III.B. Symmetry boundary conditions

Several test cases in the results call for symmetry boundary conditions. In the continuous limit,
symmetry requires vanishing normal state derivatives. A finite-dimensional solution will generally
violate these requirements pointwise, so that we enforce the BCs weakly. This enforcement involves
transforming the state and gradient, similarly to methods in previous works,15 though we construct
a state/gradient on the boundary instead of employing a ghost cell. Starting with the state, we
require that at a symmetry boundary all vectors in the state (e.g. a velocity) have their normal
components zeroed out. This results in a linear transformation from the interior (u+) to the
boundary (ub) state vector, which reads ub = Au+. A is the identity matrix for all states except
the momentum, which transforms as (ρ~v)b = V (ρ~v)+, where V = I − ~n⊗ ~n = δij − ninj . ~n is the
outward-pointing normal, and I = δij is the dim×dim identity matrix.

The state gradient transformation must account for possibly nonzero normal velocity com-
ponents. We first consider a hypothetical ghost state (u−) and gradient (∇u−), obtained by
reflecting the velocity about the symmetry line. Specifically, u− = Bu+, where B is an iden-
tity matrix for all states except the momentum, which transforms as (ρ~v)− = W (ρ~v)+, where
W = I − 2~n ⊗ ~n = δij − 2ninj . Note that B = 2A − I and that W = 2V − I. Differentiating
the expression for u− in space gives the gradient, which we must reflect by applying W , so that
∇u− = B∇u+W T . Finally, we obtain the gradient at the boundary, ∇ub, by averaging the interior
and exterior gradients – this is consistent with what would happen in the viscous flux calculation
if there were actually a symmetrical mesh on the other side of the symmetry line. So we have

∇ub =
1

2

(
∇u+ +∇u−

)
=

1

2

(
∇u+ + B∇u+W T

)
=

1

2

(
∇u+ + (2A− I)∇u+(2V T − I)

)
= ∇u+ + A∇u+(2V T − I)−∇u+V = ∇u+~n⊗ ~n+ A∇u+(I − 2~n⊗ ~n).

III.C. Scaling of ν̃

The SA working variable, ν̃, will generally be orders of magnitude smaller than the other state
components. We use scaling or “non-dimensionalization” of ν̃ to make its range of numerical values
similar to the other state components. This proved to be effective in improving the performance of
the linear and nonlinear solvers.11 We store the scaled quantity, ρν̃ ′, given by

ρν̃ ′ =
ρν̃

κSAµ∞
,

4 of 24

American Institute of Aeronautics and Astronautics



where κSA is a scaling factor, typically O(
√
Re), and µ∞ is the free-stream laminar dynamic

viscosity. In addition, the SA ν̃ equation is divided by κSAµ∞.

III.D. Implicit Solver

The system of nonlinear equations that forms the primal problem is solved using Newton’s method
with pseudo-transient continuation16 for improved robustness. Two versions of the solver are con-
sidered: (1) A relatively aggressive Courant-Friedrichs-Lewy (CFL) number evolution strategy in
which the CFL grows by a factor of 2 after each full Newton update, in combination with incomplete
Newton updates when certain physical quantities (e.g. density and pressure) change too drastically;
and (2) a more moderate CFL evolution strategy in which the increase factor is 1.2, but in which
the physical quantity changes are not limited; rather the line search prevents the residual from
growing too quickly and no update is taken if physical constraints are violated. Both strategies are
found to perform similarly for the present test cases. The linear systems at each Newton iteration
are solved with an element-line preconditioned17 GMRES solver.

IV. Output Error Estimation

Choosing a basis for the test space in Eqn. 6 gives a discrete system of nonlinear equations,

R(U) = 0, (7)

where U and R, both in RN are, respectively, the state and residual vectors. For a scalar output,
J(U), we define the discrete adjoint vector, Ψ ∈ RN , as the sensitivity of J to perturbations in
R.5 The adjoint satisfies the following linear equation,(

∂R

∂U

)T
Ψ +

(
∂J

∂U

)T
= 0. (8)

We use the adjoint to estimate the error in an output when computing on a finite-dimensional
approximation space. Without access to infinite resolution, estimating the true numerical error in
an output is practically out of reach for general nonlinear problems. We thus restrict ourselves to
estimating the output error between two finite-dimensional spaces: a coarse approximation space
(VH) on which we calculate the state and output, and a fine space (Vh, obtained by incrementing
the approximation order by 1 on the same mesh) relative to which we estimate the error. We would
like to measure the output error in the coarse solution relative to the fine space,

output error: δJ ≡ JH(UH)− Jh(Uh). (9)

We assume that the fine approximation space contains the coarse approximation space, so that
the following lossless state injection is possible, UH

h ≡ IHh UH , where IHh is the coarse-to-fine state
injection (prolongation) operator. On the fine space, the exact solution Uh ∈ RNh would give us zero
fine-space residuals, Rh(Uh) = 0. However, the state injected from the coarse space will generally
not be a fine space solution and hence will not give us zero fine-space residuals, Rh(UH

h ) 6= 0.
Instead, the injected coarse state solves a perturbed fine-space problem, Rh(U′h) −Rh(UH

h ) = 0.
As this is just the fine-space problem with a residual perturbation, the fine-space adjoint, Ψh,
tells us to expect an output perturbation given by the inner product between the adjoint and the
residual perturbation,

δJ ≈ −ΨT
hRh(UH

h ). (10)

This derivation assumes small perturbations in the state when the output or equations are nonlinear.
Note that this error estimate does not require the fine-space primal solution, Uh. However, it

5 of 24

American Institute of Aeronautics and Astronautics



requires the solution of Eqn. 8 with residual and output linearizations about UH
h . In this work, we

fully converge the fine-space adjoint, storing the fine-space Jacobian and using ΨH
h ≡ IHh ΨH , as

a initial guess in the GMRES iterative solver for Ψh. This does not add a dominant contribution
to the total cost, which for these cases is dominated by dozens of Newton-Raphson iterations of
the primal problem. The fine-space adjoint system, though larger, is linear and for these runs
remains less expensive than the coarse primal. For larger simulations, techniques such as iterative
smoothing or reconstruction can be used to approximate the fine-space adjoint.5,9, 11

V. Mesh Adaptation

The adjoint-weighted residual error estimate in Eqn. 10 can be localized to the elements by
keeping track of the contributions from each fine-space element, indexed by k below,

JH(UH)− Jh(Uh) ≈ −ΨT
hRh(UH

h ) = −
∑
k

ΨT
hkRhk(U

H
h )

⇒ εk ≡
∣∣ΨT

hkRhk(U
H
h )
∣∣ ,

where the subscript k indicates restriction to element k, and the adaptive indicator εk is obtained
by taking the absolute value of the elemental contributions. This indicator then drives mesh
adaptation, the goal of which is to reduce the output error. We consider two adaptation strategies,
as outlined below.

V.A. Hanging-Node Quadrilateral Refinement

The first adaptation strategy used in this work is hanging-node refinement of an initially struc-
tured quadrilateral mesh.9,11,18 In this strategy, a fixed fraction, f frac, of elements with the highest
error indicators is flagged for refinement. For the present results, we only consider isotropic refine-
ment in which each quadrilateral is subdivided uniformly into four quadrilaterals, as illustrated in
Figure 1. This refinement is done in each element’s reference space by employing the reference-
to-global coordinate mapping in calculating the refined elements’ geometry node coordinates. The
refined elements inherit the same geometry approximation order and quadrature rules as the parent
coarse element. When curved boundary representations are employed, new nodes introduced on
the boundary are snapped to the geometry – this perturbation is usually very small for high-order
curved elements on the boundary, as these already approximate the geometry with high fidelity.
For the cases involving curved geometry in this paper, we use quartic polynomials as element edges
and the element’s interior mapping is generated via a tensor product between those polynomials.
At the boundaries, the quartic polynomials interpolate the true mathematical description of the
geometry.

Elements created in a hanging-node refinement can be marked for h-refinement again in sub-
sequent adaptation iterations. In this case, neighbors are divided in the minimal possible fashion,
generally anisotropically, to keep one level of refinement difference between adjacent cells, as illus-
trated in Figure 1.

V.B. Metric-Based Unstructured Remeshing

The second adaptation strategy used in this work is an unstructured metric-based remeshing ap-
proach on triangles. The idea in this strategy is to, at every adaptation iteration, create a new
mesh using the current mesh and the error indicator. During remeshing, the current mesh serves
as a background mesh on which the desired metric field is prescribed. The program used for the
remeshing is the bi-dimensional anisotropic mesh generator (BAMG).19 This program generates

6 of 24

American Institute of Aeronautics and Astronautics



Figure 1. Hanging-node adaptation for a quadrilateral mesh, with a maximum of one level of refinement
separating two elements. The shaded element on the left is marked for isotropic refinement, and the dashed
lines on the right indicate the additional new edges formed.

straight-edged meshes which are then curved via a linear elasticity analogy to represent the curved
geometry.20

The first step is a calculation of the current metric field, computed as the grid-implied metric
on each element k,

M c
k = (JkJ

T
k )−1, (11)

where Jk ∈ Rdim× dim is the Jacobian of the geometric mapping of the reference element to element
k. The eigenvalues of the metric are the inverse squares of the principal stretching magnitudes, and
the eigenvectors are the principal stretching directions. For curved elements, Jk is evaluated at the
centroid of the element. We now describe two methods used for determining the requested metric
field based on the error estimates: one based on a priori estimates and one based on sampling.

V.B.1. Fixed Growth Using A Priori Estimates

This method for constructing the requested metric field is similar to that presented in previous
work.21 We assume a fixed-growth refinement strategy in which the number of elements desired
on the refined mesh is Nf = fgrowthN c, where fgrowth > 1 is the growth fraction and N c is the
current number of elements. We relate the growth in elements to an error reduction factor through
an a priori estimate. In particular, we sum the error indicators on the current mesh to obtain a
conservative estimate of the current global error,

ec =
∑
k

εck. (12)

Assuming that, with adaptive refinement, the global error decreases at a rate of r (with h ∝
N−1/ dim), we calculate the global error estimate on the refined mesh as

ef = ec
(
N c

Nf

)r/dim
. (13)

We would like the error to be equidistributed on the fine mesh, which means that every fine space
element should have an error of ef/Nf . We now apply the a priori estimate to each element, and
we assume that for anisotropic elements the error depends on the shortest principal length, h1. The
resulting a priori relationship is

nk
ef

Nf
= εck

(
hf1
hc1

)rk
, (14)

where nk is the number (not necessarily an integer) of refined elements per current element k, hf1/hc1
are the shortest principal lengths on the refined/current meshes, and rk is a possibly element-specific

7 of 24

American Institute of Aeronautics and Astronautics



error convergence rate. We estimate the number of fine elements for coarse element k as

nk =
hc1

hf1

hc2

hf2
=

(
hc1

hf1

)2
ARfk
ARck

, (15)

where ARf/ARc are the desired/current aspect ratios on element k. Substituting Eqn. 15 into
Eqn. 14, we obtain an expression for the scaling of the shortest principal stretching length,

hf1
hc1

=

[
ef

Nf

1

εck

ARc

ARf

]1/(rk+dim)

.

The desired aspect ratio on each element is calculated heuristically from the Hessian (second deriva-
tive matrix) of the Mach number scalar field.22,23 While only strictly applicable to linear approx-
imations, we have found that the directions obtained from the Hessian often correlate reasonably
well with directions obtained from approaches that use higher-order derivatives.21

For the a priori convergence rates in the present work, we use r = rk = p + 1, where p is the
solution approximation order. An exception is “outlier” elements: those whose error indicator εk is
larger than 5 standard deviations from the mean error. On these elements, we assume a first-order
rate, rk = 1.

V.B.2. Target-Cost Optimization Through Sampling

An alternate method that does not rely on a priori error estimates is the sampling approach
introduced by Yano.10 Briefly, this method constructs models for the error indicator and cost
function (degrees of freedom) on each element as a function of the metric step change tensor.
This construction proceeds via a regression over errors and cost functions computed by sampling
canonical subdivisions of the element. An iterative optimization approach is then employed to
equidistribute the ratio of the marginal error to marginal cost over the elements, at a fixed target
cost. Multiple adaptive iterations at a single cost target then ensure the construction of the optimal
mesh at that cost.

In the present work we slightly modify the error sampling approach presented by Yano10 to
use projections of the fine-space adjoint to the sampled subdivisions, to avoid having to solve local
problems that can be somewhat cumbersome. We test the modified optimization approach for
several cases and compare it to the hanging node refinement and a priori-driven remeshing.

VI. Results

VI.A. Flat Plate, ReL = 5× 106, (L = 1), M = 0.2

The first case we consider is turbulent flow over a flat plate. The geometry and boundary conditions
for this case are set according to NASA’s turbulence modeling resource website (Figure 2(a)). The
inflow and farfield values for the eddy viscosity are set to 3 times the value of the laminar viscosity,
as this value corresponds to a fully turbulent simulation. The laminar viscosity is calculated using
Sutherland’s law (Eqn. 2) with Ts = 110K and Tref = 300K. Figure 2(b) shows the initial mesh
used for this case.

We initialize the flow with uniform conditions at M = 0.2 and solve the discretized equations
with p = 2 to a residual tolerance of 10−8. The output of interest is the total drag on the plate, and
we consider both hanging-node adaptation and unstructured remeshing using metric optimization.
At each step of the hanging-node adaptation we select f frac = 10% of the elements with the largest
error indicators and refine them isotropically. For the metric optimization, we consider four degree

8 of 24

American Institute of Aeronautics and Astronautics



(a) Boundary conditions for the flat plate case (b) Initial mesh for the flat plate case

Figure 2. Flat plate: initial mesh and boundary conditions.

of freedom (dof) target values: 2000, 4000, 8000, and 16000. We present a code-to-code comparison
in Figure 3(a) of our simulations to the results from CFL3D and FUN3D, provided by NASA’s
turbulence modeling group. We see that our results converge to both CFL3D and FUN3D (roughly
– the FUN3D results do not yet appear completely converged) results, and that the unstructured
metric-based optimization yields faster convergence compared to hanging-node refinement. This is
expected since the hanging-node refinement is constrained by the optimality of the starting mesh.
The skin friction results in Figure 3(b) show very good agreement between all results. We also
observe very good agreement in the turbulent viscosity distribution, Figure 3(c), with just a small
discrepancy at the outer edge of the boundary layer.

 h = (dof)-0.5
0 0.005 0.01 0.015 0.02 0.025 0.03

 d
ra

g
 c

o
ef

fi
ci

en
t

#10-3

2.8

2.82

2.84

2.86

2.88

2.9

FUN3D
CFL3D
p=2
Optim Tri p=2

(a) Drag convergence

0 0.5 1 1.5 2
2

2.5

3

3.5

4

4.5

5

5.5

6
x 10

−3

 x along the flat plate

 s
k

in
−

fr
ic

ti
o

n
 c

o
e

ff
ic

ie
n

t

 

 

CFL3D

FUN3D

p=2

(b) Shear stress coefficient

0 50 100 150 200 250
0

0.005

0.01

0.015

0.02

0.025
y

 mu
t
/mu

inf

 

 

CFL3D
FUN3D
p=2

(c) Turbulent/laminar viscosity ratio

Figure 3. Flat plate: drag convergence and comparison of skin-friction coefficient and turbulent viscosity
distributions (at x = 0.97 on the flat plate).

Figure 4 shows the final hanging-node adapted mesh for this case. Note that the adaptive
procedure targets the outer edge of the turbulent boundary layer where there is a rapid variation
of eddy viscosity. The component of the drag adjoint correspondent to the SA variable shows large
negative values at the leading edge of the turbulent boundary layer (Figure 4(b)).

Finally, Figure 5 shows the final metric-optimized meshes. Compared to the hanging-node
meshes, the refinement pattern is similar: the near wall region and the edge of the boundary layer
as indicated by the eddy viscosity variable are targeted for refinement. However, the resulting
meshes are more efficient because they are not limited to the sub-optimality of the structured
starting mesh in the hanging-node refinement case.

9 of 24

American Institute of Aeronautics and Astronautics



(a) Eddy viscosity contours (b) Leading edge zoom

Figure 4. Flat plate: final hanging-node drag-adapted mesh and field contours of eddy viscosity. Note the
different scales for the horizontal and vertical axes

VI.B. Smooth Bump, Re = 3× 106, M = 0.2

This is another verification case from the NASA turbulence modeling resource group. Reynolds
number ReL = 3 × 106 (L = 1) flow is simulated in a channel with a bump on the bottom wall.
Symmetry boundary conditions are used for the top and bottom of the channel, with the exception
of x ∈ [0, 1.5] on the bottom boundary, where an adiabatic wall boundary condition is applied. A
static pressure is imposed at the right (outflow) boundary, and total temperature, total pressure,
and angle of attack (zero) are prescribed at the inflow. Total/stagnation quantities are computed
using a Mach number of M = 0.2. The dynamic viscosity is computed using Sutherland’s law,
Eqn. 2, with Ts = 110K and Tref = 300K. The inflow turbulence eddy viscosity, µt is set to 3 times
the laminar viscosity.

Initial structured and unstructured meshes for adaptation are shown in Figure 6. Adjoint-
based adaptive runs are performed from these meshes using the drag force as the target output and
adaptive factors of f frac = 0.07 and fgrowth = 1.3. Figure 7 shows field plots of the wall distance
function and Mach number on one of the unstructured adapted meshes. Note the heavy refinement
in the boundary layer, an area to which the drag output is highly sensitive.

As a code-to-code verification of the turbulence model, Figure 8 shows the pressure and skin
friction distributions compared to those of two other codes, CFL3D and FUN3D. Data for these
codes were obtained from the NASA turbulence modeling resource group. The agreement in both
of these quantities is very good – note that flow singularities at the leading (x = 0) and trailing
(x = 1.5) edges of the bump cause oscillations there.

Figure 9 shows the convergence of the drag and lift coefficients with adaptive mesh refinement at
p = 2 solution approximation. In these plots, the degrees of freedom are measured as dof = Nen(p),
where Ne is the number of elements and n(p) is the number of unknowns per element: n(p) = (p+1)2

for tensor-product approximation and n(p) = (p + 1)(p + 2)/2 for full-order approximation. Note
the rapid convergence of the drag and lift coefficients to their nearly asymptotic values, relative
to the second-order codes. The unstructured Mach-Hessian adaptive results show larger errors on
the initial meshes because these are relatively under-resolved in the critical boundary layer region.
However, after a few adaptive iterations, the drag and lift “snap” to their asymptotic values. In

10 of 24

American Institute of Aeronautics and Astronautics



0 0.5 1 1.5 2
0

0.01

0.02

0.03

0.04

0.05

0.06

(a) dof=8000

0 0.5 1 1.5 2
0

0.01

0.02

0.03

0.04

0.05

0.06

(b) dof=16000

Figure 5. Flat plate: final metric-optimized drag-adapted meshes at two target degree of freedom values. Note
the different scales for the horizontal and vertical axes.

(a) Initial quadrilateral mesh (b) Initial triangular mesh

Figure 6. Smooth bump: Initial meshes for hanging-node (quad) and unstructured (tri) metric- based adapta-
tion.

addition, the optimized triangular meshes yield smoother convergence and lower errors compared
to the Mach-Hessian results.

Figures 10, 11, and 12 show selected meshes in the adaptive refinement sequences. As expected,
the adaptive refinement targets the boundary layer region, where anisotropic elements are possible,
whereas most of the remainder of the flow is approximated with isotropic elements.

VI.C. NACA 0012, Re = 6× 106, M = 0.15

In this case we consider a NACA 0012 airfoil in Re = 6 × 106, M = 0.15 flow. The dynamic
viscosity is computed using Sutherland’s law, Eqn. 2, with Ts = 110K and Tref = 300K. The
inflow turbulence eddy viscosity, µt is set to 3 times the laminar viscosity. Free-stream boundary
conditions are imposed at a farfield that is over 15500 chords away from the airfoil in each direction.
We do not use a point vortex to correct the boundary condition.

This case was run adaptively at p = 2 using hanging-node refinement of a structured initial
mesh, with drag as the target output and a fixed refinement fraction of f frac = .07. Figure 13 shows
the initial mesh and adapted results for α = 10◦. The regions targeted for refinement include the

11 of 24

American Institute of Aeronautics and Astronautics



(a) Wall distance (b) Mach number

Figure 7. Smooth bump: wall distance and Mach number on an adapted mesh with p = 3 approximation. The
Mach number color range is 0 to 0.3.

0 0.5 1 1.5
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

 x

 −
p

re
s

s
u

re
 c

o
e

ff
ic

ie
n

t

 

 

CFL3D

FUN3D

p=2

(a) Pressure coefficient

0 0.5 1 1.5
1

2

3

4

5

6

7

8
x 10

−3

 x

 s
k

in
−

fr
ic

ti
o

n
 c

o
e

ff
ic

ie
n

t

 

 

CFL3D

FUN3D

p=2

(b) Skin-friction coefficient

0.6 0.65 0.7 0.75 0.8 0.85 0.9
5

5.5

6

6.5

7
x 10

−3

 x

 s
k
in

−
fr

ic
ti

o
n

 c
o

e
ff

ic
ie

n
t

 

 

CFL3D

FUN3D

p=2

(c) Skin-friction zoom

Figure 8. Smooth bump: pressure and skin-friction coefficients for the final p = 2 drag-adapted triangular
mesh. Note sporadic pressure and skin friction spikes at the leading and trailing edges of the bump, x = 0 and
x = 1.5: the flow exhibits singular behavior in these locations. In most areas the agreement in skin friction
is very good between the adapted and CFL3D/FUN3D data, with slight discrepancies at the cf extrema, as
illustrated in the zoomed-in plot.

0 0.005 0.01 0.015 0.02
3.5

3.7

3.9

4.1

4.3

4.5
x 10

−3

 h = (dof)
−0.5

 d
ra

g
 c

o
e

ff
ic

ie
n

t

 

 

CFL3D

FUN3D

p=2, tri

p=2, quad

Optim Tri p=2

(a) Drag coefficient

0 0.005 0.01 0.015 0.02 0.025
0.023

0.0235

0.024

0.0245

0.025

0.0255

 h = (dof)
−0.5

 l
if

t 
c

o
e

ff
ic

ie
n

t

 

 

CFL3D

FUN3D

p=2, tri

p=2, quad

Optim Tri p=2

(b) Lift coefficient

Figure 9. Smooth bump: drag and lift coefficient convergence comparisons for drag adaptation with p = 2,
using unstructured (tri) and hanging-node (quad) meshes.

12 of 24

American Institute of Aeronautics and Astronautics



(a) Adaptation iteration 1

(b) Adaptation iteration 6

(c) Adaptation iteration 11

Figure 10. Smooth bump: Adapted meshes generated by unstructured metric-based re- meshing with Mach-
Hessian anisotropy detection and p = 2 approximation.

(a) Adaptation iteration 1

(b) Adaptation iteration 6

(c) Adaptation iteration 11

Figure 11. Smooth bump: Adapted meshes generated by hanging-node refinement and p = 2 approximation.

13 of 24

American Institute of Aeronautics and Astronautics



(a) Optimized for 6,000 dof

(b) Optimized for 12,000 dof

(c) Optimized for 24,000 dof

Figure 12. Smooth bump: Adapted meshes generated by unstructured metric-based optimization and re-
meshing, using p = 2 approximation.

boundary layer, wake, and leading-edge stagnation streamline, where errors can have a large effect
on the drag output.

Figure 14 shows a comparison of pressure coefficient and skin friction distributions for α = 0◦

and α = 10◦. The comparison is made against data from CFL3D with a farfield at 500c and a lift-
based point vortex correction, and the results are in excellent agreement: the curves are virtually
on top of each other. Figure 15 shows the lift coefficient versus angle of attack and drag polar for
the adapted results. Again, excellent agreement with CFL3D data is observed.

Finally, Figure 16 shows the convergence of the lift and drag coefficients with adaptive refinement
for two runs: α = 0◦ and α = 10◦. We see that drag converges faster than lift, which makes sense
as we are adapting on the drag outputs. In addition, convergence slows with increasing angle of
attack, likely because the flow-field becomes more complex – e.g. the boundary layer on the upper
surface becomes thicker and requires more resolution. In all cases, for the last several adaptive
iterations, the outputs show little variation.

VI.D. NACA 0012, Re = 6× 106, M = 0.15, α = 10◦

In this case we consider a slight variant of the previous test case for the purpose of verification
with detailed data made available by the NASA turbulence modeling resource group. The airfoil
is still a NACA 0012, with a closed trailing edge as prescribed on the NASA website. The farfield
is approximately 500 chords away from the airfoil, but the farfield geometry is constructed to
be consistent with the farfield geometry of the grids provided on the NASA website. No vortex
correction is employed on the farfield. The website also provides detailed conditions and setup
information on the case.

14 of 24

American Institute of Aeronautics and Astronautics



(a) Initial mesh (b) Adapted mesh for α = 10◦ (c) Mach field (0-0.4) for α = 10◦

Figure 13. NACA 0012: Initial mesh, drag-adapted mesh, and Mach contours for α = 10◦.

0 0.2 0.4 0.6 0.8 1
−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

 x

 −
p

re
s
s
u

re
 c

o
e
ff

ic
ie

n
t

 

 

CFL3D

xflow adapted

(a) cp, α = 0◦

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

7
x 10

−3

 x

 s
k
in

−
fr

ic
ti

o
n

 c
o

e
ff

ic
ie

n
t

 

 

CFL3D

xflow adapted

(b) cf , α = 0◦

0 0.2 0.4 0.6 0.8 1
−2

−1

0

1

2

3

4

5

6

 x

 −
p

re
s

s
u

re
 c

o
e

ff
ic

ie
n

t

 

 

CFL3D

xflow adapted

(c) cp, α = 10◦

0 0.2 0.4 0.6 0.8 1
−0.005

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

 x

 s
k
in

−
fr

ic
ti

o
n

 c
o

e
ff

ic
ie

n
t

 

 

CFL3D

xflow adapted

(d) cf , α = 10◦

Figure 14. NACA 0012: Pressure and skin-friction coefficient distributions for α = 0, 10◦, comparing the final
adapted mesh result with data from CFL3D.

15 of 24

American Institute of Aeronautics and Astronautics



0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

 α [deg]

 l
if

t 
c
o

e
ff

ic
ie

n
t

 

 

xflow adapted

CFL3D

(a) cl versus α

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0.008

0.0085

0.009

0.0095

0.01

0.0105

0.011

0.0115

0.012

0.0125

 lift coefficient

 d
ra

g
 c

o
e
ff

ic
ie

n
t

 

 

xflow adapted

CFL3D

(b) cd versus cl

Figure 15. NACA 0012: lift coefficient versus angle of attack and drag polar, with comparison to CFL3D data.

2 4 6 8 10 12

x 10
−3

0.95

1

1.05

1.1

 h = (dof) −0.5

 li
ft 

co
ef

fic
ie

nt

 

 

CFL3D, α=10o

α=10o

(a) Lift coefficient

2 4 6 8 10 12

x 10
−3

0.005

0.01

0.015

0.02

0.025

0.03

 h = (dof) −0.5

 d
ra

g 
co

ef
fic

ie
nt

 

 

CFL3D, α=0o

CFL3D, α=10o

α=0o

α=10o

(b) Drag coefficient

2 4 6 8 10 12

x 10
−3

1.08

1.085

1.09

1.095

1.1

 h = (dof) −0.5

 li
ft 

co
ef

fic
ie

nt

 

 

CFL3D, α=10o

α=10o

(c) Lift coefficient

2 4 6 8 10 12

x 10
−3

0.007

0.008

0.009

0.01

0.011

0.012

0.013

 h = (dof) −0.5

 d
ra

g 
co

ef
fic

ie
nt

 

 

CFL3D, α=0o

CFL3D, α=10o

α=0o

α=10o

(d) Drag coefficient

Figure 16. NACA 0012: Convergence of lift and drag coefficients with adaptive mesh refinement and p = 2, for
α = 0◦, 10◦. Comparisons with fine-mesh CFL3D data obtained from the NASA turbulence modeling resource
group. Zoomed-in figures show slight discrepancies in the results, in the .5% range for drag and .2% range for
lift.

16 of 24

American Institute of Aeronautics and Astronautics



This case was run adaptively at p = 2 using metric-based triangular refinement of a relatively
coarse initial mesh. Drag is chosen as the target output and a fixed growth fraction of fgrowth = 1.3
is used. Figure 17 shows the initial mesh and adapted results. The regions targeted for refinement
include the boundary layer, wake, and leading-edge stagnation streamline. Figure 18 shows a
close-up of the leading and trailing edge regions for the 12th adapted mesh.

(a) Initial mesh (b) Adapted mesh (c) Mach field (0-0.4)

Figure 17. NACA 0012, α = 10◦: Initial mesh, drag-adapted mesh, and Mach contours.

(a) Leading-edge zoom (b) Trailing edge zoom

Figure 18. NACA 0012, α = 10◦: Close-up of the leading and trailing edges for the 12th adapted mesh in a drag
refinement sequence.

Figure 19 shows the convergence of the lift and drag coefficients with adaptive refinement. We
see that both coefficients agree well with the provided data obtained from the CFL3D, FUN3D,
and TAU codes. The adapted values still show variation on the finest grids, and this variation
could be due to insufficient resolution (i.e. more adaptations needed) or to an inadequate measure
of anisotropy (currently based on the Mach Hessian) during mesh optimization. Future work will
investigate the precise cause and possible mesh efficiency improvements.

Finally, Figure 20 shows the pressure coefficient off the bottom surface of the airfoil trailing
edge at x = 0.999c. This pressure coefficient was obtained from a p = 3 run on the finest adapted
p = 2 mesh. Data from the FUN3D on a sequence of grids are overlaid. As shown, the pressure
coefficient is close to the fine grid data. It is possible that the drag-adapted mesh, even at an
increased approximation order, is not ideally-suited for predicting the off-body pressure coefficient
distribution. Adapting on the lift, which would be more sensitive to such pressure errors, could
give even better results.

17 of 24

American Institute of Aeronautics and Astronautics



0 1 2 3 4 5 6

x 10
−3

1.08

1.085

1.09

1.095

1.1

h = (dof)
−0.5

lif
t 
c
o
e
ff
ic

ie
n
t

 

 

FUN3D, Family II
CFL3D, Family II
Tau, Family II
p=2

(a) Lift coefficient

0 1 2 3 4 5 6

x 10
−3

0.012

0.0125

0.013

0.0135

0.014

h = (dof)
−0.5

d
ra

g
 c

o
e
ff
ic

ie
n
t

 

 

FUN3D, Family II
CFL3D, Family II
Tau, Family II
p=2

(b) Drag coefficient

0 1 2 3 4 5 6

x 10
−3

1.088

1.089

1.09

1.091

1.092

1.093

h = (dof)
−0.5

lif
t 
c
o
e
ff
ic

ie
n
t

 

 

FUN3D, Family II
CFL3D, Family II
Tau, Family II
p=2

(c) Lift coefficient zoom

0 0.5 1 1.5 2 2.5 3

x 10
−3

0.0123

0.0123

0.0124

0.0124

0.0125

h = (dof)
−0.5

d
ra

g
 c

o
e
ff
ic

ie
n
t

 

 

FUN3D, Family II
CFL3D, Family II
Tau, Family II
p=2

(d) Drag coefficient zoom

Figure 19. NACA 0012, α = 10◦: Convergence of lift and drag coefficients with adaptive mesh refinement and
p = 2, compared with FUN3D, CFL3D, and TAU data obtained from the NASA turbulence modeling resource
group.

18 of 24

American Institute of Aeronautics and Astronautics



0.18 0.182 0.184 0.186 0.188 0.19
−6

−5

−4

−3

−2

−1

0
x 10

−3

z
/c

pressure coefficient

 

 

FUN3D Grid 1
FUN3D Grid 2
FUN3D Grid 3
FUN3D Grid 4
p=3

Figure 20. NACA 0012, α = 10◦: Pressure coefficient profiles off the bottom surface of the trailing edge, at
x = 0.999c. Slight discrepancies, even for very fine adapted meshes, can be expected as the adapted data
come from meshes tailored for the prediction of one scalar (drag), which may not be highly-sensitive to small
pressure errors in this location.

VI.D.1. Computational Cost Comparison

We now compare the efficiency of two adaptive runs for this case: isotropic hanging-node adaptation
on quadrilaterals, and triangular anisotropic remeshing based on the Hessian of the Mach number.
The remeshing results are the same as those presented in Section VI.D while the hanging-node
results are equivalent to the what is presented Section VI.C with the exception that the farfield is
located at 500-chords. We emphasize that the CPU time is strongly dependent on solver tuning
and adaptive parameters (e.g. f frac, fgrowth, and initial mesh) and the solvers have not been
meticulously optimized for the present results. Instead, both runs used the same solver parameters.
The quadrilateral strategy starts with a fairly resolved initial mesh (Figure 13(a)) but it is restricted
to the initial topology, while the triangular remeshing strategy starts with a poor mesh (Figure
17(a)) but is not restricted to the initial mesh topology and anisotropy distribution.

Figure 21 compares the two adaptive runs. In this case, the quadrilateral hanging-node strategy
is advantageous. The difference observed in number of degrees-of-freedom is explained by comparing
the adapted meshes shown in Figures 13(b) and 17(b). Note that the triangular remeshing approach
using a priori estimates produces a higher density of elements above and below the airfoil away from
the regions of interest (stagnation streamline, boundary layer, and wake) than the quadrilateral
hanging-node approach. This difference also translates into slower convergence in terms of time.
Figure 22 shows the computational cost breakdown of both adaptive strategies. Note that the
primal solve is most expensive in the first adaptive step as the flow is initialized with free-stream
conditions. Then, as the differences in the flow field become small between consecutive adaptive
steps, the cost of the primal solve settles at approximately 60% for hanging-nodes and 70% for
the remeshing strategy. The error estimation and adaptation procedures represent a larger portion
of the cost for hanging-nodes than for remeshing based on a priori estimates. Finally, we note
that the success of hanging-node refinement is tied to the type of problem and the initial mesh.
In the present case, the well-resolved, anisotropic initial quadrilateral mesh provides a very good
distribution of degrees of freedom, so that the hanging-node refinement converges in only a few
iterations.

19 of 24

American Institute of Aeronautics and Astronautics



 h = (dof)-0.5 #10-3
3 4 5 6 7 8

 d
ra

g
 c

o
ef

fi
ci

en
t

0.012

0.0125

0.013

0.0135

0.014
Quad. hanging-node (p=2)
Mach-Hessian remeshing (p=2)

(a) Drag coefficient versus degrees of freedom.

 work units
102 103 104 105

 d
ra

g
 c

o
ef

fi
ci

en
t

0.012

0.0125

0.013

0.0135

0.014

(b) Drag coefficient versus computational cost.

Figure 21. NACA 0012, α = 10◦: efficiency comparison between hanging-node quadrilateral adaptation and
Mach-Hessian remeshing – shaded region denotes JH ± ec (Eqn. 12).

 adaptation iteration
1 2 3 4 5 6 7 8 9 10

 n
o

rm
al

iz
ed

 c
o

st

0

0.2

0.4

0.6

0.8

1

Primal
Coarse Adjoint
Error Est. and Adapt.

(a) Quadrilateral hanging-node

 adaptation iteration
1 2 3 4 5 6 7 8 9 10 11 12 13 14

 n
o

rm
al

iz
ed

 c
o

st

0

0.2

0.4

0.6

0.8

1

(b) Mach-Hessian remeshing

Figure 22. NACA 0012, α = 10◦: breakdown of computational cost for adaptive strategies.

20 of 24

American Institute of Aeronautics and Astronautics



VI.E. NACA 4412, Re = 1.52× 106, M = 0.09, α = 13.87◦

This test case consists of a NACA 4412 airfoil at high angle of attack, α = 13.87◦, at Re = 1.52×106,
M = 0.09. The dynamic viscosity is computed using Sutherland’s law, Eqn. 2, with Ts = 110K
and Tref = 297.8K. The inflow turbulence eddy viscosity, µt is set to 3 times the laminar viscosity.
Free-stream boundary conditions are imposed at a farfield that is over 1500 chords away from the
airfoil in each direction.

This case was run adaptively using hanging-node refinement of a structured initial mesh, with
drag as the target output and a fixed refinement fraction of f frac = .07. Figure 23 shows the Mach
number contours, an adapted mesh, wall distance contours, and the x-momentum component of
the drag adjoint. The regions targeted for refinement include the boundary layer and wake, but
also a large portion of the mesh in front of the airfoil, on the leading-edge stagnation streamline
– note that the adjoint exhibits rapid variation in this area, indicating that error sources near the
stagnation streamline can have a large effect on the drag output.

(a) Mach contours (0-0.25) and line probe (b) Adapted mesh

(c) Wall distance contours (0-0.5) (d) x-Momentum drag adjoint

Figure 23. NACA 4412: Mesh and field plots from adaptive simulation results.

Figure 24 shows velocity profiles along line probes extending roughly normal to the wall at
several locations on the aft portion of the airfoil upper surface. The mesh used for this comparison

21 of 24

American Institute of Aeronautics and Astronautics



was the final p = 2 adapted mesh (after 10 adaptive iterations), uniformly refined and with order
increased to p = 3 (a total of 140880 degrees of freedom). Experimental data are available at points
on these lines, as are data from other codes, including CFL3D; in this work, we focus on code-to-
code verification. Compared with CFL3D the horizontal and vertical velocities along the lines are
very close. The agreement is not exact, and the small differences could be due to variants in the
SA turbulence model or to numerical errors. Note that while our data came from meshes adapted
to reduce the numerical error, only numerical errors affecting the drag output were targeted, so
that the velocity profiles could potentially not yet be converged.

−0.2 0 0.2 0.4 0.6 0.8 1 1.2
0

0.05

0.1

 (
y

−
y

0
)/

c

 u/Uref

 

 

CFL3D, x=0.6753

xflow, x=0.6753

CFL3D, x=0.7863

xflow, x=0.7863

CFL3D, x=0.8973

xflow, x=0.8973

CFL3D, x=0.9528

xflow, x=0.9528

(a) Horizontal velocity profiles

−0.2 −0.1 0 0.1 0.2
0

0.05

0.1

 (
y
−

y
0
)/

c

 v/Uref

 

 

CFL3D, x=0.6753

xflow, x=0.6753

CFL3D, x=0.7863

xflow, x=0.7863

CFL3D, x=0.8973

xflow, x=0.8973

CFL3D, x=0.9528

xflow, x=0.9528

(b) Vertical velocity profiles

Figure 24. NACA 4412: Velocity profile comparisons for several wall-normal line probes on the aft portion of
the airfoil upper surface. “xflow” (the present code) data are obtained from a simulation on the final adapted
p = 2 mesh, uniformly refined and at order p = 3. CFL3D data are obtained from the NASA turbulence
modeling resource group.

Figure 25 shows the convergence of the drag and lift coefficients with adaptive refinement.
Though we only adapt on drag, lift is a similar output and exhibits good convergence too. We
see that the drag converges rapidly with indiscernible variations past h = .01, or 10000 degrees of
freedom for both p = 1 and p = 2 approximation. The lift takes a little longer, in part because of
higher sensitivity of the lift to refinement at the trailing edge and because we do not specifically
target the lift. For the drag, since we use an adjoint-based method, we have an output error
estimate (the adjoint-weighted residual) at each adaptive iteration. We can use this error estimate
to correct the drag – these corrected outputs are also shown in Figure 25. As we converge the
adjoint solution to high precision on the fine space, we obtain excellent error corrections: even with
p = 1 approximation, the corrected drag varies little after about 5000 degrees of freedom.

VII. Conclusions

We present a high-order output-based adaptive solution technique for the RANS equations
closed with a recent variant of the Spalart-Allmaras model, “SA-neg”. We use discontinuous finite
elements for the discretization and present key practical details relevant to the implementation.
The results compare two variants of the high-order adaptive solution technique to each other and
to standard second-order techniques in terms of accuracy versus degrees-of-freedom. Isotropic
quadrilateral-element adaptation using hanging-nodes and an anisotropic initial mesh is found to
yield similar asymptotic results compared to metric-based unstructured mesh refinement. Using
the easy-to-generate isotropic unstructured initial meshes considered, the unstructured adaptation

22 of 24

American Institute of Aeronautics and Astronautics



0 0.005 0.01 0.015 0.02
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

 h = (dof)
−0.5

 l
if

t 
c
o

e
ff

ic
ie

n
t

 

 

CFL3D
FUN3D

p=1
p=2

(a) Lift coefficient

0 0.005 0.01 0.015 0.02
−0.05

0

0.05

0.1

0.15

 h = (dof)
−0.5

 d
ra

g
 c

o
e
ff

ic
ie

n
t

 

 

CFL3D
FUN3D
p=1
p=2
p=1, corrected
p=2, corrected

(b) Drag coefficient

Figure 25. NACA 4412: Convergence of lift and drag coefficients with adaptive mesh refinement for p = 1 and
p = 2. Note, “corrected” results refer to subtracting the adjoint-weighted residual error estimate from the
measured output. Comparisons with fine-mesh CFL3D and FUN3D data obtained from the NASA turbulence
modeling resource group.

produced larger errors on the first adaptive iterations compared to hanging-node refinement with a
more meticulously tailored initial structured mesh. This result is expected given the higher-quality
of the initial structured meshes. The ability of the unstructured method to automatically “snap”
to the RANS mesh from an initially-isotropic mesh is a desirable capability, though it requires
robustness of the solver to under-resolution.

Relative to uniform refinement at second order, high-order adaptation is found to yield faster
convergence – the adaptive runs often quickly snap (close) to the correct solution in a few steps.
This comparison does not take into account the computational cost of the error estimation and
adaptation, which is primarily that of the fine-space adjoint solve. However, even though the
fine space involves an order increment, because the adjoint problem is linear whereas the RANS
equations are highly non-linear, the adjoint cost is less than (at most ∼ 25%) that of the primal
for all cases considered. A topic for future studies, however, is a reduction in the cost of the primal
solve, which for our implementation is likely larger than that of the second-order methods for a
given error level.

Acknowledgments

The authors acknowledge support from the Air Force Office of Scientific Research under grant
FA9550-11-1-0081.

References

1Yano, M., Modisette, J., and Darmofal, D., “The Importance of mesh adaptation for higher-order discretizations
of aerodynamics flows,” AIAA Paper 2011-3852, 2011.

2Becker, R. and Rannacher, R., “An optimal control approach to a posteriori error estimation in finite element
methods,” Acta Numerica, edited by A. Iserles, Cambridge University Press, 2001, pp. 1–102.

3Venditti, D. A. and Darmofal, D. L., “Anisotropic grid adaptation for functional outputs: application to
two-dimensional viscous flows,” Journal of Computational Physics, Vol. 187, No. 1, 2003, pp. 22–46.

4Hartmann, R. and Houston, P., “Adaptive discontinuous Galerkin finite element methods for the compressible
Euler equations,” Journal of Computational Physics, Vol. 183, No. 2, 2002, pp. 508–532.

23 of 24

American Institute of Aeronautics and Astronautics



5Fidkowski, K. J. and Darmofal, D. L., “Review of Output-Based Error Estimation and Mesh Adaptation in
Computational Fluid Dynamics,” American Institute of Aeronautics and Astronautics Journal , Vol. 49, No. 4, 2011,
pp. 673–694.

6Allmaras, S., Johnson, F., and Spalart, P., “Modifications and Clarifications for the Implementation of the
Spalart-Allmaras Turbulence Model,” Seventh International Conference on Computational Fluid Dynamics (ICCFD7)
1902, 2012.

7Oliver, T. A., A High–order, Adaptive, Discontinuous Galerkin Finite Elemenet Method for the Reynolds-
Averaged Navier-Stokes Equations, Ph.D. thesis, Massachusetts Institute of Technology, Cambridge, Massachusetts,
2008.

8Oliver, T. A. and Darmofal, D. L., “Impact of Turbulence Model Irregularity on High–order Discretizations,”
AIAA Paper 2009-953, 2009.

9Ceze, M. A. and Fidkowski, K. J., “An anisotropic hp-adaptation framework for functional prediction,” Amer-
ican Institute of Aeronautics and Astronautics Journal , Vol. 51, 2013, pp. 492–509.

10Yano, M., An Optimization Framework for Adaptive Higher-Order Discretizations of Partial Differential Equa-
tions on Anisotropic Simplex Meshes, Ph.D. thesis, Massachusetts Institute of Technology, Cambridge, Massachusetts,
2012.

11Ceze, M. A. and Fidkowski, K. J., “Drag Prediction Using Adaptive Discontinuous Finite Elements,” AIAA
Journal of Aircraft , Vol. 51, No. 4, 2014, pp. 1284–1294.

12Roe, P. L., “Approximate Riemann solvers, parameter vectors, and difference schemes,” Journal of Computa-
tional Physics, Vol. 43, 1981, pp. 357–372.

13Bassi, F. and Rebay, S., “Numerical evaluation of two discontinuous Galerkin methods for the compressible
Navier-Stokes equations,” International Journal for Numerical Methods in Fluids, Vol. 40, 2002, pp. 197–207.

14Oliver, T. and Darmofal, D., “Analysis of dual consistency for discontinuous Galerkin discretizations of source
terms.” SIAM Journal of Numerical Analysis, Vol. 47, 2009, pp. 3507–3525.

15Leicht, T. and Hartmann, R., “Error estimation and anisotropic mesh refinement for 3D laminar aerodynamic
flow simulations,” Journal of Computational Physics, Vol. 229, 2010, pp. 7344–7360.

16Ceze, M. A. and Fidkowski, K. J., “Constrained pseudo-transient continuation,” International Journal for
Numerical Methods in Engineering , Vol. 102, 2015, pp. 1683–1703.

17Fidkowski, K. J., Oliver, T. A., Lu, J., and Darmofal, D. L., “p-Multigrid solution of high–order discontinuous
Galerkin discretizations of the compressible Navier-Stokes equations,” Journal of Computational Physics, Vol. 207,
2005, pp. 92–113.

18Ceze, M. A. and Fidkowski, K. J., “Output-Driven Anisotropic Mesh Adaptation for Viscous Flows Using
Discrete Choice Optimization,” AIAA Paper 2010-0170, 2010.

19Borouchaki, H., George, P., Hecht, F., Laug, P., and Saltel, E., “Mailleur bidimensionnel de Delaunay gouverné
par une carte de métriques. Partie I: Algorithmes,” INRIA-Rocquencourt, France. Tech Report No. 2741, 1995.

20Persson, P.-O. and Peraire, J., “Curved mesh generation and mesh refinement using Lagrangian solid mechan-
ics,” AIAA Paper 2009-0949, 2009.

21Fidkowski, K. J. and Darmofal, D. L., “A triangular cut-cell adaptive method for high-order discretizations of
the compressible Navier-Stokes equations,” Journal of Computational Physics, Vol. 225, 2007, pp. 1653–1672.

22Baker, T. J., “Mesh Adaptation Strategies for Problems in Fluid Dynamics,” Finite Elements in Analysis and
Design, Vol. 25, 1997, pp. 243–273.

23Castro-Diaz, M. J., Hecht, F., Mohammadi, B., and Pironneau, O., “Anisotropic unstructured mesh adaptation
for flow simulations,” International Journal for Numerical Methods in Fluids, Vol. 25, 1997, pp. 475–491.

24 of 24

American Institute of Aeronautics and Astronautics


