
Variable-fidelity Multipoint Aerodynamic Shape Optimization with
Output-based Adapted Meshes

Guodong Chena,∗, Krzysztof J. Fidkowskia

aDepartment of Aerospace Engineering, University of Michigan, Ann Arbor, MI, 48109

Abstract

This paper presents a method to control the discretization error in multipoint aerodynamic shape optimiza-
tion using output-based adapted meshes. The meshes are adapted via adjoint-based error estimates, taking
into account both the objective and constraint output errors. A multi-fidelity optimization framework is
then developed by taking advantage of the variable fidelity offered by adaptive meshes. The objective func-
tional and its sensitivity at each design point (operating condition) are first evaluated on the same initial
coarse mesh, which is then subsequently adapted for each design point individually as the shape optimization
proceeds. The effort to set up the optimization is minimal since the initial mesh can be fairly coarse and
easy to generate. As the shape approaches the optimal design, the mesh at each design point becomes finer,
in regions necessary for that particular operating condition. The multi-fidelity framework is tightly coupled
with the objective error estimation to ensure the optimization accuracy at each fidelity. Computational
savings arise from a reduction of the mesh size when the design is far from optimal and avoiding an exhaus-
tive search on low-fidelity meshes. The proposed method is demonstrated on multipoint drag minimization
problems of a transonic airfoil with lift and volume constraints. Improved accuracy and efficiency are shown
compared to traditional fixed-fidelity optimization with a fixed computational mesh.

Keywords: Multipoint optimization, Variable-fidelity optimization, Discretization error, Adjoint-based
error estimation, Mesh adaptation

1. Introduction

Over the past several decades, Computational Fluid Dynamics (CFD) has become increasingly prevalent
in aerospace design and analysis. The fast turnaround time, high degree of geometric flexibility, and almost
arbitrary test conditions offered by CFD have made it an attractive tool in aerodynamic design process.
Successful use of CFD in practical design problems requires both accurate simulations for a given configu-
ration and efficient optimization methods to improve design configurations. Gradient-free methods such as
genetic algorithms may be made robust for non-smooth or non-convex problems [1], but they are generally
not as efficient as gradient-based methods, especially for problems with a large number of design parame-
ters. Specifically, gradient-based algorithms converge to the optimum with fewer evaluations of the objective
function and lower cost, even when taking into account the gradient calculations. Moreover, with the de-
velopment of adjoint-based sensitivity analysis [2, 3, 4, 5, 6, 7, 8], the computational cost of gradient-based
optimization has been dramatically reduced.

Ideally, the design is expected to retain favorable performance over a wide range of operating conditions.
Optimization at one specific cruise condition can lead to mediocre performance on the overall mission profile,
and/or poor performance at off-design conditions. Therefore, aerodynamic optimization in practice must
take into account various flight conditions in both the objective and constraints [9, 10, 11, 12, 13], making
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the setup for high-fidelity aerodynamic optimization challenging. In order to achieve high accuracy for every
design point, the single mesh used for all points has to be able to capture all of the important flow features
over a wide range of operating conditions. The designer, either expert in meshing or not, cannot reliably
generate a mesh appropriate for all cruise conditions. This situation can be even worse when the geometry is
complex or as the number of design points increases. Also, the resulting mesh may be quite fine, making the
computational cost needed for high-fidelity multipoint aerodynamic optimization prohibitive in practice. On
the other hand, numerical errors are typically only investigated via grid convergence studies for the initial
and final designs, before and after the optimization, which can potentially lead to inaccurate or spurious
optima [14, 15]. These are the problems that we tackle in the present work.

In order to aid practical multipoint aerodynamic design and to reduce the optimization cost, automated
adapted meshes are introduced into the design process using gradient-based optimization algorithms. The
designer only needs to provide a relatively coarse background mesh to start the optimization run. Then,
the computational mesh is adapted individually in necessary regions based on the output error estimates,
with active control of numerical error at various operating conditions. The fact that both the output
error estimation and objective sensitivity calculations rely on adjoint solutions makes the incorporation
of mesh adaptation into optimization more efficient. After showing many successes in a wide range of
aerospace computational applications [16, 17, 18, 19, 20, 21, 22, 23], output-based error estimation and
mesh adaptation methods have been demonstrated in several single-point aerodynamic shape optimization
problems [24, 25, 26, 27, 15, 28]. However, to the authors’ knowledge, no attention has been paid to more
sophisticated multipoint optimization problems.

The present work proposes a variable-fidelity implementation of multipoint aerodynamic optimization,
integrating output-based error estimation and mesh adaptation with a gradient-based algorithm to actively
control the numerical error during optimization. We adopt the error estimation and mesh adaptation
strategy developed in our previous work [15], taking the errors in the constraint outputs into account during
error estimation and mesh adaptation, since the errors in the constraints can indirectly affect the calculation
of the objectives [29]. Two unstructured mesh adaptation methods are considered in this paper: (a) mesh
adaptation with Hessian-based anisotropy, and (b) mesh optimization via error sampling and synthesis
(MOESS). In addition to the time saving on the optimization setup, this method also has the potential to
reduce the run-time computational cost of the optimization. As the physics of various operating conditions
can differ substantially, the meshes required to accurately predict the outputs also differ. With the proposed
method, meshes for the points whose physics are relatively simple (e.g. low speed, laminar flow) can be
coarse, whereas substantial mesh refinement can be added to those points governed by more complex physics
(e.g. shocks, turbulent flows). Furthermore, the refinement can differ among the complex physics points,
e.g. as shocks and wakes move to different positions. A variable-fidelity optimization framework is built into
the proposed method, taking advantage of the variable fidelity offered by adaptive meshes. The variable-
fidelity framework reduces the computational cost when the shape is far from the optimum, thus avoiding
over-refining on an undesired configuration. On the other hand, the error estimation prevents optimization
directions from being polluted by discretization errors and over-optimization on a coarse mesh.

The remainder of this paper proceeds as follows. We describe the general aerodynamic optimization
problem in Section 2 and the discontinuous Galerkin discretization in Section 3. Details of the error es-
timation and mesh adaptation are given in Section 4 and Section 5. Section 6 presents the coupling of
gradient-based optimization with error estimation and mesh adaptation. The primary results are shown in
Section 7, and Section 8 concludes the present work and discusses potential future work.
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2. Problem Formulation

2.1. Multipoint Aerodynamic Optimization

In general, the aerodynamic shape optimization problem can be stated as a search for the design variables
x over the design space X that minimize a given objective function J :

min
x

J(U,x), U ∈ U , x ∈ X ,

s.t. Re(U,x) = 0,

Rie(U,x) ≥ 0,

(1)

where J : U×X → R represents a scalar objective function, always defined by aerodynamic outputs, for
example lift or drag or a combination of these for multi-objective optimization. U ∈ U ⊂ RNf denotes the
flow variable vector of dimension Nf , and Re : U×X → RNe and Rie : U×X → RNie are the Ne equality and
Nie inequality constraints, respectively. The flow variables U are solved within a feasible space U given a
design x to satisfy the flow equations, often the Euler or Navier-Stokes equations. In discretized form, these
can be represented by a set of nonlinear equations,

R(U,x) = 0, U ∈ U , ∀ x ∈ X , (2)

where R : U × X → RNf is the nonlinear flow residual vector, which when driven to zero implicitly defines
U as a function of x.

Consider a multipoint optimization problem involving Nm design points (typically various Mach num-
bers). To combine the objective outputs, the weighted-sum method is used in this work,

Jm =

Nm∑
i=1

ωiJi(Ui,x) =

Nm∑
i=1

Jm,i, (3)

where Jm is the scalar composite objective used in the optimization, a sum of the objective component Jm,i
at each design point. Jm,i is defined as the objective at the ith design point Ji(Ui,x) weighted by ωi, which
is specified by the user or from the quadrature rules. The objective at each point Ji(Ui,x) depends on the
design x shared by all the design points and the individual flow state solution Ui ∈ RNf,i .

2.2. Adjoint and Design Equations

Inactive inequality constraints Rie
ia(U,x), do not affect the optimization explicitly, while the active ones

Rie
a = 0 behave as equality constraints. In general, the inequality constraints can also be transformed

into equality constraints with non-negative slack variables [30]. For easier illustration, we only consider the
active inequality constraints and equality constraints, put together into one vector of dimension Nt as trim
constraints, (Rtrim)T = [(Re)T (Rie

a )T ] ∈ RNt ,

Rtrim(U,x) = Jtrim(U,x)− J̄trim = 0, (4)

where J̄trim is a set of target trim outputs, for example, the target lift in a lift-constrained problem.
In multipoint optimization problems, each operating condition can have the same or different trim con-
straints. Jtrim is a vector concatenated with the trim outputs at different operating conditions Jtrim

i ∈ RNt,i ,∑Nm

i Nt,i = Nt. In order to distinguish the trim outputs from the objective output, we denote the latter

by Jadapt
m =

∑Nm

i ωiJ
adapt
i =

∑Nm

i Jadapt
m,i , as the objective output is often the direct target of adaptation.

The adjoint-based optimization is equivalent to searching for the stationary point of the Lagrangian
function, which augments the flow equations with additional constraints,

L =

Nm∑
i=1

ωiJ
adapt
i (Ui,x) +

Nm∑
i=1

λi
TRi(Ui,x) +

Nm∑
i=1

µi
TRtrim

i (Ui,x), (5)
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where Ri(Ui,x) are the flow equations at each design point, and λi ∈ RNf,i and µi ∈ RNt,i are the
Lagrange multipliers associated with the flow equations and the trim constraints, respectively. The first-
order optimality conditions are obtained by setting the partial derivatives of L to zero,

∂L
∂x

=

Nm∑
i=1

ωi
∂Jadapt

i

∂x
+

Nm∑
i=1

λTi
∂Ri

∂x
+

Nm∑
i=1

µTi
∂Rtrim

i

∂x
= 0, (6)

∂L
∂Ui

= ωi
∂Jadapt

i

∂Ui
+ λTi

∂Ri

∂Ui
+ µTi

∂Rtrim
i

∂Ui
= 0, i = 1, ..., Nm; (7)

∂L
∂λi

= Ri(Ui,x) = 0, i = 1, ..., Nm; (8)

∂L
∂µi

= Rtrim
i (Ui,x) = 0, i = 1, ..., Nm. (9)

As we solve the flow equations for a given design x each time at every design point, Eqn. 8 is always satisfied
during the optimization. The trim constraints can be handled by either the flow solver or the optimizer; the
former is used currently. A set of design variables is dedicated to satisfying the trim constraints, denoted
as trim variables xt, dim(xt) = dim(Jtrim) = Nt. Hence Eqn. 9 is satisfied by the variation of the trim
variables, so that Eqn. 6 breaks down into,

∂L
∂xs

=

Nm∑
i=1

ωi
∂Jadapt

i

∂xs
+

Nm∑
i=1

λTi
∂Ri

∂xs
+

Nm∑
i=1

µTi
∂Rtrim

i

∂xs
= 0, (10)

∂L
∂xt

=

Nm∑
i=1

ωi
∂Jadapt

i

∂xt
+

Nm∑
i=1

λTi
∂Ri

∂xt
+

Nm∑
i=1

µTi
∂Rtrim

i

∂xt
= 0, (11)

where xs is the set of active design parameters in the optimization. We can now choose λi and µi at each
point such that Eqn. 7 and Eqn. 11 are enforced after each flow solve,

λTi = −

(
ωi
∂Jadapt

i

∂Ui
+ µTi

∂Rtrim
i

∂Ui

)(
∂Ri

∂Ui

)−1

= (ωiΨ
adapt
i + Ψtrim

i µi)
T ,

µT = [µT1 , ...,µ
T
Nm

] = −

(
Nm∑
i=1

ωi
dJadapt

i

dxt

)(
dJtrim

dxt

)−1

.

(12)

There may exist a set of trim variables which can eliminate the coupling of the trim constraints among
different design points (i.e. make dJtrim/dxt diagonal), so that µi only depends on the ith design point.
In lift-constrained optimization problems, angle of attack is such a choice. Eqn. 12 defines coupled adjoint
variables λi and µi that incorporate the adjoints of both the objective and the trim outputs at each design

point, Ψadapt
i ∈ RNfi

×1 and Ψtrim
i ∈ RNf,i×Nt,i , which satisfy[

∂Ri

∂Ui

]T
Ψadapt
i +

[
∂Jadapt

i

∂Ui

]T
= 0,

[
∂Ri

∂Ui

]T
Ψtrim
i +

[
∂Jtrim

i

∂Ui

]T
= 0. (13)

In Eqn. 12, d(·)/dxt terms are defined as,

dJadapt
i

dxt
=
∂Jadapt

i

∂xt
+
(
Ψadapt
i

)T ∂Ri

∂xt
,

dJtrim

dxt
=
∂Jtrim

∂xt
+
(
Ψtrim
i

)T ∂Ri

∂xt
.

(14)

The total derivative symbols are used in a sense that the outputs only depend on the trim variables xt
when the active design parameters xs are held constant; i.e., the total derivative is defined in a sub-problem
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varying xt to satisfy the constraints given a fixed xs. For our optimization problem, xt depends on xs, and
the total derivatives should only be defined with respect to the active design parameters xs. Such derivatives
are denoted by D(·)/Dxs for later use.

With the specific choice of λi and µi in Eqn. 12, we can evaluate the objective gradients, i.e., the
total derivatives in optimization, with respect to the active design variables xs via the Lagrangian function,
starting with Eqn. 10,

DJadapt
m

Dxs
=

∂L
∂xs

=

Nm∑
i=1

ωi
∂Jadapt

i

∂xs
+

Nm∑
i=1

λTi
∂Ri

∂xs
+

Nm∑
i=1

µTi
∂Rtrim

i

∂xs

=

Nm∑
i=1

ωi
∂Jadapt

i

∂xs
+

Nm∑
i=1

ωi(Ψ
adapt
i )T

∂Ri

∂xs
+

Nm∑
i=1

µTi

[
∂Rtrim

i

∂xs
+ (Ψtrim

i )T
∂Ri

∂xs

]

=

Nm∑
i=1

ωi

[
∂Jadapt

i

∂xs
+ (Ψadapt

i )T
∂Ri

∂xs

]
+

Nm∑
i=1

µTi

[
∂Jtrim

i

∂xs
+ (Ψtrim

i )T
∂Ri

∂xs

]

=

Nm∑
i=1

ωi
dJadapt

i

dxs
+

Nm∑
i=1

µTi
dJtrim

i

dxs

=

Nm∑
i=1

(
ωi
dJadapt

i

dxs
+ µTi

dJtrim
i

dxs

)
.

(15)

Similar to Eqn. 14, d(·)/dxs is the sensitivity measured with respect to the active design variables xs while
keeping the trim variables xt fixed.

Now the optimization problem has been reduced to finding an optimal design xs that drives to zero the
gradients in Eqn. 15. However, in a practical calculation, on a finite-dimensional space, discretization errors
appear in both the flow equations and the adjoint equations, so that infinite-dimensional optimality cannot
be guaranteed even when the finite-dimensional optimality condition is satisfied. The present work focuses
on controlling the error in the optimization problem via error estimation and mesh adaptation.

3. Discretization

Evaluation of the objective function at each optimization step relies on a flow simulation, in this work
over an airfoil. The governing equations for the fluid flow are compressible Navier-Stokes,

∂u

∂t
+∇ · #„

F(u)−∇ · #„

G(u,∇u) = S(u,∇u), (16)

where u ∈ Rs is the conservative flow state vector of rank s,
#„

F and
#„

G denote the inviscid and viscous
fluxes respectively, and S represents the source term required when modeling turbulence. The viscous flux
is assumed to be linear on the state gradients,

#„

Gi(u,∇u) = Ki,j(u)∂ju, where Ki,j denotes the diffusivity
tensor. When running Reynolds-averaged turbulent cases, we use the Spalart-Allmaras one-equation model,
with a negative turbulent-viscosity modification [31].

We discretize Eqn. 16 with the discontinuous Galerkin (DG) finite-element method, which is suitable
for high-order accuracy and hp-refinement [32, 33, 34, 17, 35]. However, the framework proposed in this
work can be applied to other discretizations supporting output-based error estimation and mesh adaptation.
Consider a partition Th of the computational domain Ω consisting of Ne non-overlapping elements Ωe,
Th = {Ωe : ∪Ωe = Ω,∩Ωe = ∅}. The state is approximated by piece-wise polynomials lying on the
approximation space Vh, with no continuity constraints on the approximation between adjacent elements.
Formally, the approximation space is defined as Vh = [Vh]s, where Vh = {v ∈ L2(Ω) : v|Ωe ∈ Pp,∀Ωe ∈ Th},
and Pp denotes polynomials of order p on the reference space of element Ωe. The weak form of Eqn. 16 follows
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from multiplying the equation by test functions (taken from the same approximation space), integrating by
parts, and coupling elements via unique inter-element fluxes,∫

Ωe

wT
h

∂u

∂t
dΩ−

∫
Ωe

∇wT
h ·
[

#„

F(uh)− #„

G(uh,∇uh)
]
dΩ

+

∫
∂Ωe

wT
h

[
F̂(u+

h ,u
−
h )− Ĝ(u+

h ,u
−
h ,∇u+

h ,∇u−
h )
]
· ~ndS

−
∫
∂Ωe

(u+
h − {uh})

T #„

G(u+
h ,∇w+

h ) · ~ndS =

∫
Ωe

wT
hS(uh,∇uh)dΩ ∀wh ∈ Vh.

(17)

On the element boundary Ωe, (·)+, (·)− denote respectively the quantities taken from the element or its

neighbor, {·} is the face/edge average or the boundary value, and (̂·) · ~n represents the uniquely defined
normal numerical flux on element interfaces. We use the Roe approximate Riemann solver [36] for the

inviscid flux F̂, while for the viscous flux Ĝ we use the second form of Bassi and Rebay [37]. The last term
on the left-hand side (LHS) of Eqn. 17 symmetrizes the weak form and ensures adjoint consistency.

In this paper, we focus on steady state systems, so that ∂u
∂t is omitted for later exposition. Choosing

a basis for the test and trial spaces, the DG weak form in Eqn. 17 yields a system of discrete algebraic
equations in the form of Eqn. 2,

Rh(Uh,x) = 0, (18)

where Uh ∈ RNh is the discrete state vector of basis function coefficients of dimension Nh, and Rh is
the discrete residual vector, a nonlinear function of the state vector Uh and the design variables x. The
subscript h refers to fidelity of the approximation/test space with respect to the approximation order and
mesh refinement.

4. Output Error Estimation

4.1. Adjoint-based Error Estimation

In practice it is generally not possible to obtain the true numerical error for an output, whereas the
difference between a coarse space and fine space solution often serves as an acceptable surrogate,

output error: δJ ≡ JH(UH)− Jh(Uh). (19)

In this expression, J represents the output of interest, and the subscripts h and H denote the fine and coarse
spaces, respectively. In the present work, the fine space is achieved by increasing the elements’ approximation
order p, to p + 1. We do not solve the nonlinear fine-space flow problem for the error prediction, but we
instead use the linear fine-space adjoint solution, Ψh, defined as the sensitivity of the output to the residual
(see Eqn. 13). The adjoint weights the residual perturbation to produce an output perturbation [20],

δJ = JH(UH)− Jh(Uh) = Jh(UH
h )− Jh(Uh)

≈ −ΨT
h [Rh(UH

h )−Rh(Uh)] = −ΨT
hRh(UH

h ),
(20)

where Uh is the (hypothetical) exact solution on the fine space, UH
h is the state injected into the fine space

from the coarse one, which generally will not give a zero fine space residual, Rh(UH
h ) 6= Rh(Uh) = 0. The

derivation of Eqn. 20 originates from small perturbation assumption and is valid for outputs whose definition
does not change between the coarse and fine spaces, JH(UH) = Jh(UH

h ).
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4.2. Output Error Estimation Under Trim Constraints

Normally, the error estimation is applied only to the output in which we are most interested, i.e., the
objective. However, our optimization problem requires simultaneous solutions of flow equations and trim
constraints. The numerical error of the trim outputs may indirectly affect the calculation of the objective.
To take this effect into account, coupled adjoints should be used for the error estimates.

Consider a given design xs. The error in the objective comes from both the inexact solution UH and
the inexact trim constraints satisfaction (inexact trim variables xt,H). We can estimate the error in the
composite objective using the linearization given by Eqn. 7 and Eqn. 11,

δJadapt
m =

Nm∑
i=1

ωi

[
Jadapt
H,i (UH,i,xt,H)− Jadapt

h,i (Uh,i,xt,h)
]

=

Nm∑
i=1

ωi

[
Jadapt
h,i (UH

h,i,xt,H)− Jadapt
h,i (Uh,i,xt,h)

]
=

Nm∑
i=1

ωi

[
∂Jadapt

i

∂Ui
δUi +

∂Jadapt
i

∂xt
δxt

]

= −
Nm∑
i=1

[
λTh,iδRh,i + µTh,iδR

trim
h,i

]
= −

Nm∑
i=1

[
λTh,iRh,i(U

H
h,i,xt,H) + µTh,iR

trim
h,i (UH

h,i,xt,H)
]
.

(21)

For the second term in Eqn. 21, we can expand the trim residual as

Rtrim
h,i (UH

h,i,xt,H) = Jtrim
h,i (UH

h,i,xt,H)− J̄trim
i

= [Jtrim
H,i (UH,i,xt,H)− J̄trim

i ] + [Jtrim
h,i (UH

h,i,xt,H)− Jtrim
H,i (UH,i,xt,H)].

(22)

The first term above is automatically driven to zero because of the trimming on the coarse space. For the
second term, again, if the definition of the trim outputs does not depend on the approximation space, then
Jtrim
h,i (UH

h,i,xt,H) = Jtrim
H,i (UH,i,xt,H). Hence, the second term in Eqn. 21 is often negligible, resulting a

simpler form of the error estimate for the composite objective,

δJadapt
m = −

Nm∑
i=1

λTh,iRh,i(U
H
h,i,xt,H)

= −
Nm∑
i=1

(ωiΨ
adapt
h,i + Ψtrim

h,i µh,i)
TRh,i(U

H
h,i,xt,H)

=

Nm∑
i=1

[
−ωi(Ψadapt

h,i )TRh,i(U
H
h,i,xt,H)− µTh,i(Ψ

trim
h,i )TRh,i(U

H
h,i,xt,H)

]
=

Nm∑
i=1

(ωiδJ
adapt
i + µTh,iδJ

trim
i ),

(23)

where δJadapt
i is the objective error and δJtrim

i stands for the trim output error, using standard adjoint-
based error estimates (Eqn. 20). The weighting by µh,i accounts for the effects of trim output error on the
objective calculations.

5. Mesh Adaptation

If we would like to use the same mesh for all of the design points, then Eqn. 23 can be directly used to
localize the error to each element, which then serves as the indicator for mesh adaptation. However, this
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can be inefficient when the flow features change significantly at different operating conditions, e.g., from
subsonic to supersonic regimes. To achieve certain accuracy in such cases, the mesh should be adapted in
the areas important for all of the design points, and hence unnecessary computational effort is added to
each flow solve if using a single mesh.

In the present work, we allow different meshes for different design points. The objective error in Eqn. 23
is first localized to each design point as δJadapt

m,i = ωiδJ
adapt
i + µTh,iδJ

trim
i . Then a common approach for

obtaining an error indicator is to take the absolute value of the elemental error contribution. When trim
outputs are involved, we do not allow cancellation between objective and trim output error indicators, so
that the final error indicator on element e at flight condition i, εi,e, is given by

εi,e = ωi|δJadapt
i,e |+ |µTi ||δJtrim

i,e | = ωiε
adapt
i,e + |µTi |εtrim

i,e , (24)

where εadapt
i,e and εtrim

i,e are the non-negative error indicators for the objective output and the trim outputs
respectively.

At each operating condition, the mesh adaptation can be performed as a refinement process to achieve
certain accuracy, or as a modification or optimization process at a given cost to improve the accuracy.
We will denote the former approach as error-based adaptation while the latter as cost-based adaptation.
Although each adaptation strategy has been well-studied for fixed configurations, adaptation involving
multiple operating conditions has seldom been investigated. In our implementation, mesh adaptation for
multipoint flow simulations is a two-stage process: the desired error/cost is first allocated to each design
point; common adaptation techniques are then applied to each design point. The sections below describe
the error/cost allocation strategies and the adaptation methods adopted at individual design points.

5.1. Error/Cost Allocation for Multipoint Mesh Adaptation

In error-based mesh adaptation, a target error tolerance is specified to drive mesh refinement. Thus as
a first step, we want to determine the error tolerance at each design point. This high-level error split relies
on an error convergence model that dictates how the output errors behave with respect to changes in cost,
usually measured by the system degrees of freedom, DOF. Here, an a priori error-cost model is assumed,

|δJadapt
m,i | ∝ C

−ri/d
i , (25)

where Ci is the cost at the ith flight condition, ri is the corresponding output convergence rate, and d is
the spatial dimension. The convergence rate at each design point depends on the approximation order and
the smoothness of the problem. We use the ideal super-convergent rate of outputs in an adjoint-consistent
setting to prevent too aggressive refinement or coarsening (cost redistribution), though lower convergence
rates should be expected for under-resolved meshes.

We follow the idea of equally distributing the error-to-cost ratios [38, 21], i.e., the marginal error reduction
per cost increase. This is considered optimal as we can otherwise further reduce the error without adding
cost by just reallocating degrees of freedom among different design points. For one adaptive iteration, the
change in the error due to cost redistribution is∣∣∣δJadapt

m,i

∣∣∣ =
∣∣∣δJadapt,0

m,i

∣∣∣ (Ci
C0
i

)−ri/d

, (26)

where the superscript 0 indicates values in the unadapted meshes. The marginal error-to-cost ratio at each
design point can be obtained by

∂|δJadapt
m,i |
∂Ci

= −ri
d

∣∣∣δJadapt,0
m,i

∣∣∣ (Ci
C0
i

)−ri/d−1
1

C0
i

= −ri
d

∣∣∣δJadapt,0
m,i

∣∣∣ (Ci
C0
i

)−ri/d 1

Ci

= −ri
d

|δJadapt
m,i |
Ci

, i = 1, ..., Nm.

(27)

8



Further, we define the desired error ratios fδi and cost ratios fCi as

fδi =
δJadapt
m,i

δJadapt
m,1

, fCi =
Ci
C1
, i = 1, ..., Nm. (28)

By equidistributing the error-to-cost ratios among different design points, the desired error ratios fδi and
cost ratios fCi can be determined using Eqn. 27. In this work, we further assume identical convergence rates
(ri = r, i = 1, 2, ..., Nm) if the same approximation order is used and the meshes are well-adapted. Eqn. 27
then implies that the desired error ratios and cost ratios are equal, and can be solved as

fδi = fCi =

∣∣∣∣∣δJ
adapt,0
m,i

δJadapt,0
m,1

∣∣∣∣∣
1

r/d+1 [
C0
i

C0
1

] r/d
r/d+1

, i = 1, 2, ..., Nm. (29)

The desired ratios in Eqn. 29 can then guide the error redistribution in error-based multipoint mesh
adaptation, or cost redistribution in cost-based adaptation. Ideally, specifying desired cost ratios and error
ratios are equivalent if the a priori error-cost model in Eqn. 25 is perfect, which is not the case in general.
Furthermore, an error-based mesh adaptation procedure in practice does not focus on matching exactly
the target error, since the a posteriori output error may deviate from the a priori estimation. Instead, an
error tolerance τi is specified in the error-based adaptation, and the adaptation (refinement) reduces the a

posteriori error until it is below the error tolerance, |δJadapt
m,i | ≤ τi. On the other hand, the desired cost can

be specified in cost-based adaptation such that the adaptation redistributes the degrees of freedom on the
computational mesh to reduce the error while keeping the cost fixed. Therefore, cost-based and error-based
adaptation with equal desired ratios result in different meshes even if the same adaptation method is used.

• For cost-based multipoint mesh adaptation, given a fixed total cost C, the desired cost at each design
point is then redistributed as,

Ci =
fCi∑Nm

j=1 f
C
j

C. (30)

At each design point, the mesh adaptation then refines areas more important for output prediction
and coarsens elsewhere to keep the cost fixed (within some tolerance).

• In error-based multipoint mesh adaptation, given a total error tolerance τ of the composite objective
Jadapt
m , we first distribute the tolerance to each design point according to the desired error ratios,

τi =
fδi∑Nm

j=1 f
δ
j

τ. (31)

At each design point, the mesh is refined until the objective error component is below the error
tolerance, |δJadapt

m,i | ≤ τi. Thus the cost at each design point Ci increases as the mesh is adapted,
although the local adaptation may support coarsening.

5.2. Mesh Adaptation at Individual Design Points

At each design point, the mesh is adapted with either cost-based or error-based strategies. During
the mesh adaptation, the error indicators in Eqn. 24 provide information of local refinement or coarsening.
Meanwhile, the mesh elements should be properly stretched to effectively capture strong directional features.
This mesh anisotropy information can come from heuristics, or from a sampling approach. The corresponding
adaptation methods considered here are: (a) mesh adaptation with Hessian-based anisotropy detection, and
(b) mesh optimization via error sampling and synthesis (MOESS). Both methods rely on metric-based global
remeshing, in which the mesh information, including the desired element sizes and stretching directions, is
encoded in a continuous Riemannian metric field. The desired metric field is determined by the elemental
error indicator given in Eqn. 24, together with the local anisotropy information, obtained using a solution
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Hessian in Hessian-based adaptation or through a sampling process in MOESS. Thus, the mesh adaptation
at individual design points can be: error-based or cost-based with Hessian-based anisotropy or MOESS
sampling-inferred anisotropy. However, MOESS often involves an optimization iterative process with fixed
cost, making it inefficient in an error-based setting, thus error-based MOESS is not considered here. The
following sections describe the adaptation algorithms in detail.

5.2.1. Metric-based Remeshing

A Riemannian metric field, M(~x) ∈ Rd×d, is a smooth field of symmetric positive definite (SPD) tensors
that can be used to encode element size and stretching information of a mesh. The metric tensor, M(~x),

provides a measure of distance between points; for any two spatial points a and b, the length of vector
#„

ab
under the metric, lM(

#„

ab), is defined as

lM(
#„

ab) =

1∫
0

√
#„

ab
TM( #„x a +

#„

abs)
#„

ab ds, ∀ #„x a,
#„x b ∈ Rd. (32)

A mesh that conforms to a metric field is one in which all of the edges have the same unit length under the
metric, to some tolerance. The mesh adaptation takes the current mesh-implied metric field and outputs the
desired metric field, followed by a remeshing process which generates a mesh that conforms to the desired
metric field. The metric-conforming mesh generator used in this work is the Bi-dimensional Anisotropic
Mesh Generator (BAMG) [39]. The mesh-implied elemental metric field is obtained by solving a linear
system at each simplex element enforcing the unit edge length under the metric. Then the elemental metric
field can be transferred to nodes using an affine-invariant averaging algorithm [40]. With modifications to
the mesh-implied metric field, the desired metric field is specified at vertices, and this conforms to the input
required by the mesh generator.

5.2.2. Hessian-based Mesh Adaptation

One dominant approach for detecting the anisotropy is to estimate the directional interpolation error of
the solution [41, 42, 43], and we describe here an extension of such an approach that incorporates output
error adaptive indicators [18, 44]. For linear approximation, i.e., p = 1, the interpolation error of a scalar
solution u over an edge E in the mesh, with unit tangent vector ~s and length h, can be approximated by

δu,E ∝ |~sTH~s|h2, (33)

where H is the solution Hessian matrix,

Hi,j =
∂2u

∂xi∂xj
, i, j ∈ {1, ..., d}. (34)

The second derivatives can be estimated by a quadratic reconstruction of the linear solution. The scalar
u used in this work is the Mach number as it has been found to be generally effective, although more
sophisticated quantities can also be used [41]. Suppose an edge conform to a metric M, assumed constant
along the edge. Then the edge is of unit length under the metric measure,

lM =
√
~sTM~s h = 1. (35)

Thus the interpolation error and the metric are related by Eqn. 33 and Eqn. 35, and with the requirements
of error equidistribution along edges, we have

~sTM~s

|~sTH~s|
= κ, (36)

where κ is a constant defined by the desired interpolation error. In order for Eqn. 36 to hold in any principal
direction, M can be chosen as

MH = κQ|ΛH|QT = QΛMQT . (37)
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Here, Q denotes the orthonormal matrix containing the eigenvectors (principal directions) of H, and ΛH

and ΛM are the diagonal matrices containing the eigenvalues of the Hessian matrix H and the metric tensor
M, respectively. Eqn. 37 implies the relative shape of the desired metric field and the mesh conforms to
the metric,

λM,i

λM,j
=

∣∣∣∣λH,iλH,j

∣∣∣∣ =⇒ hi
hj

=

√
λM,j

λM,i
=

√∣∣∣∣λH,jλH,i

∣∣∣∣, (38)

where λH and λM represent the eigenvalues of H and M, respectively, i and j index the principal di-
rections, and hi and hj are the desired element sizes in the corresponding directions. For higher-order
approximations, the interpolation error is characterized by the p + 1st derivatives, while the first d largest
directional derivatives are used to determine the principle directions Q, and the corresponding stretching
matrices ΛH and ΛM [44]. The key idea of Hessian-based mesh adaptation with output error estimation is
to use Eqn. 38 to control the mesh shape (anisotropy) while using the output error indicator to determine
the absolute element sizes.

In order to perform mesh adaptation, we need to predict the desired element sizes, or the number of the
elements Nf in the adapted (fine) mesh. Let ne, not necessary an integer, be the number of adapted mesh
elements contained in element e for the original mesh. Denoting the current element sizes by hci and the

requested element sizes by hfi , where i again indexes the principal directions; ne can be approximated as

ne =

d∏
i=1

(hci/h
f
i ). (39)

We assume that on the adapted mesh, the output error is equally distributed in the mesh elements as εf .
We can then relate the growth in the number of elements to an error reduction factor through an a priori
estimate,

neε
f = εce

(
hfref

hcref

)p̄e+1

= εce

(
d∏
i=1

hfi
hci

)(p̄e+1)/d

, (40)

where εce denotes the current error indicator in element e, p̄e = min(p, γe), and γe is the lowest order of any
singularity within element e. href is the reference element size that characterizes the convergence, defined in
this work as the geometric mean of the edge lengths at principle directions. Eqn. 39 and Eqn. 40 relate ne
to the desired equidistributed elemental error,

neε
f = εce

(
d∏
i=1

hfi
hci

)(p̄e+1)/d

= εcen
−(p̄e+1)/d
e =⇒ n1+(p̄e+1)/d

e =
εce
εf
. (41)

Substituting Eqn. 41 into Nf =
∑
e ne, we can solve for both ε and ne if Nf is given and p̄e is assumed

equal everywhere in the mesh,

εf =

(∑
e(ε

c
e)

1
1+(p̄e+1)/d

Nf

)1+(p̄e+1)/d

, ne =

(
εce
εf

) 1
1+(p̄e+1)/d

. (42)

After obtaining ne, the desired element size hfi can be calculated using Eqn. 39 with current element size
information stored in the current mesh-implied metric. In this work, Hessian-based adaptation is made
error-based or cost-based depending on how the total number of elements Nf is specified:

• Cost-based Hessian adaptation: a fixed total cost, i.e., number of elements Nf is given. The mesh
element sizes and stretching are updated iteratively to match the desired metric field.

• Error-based Hessian adaptation: an error tolerance on the output is given as τ . At each adaptive iter-
ation, the current number of elements N c is increased by a fixed-growth factor, i.e., Nf = fgrowthN c,
until the output error estimation is below the tolerance, ε ≤ τ .
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5.2.3. Mesh Optimization via Error Sampling and Synthesis

Mesh adaptation with Hessian-based anisotropy relies on a scalar solution u, which should be carefully
chosen to correlate to the chosen output of interest. An inflection in u may lead to inappropriate mesh
stretching, and inadequate resolution may occur where the magnitude of the Hessian is close to zero. Here
we consider a more sophisticated mesh adaptation method: mesh optimization via error sampling and
synthesis (MOESS). In MOESS, the mesh adaptation is formulated as an optimization problem in which
the optimal change of the metric field is iteratively determined based on a prescribed metric-cost model and
a sampling-inferred metric-error relationship. We briefly review this method and discuss its modification in
this section.

5.2.3.1. Error Convergence Model
MOESS requires a model for how the error changes as the metric changes. At element Ωe, the changes

of the metric are described by a symmetric local step matrix Se ∈ Rd×d,

Me = M
1
2
e,0 exp(Se)M

1
2
e,0, (43)

where Me and Me,0 denote the modified metric and the current one. The corresponding error change is
given by a generalized error convergence model [38],

εe = εe,0 exp[tr(ReSe)], (44)

where Re is a symmetric error convergence rate tensor containing elemental directional convergence infor-
mation. At each adaptation iteration, Re is determined separately for each element through a local sampling
procedure in which the element is refined with different configurations, i.e., imposing different step matrices,
and the resulting changes to the output error are estimated.

For a triangle element, four refinement options are considered, as shown in Figure 1. For each refinement
option i, the corresponding error εe,i is estimated to determine Re using Eqn. 44. The error estimates
require the fine space adjoint solution for each proposed refinement, which can be expensive to solve even
for a local patch of elements. Instead, we use an element-local projection method [45] to approximate the
fine-space adjoint in semi-refined spaces associated with each refinement option.

Original Option 4Option 3Option 2Option 1

Figure 1: Four refinement options for a triangle. Each one is implicitly considered during the error sampling, though the
elements are never actually refined.

5.2.3.2. Cost Model
We use degrees of freedom to measure the cost of refinements, which on each element just depends on

the approximation order p. The cost of a local refinement is thus directly proportional to the number of
new elements occupying the original area of element Ωe, ne, which is given by Eqn. 39. Assuming that
the current mesh and the refined mesh are both metric-conforming, ne can be related to the change in the
metric,

Ce = Ce,0ne = Ce,0

d∏
i=1

(hci/h
f
i ) = Ce,0

√
det(Me)

det(Me,0)
= Ce,0 exp

[
1

2
tr(Se)

]
, (45)

where Ce is the expected cost over the original element with current cost Ce,0, after the refinement with

step matrix Se. The total cost is the sum of the elemental costs over the mesh, C =
∑Ne

e=1 Ce.
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5.2.3.3. Mesh Optimization Algorithm
The goal of the optimization is to determine the optimal step tensor field, approximated by values at

mesh vertices, Sv(~x), to minimize the total error indicator while keep the cost fixed,

min
Sv

ε =

Ne∑
i=1

εe(Sv)

s.t. C =

Ne∑
i=1

Ce(Sv) = const.

(46)

The optimality condition requires
∂ε

∂Sv
+ λs

∂C

∂Sv
= 0, (47)

where λs is the Lagrange multiplier. Instead of solving the high-dimensional optimization problem, we follow
an iterative process to equally distribute a locally defined Lagrange multiplier [38],

λs,e =
∂εe/∂Sv
∂Ce/∂Sv

. (48)

λs,e can be interpreted as the local marginal error-to-cost ratio, which when equidistributed yields a solution
of the original optimization in Eqn. 46.

MOESS can also be made error-based or cost-based similarly as described in Section 5.2.2. However, the
optimal step tensor field is determined iteratively with a fixed cost in MOESS as it is formulated, making
the error-based approach expensive and inefficient as the cost changes during the adaptation. Therefore,
only the cost-based adaptation strategy is considered for MOESS in this work. The implementation of mesh
adaptation in a multipoint optimization problem is given in Section 6.3.

6. Optimization Approach

6.1. Objective and Constraints

For demonstration, two-dimensional airfoil shape optimizations are considered in this work. In particular,
the problem considered here is to search for an optimal design (including the airfoil shape and the angles
of attack) to minimize the overall drag under a range of flight conditions, subject to fixed lift coefficients
and a minimum airfoil volume. The optimization objective is the weighted sum of the drag coefficients at
different design points, and the corresponding constraints are

Re
i (Ui,x) = c`,i − c̄`,i = 0, i = 1, ..., Nm;

Rie(x) = A(x)−Amin ≥ 0.
(49)

A and Amin represent the current and minimum volumes of the airfoil, and c`,i and c̄`,i denote the current
and the target lift coefficients at each design point.

The lift constraints are treated as the trimming constraints, and the angle of attack at each design point
αi is chosen as the trim variable, xt = [α1, α2, ..., αNm ], to decouple the trim conditions at various points.
During each flow solve, the trim constraints are enforced by a trimming process, which involves a Newton-
Raphson iteration of the angles of attack and is presented with details in Appendix A. The inequality volume
constraint, independent of the flow states, is assumed to be measured exactly and handled by the optimizer.

6.2. Airfoil Parameterization and Mesh Deformation

The airfoil shape is parameterized using the Hicks-Henne basis functions [46], taking a baseline airfoil
and creating a new airfoil shape by adding a linear combination of “bump” functions to its upper and lower
surfaces,

z(x) = zbase(x) +

Ns∑
i=1

aiφi(x). (50)
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x denotes in this case the position along the airfoil chord, and z is the vertical coordinates of the upper or
lower airfoil surfaces, considered separately. φi are the basis functions taken from an optimized basis set [47],
whose coefficients ai are the active design variables for the optimization problem, xs = [a1, a2, ..., aNs

] ∈ RNs .
Table 1 summarizes the multipoint aerodynamic optimization problem considered in this work.

Table 1: Multipoint aerodynamic shape optimization problem

Function/Variable Description Quantity

Minimize
∑Nm

i=1 ωicd,i Weighted drag coefficients sum 1
With respect to xs Hicks-Henne basis function coefficients Ns

xt Angles of attack Nm
Subject to c`,i − c̄`,i = 0 Lift constraints Nm

A−Amin ≥ 0 Volume constraint 1

At each optimization iteration, the objective function needs to be re-evaluated, which requires a flow solve
on the updated geometry, and hence a new mesh must be obtained each time. Rather than regenerating
meshes every time, the airfoil boundary deformation is propagated to the interior mesh with an explicit
inverse-distance interpolation algorithm [48].

6.3. Optimization Algorithm

Sequential Least Squares Programming (SLSQP) [49] with quasi-Newton type Hessian approximation
is used in this work. The gradient of the objective function is calculated by the adjoint method, per
Eqn. 15, and the objective and constraints are evaluated with the numerical solution of Eqn. 16 based on
the discretization given in Section 3. Although the optimization problem is formulated in an augmented
Lagrangian form in Section 2, any gradient-based constrained optimization algorithm can be used since the
Lagrange multipliers associated with the trimming constraints are obtained during the trimming process for
mesh adaptation. If the trimming constraints are handled by the optimizer, augmented Lagrangian methods
have to be used in order to provide the corresponding Lagrange multipliers for adaptation purposes [15].

Instead of optimizing on a mesh with fixed resolution, which would always require the highest fidelity
for accurate calculations, the mesh is progressively refined as the optimization proceeds, resulting in a
variable-fidelity optimization. Rather than performing optimization and mesh adaptation sequentially, one
after another, an interactive framework is introduced. Two possible ways to incorporate the mesh adap-
tation and design optimization are considered here: optimization-driven adaptation and adaptation-driven
optimization. In the former approach, the optimization tolerance at each fidelity is prescribed by the user.
Starting with a loose optimization tolerance, the total maximum allowable error, set to be equal to the
optimization tolerance, is first divided into each design point by Eqn. 31. The objective function at each
design point is then evaluated on the same coarse initial mesh, and the error estimation and mesh adapta-
tion are performed individually to control the numerical error to be below the error tolerance at the current
fidelity. The allowable numerical error tolerance decreases as the optimization fidelity increases. For the
latter approach, several mesh levels (degrees of freedom) are defined before the optimization. Starting with
a low total cost, the degrees of freedom are redistributed according to Eqn. 30. Then the mesh is modified
in Hessian-based adaptation or optimized in MOESS at each design point to improve the accuracy. Once
the objective improvement is smaller than the objective error estimate, the optimization terminates at the
current cost level and the fidelity increases through mesh adaptation with a higher cost. We refer to these
methods as error-based optimization or cost-based optimization, depending on the information specified.
The error-based optimization needs an error-based mesh adaptation method: here we use error-based Hes-
sian adaptation; while the cost-based one requires cost-based adaptation mechanics, which can be either
cost-based Hessian adaptation or MOESS.

Compared to a more traditional optimization methodology with an a priori mesh, unnecessarily fine
meshes at the early stages of shape optimization are avoided in the proposed variable-fidelity framework.
The problem setup time is significantly reduced with easier mesh generation. Moreover, the elements that
introduce most of the error may differ significantly for different shape configurations during the optimization.
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Both approaches reduce the chance of over-refining elements that are not relatively important for the final
design, which is necessary if the adaptation mechanics do not allow for coarsening. On the other hand, the
coupling between error tolerance and optimization tolerance at each fidelity actively controls the optimization
at each step to avoid unnecessary convergence at low fidelity. Finally, the new framework can effectively
prevent over-refining on an unintended shape, or over-optimizing on a coarse mesh.

The proposed optimization frameworks with error estimation and mesh adaptation are summarized in
Algorithm 1 and Algorithm 2, using error-based and cost-based approaches, respectively. Optimization
tolerance levels and cost levels are specified by the user, driving the mesh adaptation to actively control the
numerical errors. In this paper, we assume that the error estimation is sufficiently accurate to represent
the “true” numerical error, which may be inappropriate when the adjoint is not well-resolved or when the
problem is highly nonlinear. In practice, a safety factor η can be used to ensure the numerical error to
always be below the optimization tolerance; η = 1 is adopted in this paper.

Algorithm 1: Optimization with error estimation and mesh adaptation (error-based)

input : initial design x0, initial coarse mesh Th, optimization tolerance levels O1,O2, ...,On, safety
factor η ≤ 1

output: adapted meshes at each design point Th,i
optimized design x∗ with controlled objective error δJadapt

m,h ≤ On
1 for l = 1, 2, ..., n do
2 set the total error tolerance as τl = ηOl
3 while not converged do . optimization algorithm
4 distribute the total error tolerance τl at each design point as τl,i, using Eqn. 31
5 for i = 1, ..., Nm do

6 while δJadapt
m,i > τl,i do

7 adapt the mesh Th,i with refinements . Hessian adaptation
8 update xt,l to meet trim constraints . trimming process

9 compute the objective component Jadapt
m,i and its error estimate δJadapt

m,i

10 end

11 end

12 update the composite objective Jadapt
m =

∑Nm

i=1 J
adapt
m,i

13 calculate the composite objective gradient dJadapt
m /dxs,l, per Eqn. 15

14 update the active design xs,l with meshes Th,i fixed . line search

15 end
16 finish optimization at level l, xl+1 = xl
17 end
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Algorithm 2: Optimization with error estimation and mesh adaptation (cost-based)

input : initial design x0, initial coarse mesh Th, cost levels C1, C2, ..., Cn, safety factor η ≥ 1
output: optimized mesh at each design point Th,i with total cost Cn

optimized design x∗ with optimized accuracy at given total cost Cn
1 for l = 1, 2, ..., n do
2 distribute the total cost Cl among various design points as Cl,i, using Eqn. 30
3 while not converged do . optimization algorithm
4 for i = 1, ..., Nm do
5 for j = 1, ..., Nadapt do
6 adapt the mesh Th,i with DOF redistribution . Hessian adaptation/MOESS
7 update xt,l to meet the trim constraints . trimming process

8 compute the objective component Jadapt
m,i and its error estimate δJadapt

m,i

9 end

10 end

11 update the composite objective Jadapt
m =

∑Nm

i=1 J
adapt
m,i

12 calculate the composite objective gradient dJadapt
m /dxs,l, per Eqn. 15

13 set the optimization tolerance Ol = η
∑Nm

i=1 δJ
adapt
m,i

14 update the active design xs,l with meshes Th,i fixed . line search

15 end
16 finish optimization at level l, xl+1 = xl
17 end

7. Results

As a simple demonstration of the proposed optimization frameworks, we consider two-dimensional airfoil
optimization problems in transonic flow regimes, over a range of flight conditions. The goal of the optimiza-
tion is to search for an optimal airfoil shape and angles of attack to minimize the drag coefficients, subject
to fixed lift trim conditions and a minimum volume constraint. We only consider the discretization errors
in drag and lift calculations, and the airfoil volume measurements are assumed to be exact. Furthermore,
the trim constraint tolerances are always set to be sufficiently small to make sure the sensitivity calculation
in Eqn. 15 is accurate. The airfoil shape is parameterized with 16 Hicks-Henne basis functions, and the
design parameter vector includes both the shape parameters and the angle of attack at each design point.
Unstructured triangular meshes and DG p = 2 approximation are used for the discretization. The airfoil
boundary is represented by cubic curved mesh elements. We first test our proposed methods on a two-point,
inviscid airfoil optimization problem, following which a more practical turbulent case including three flight
conditions is considered. A detailed description of the two cases are given in Table 2.

7.1. Multipoint Inviscid Transonic Airfoil Optimization

In this test case, the two-point optimization starts with a Royal Aircraft Establishment (RAE) 2822 airfoil
and seeks an optimal shape and angles of attack to minimize the weighted drag coefficient, subject to fixed
lift constraints and nondecreasing airfoil volume. The two operating conditions including the corresponding
lift trim constraints are listed in Table 2.

Under the high lift trim condition, flow around the original RAE 2822 airfoil features a strong shock on
the upper surface, the location and strength of which vary depending on the operating conditions, i.e., Mach
number in this case. Without any priori knowledge about the flow fields around the airfoil at each design
point, a fairly fine mesh with specific refinement around the airfoil is generally used in optimization. Effort
can be put into generating meshes suitable for capturing the shocks effectively, either based on experience
or output-based error estimates. However, this only helps the analysis on the original shape. If the shock
moves or its strength reduces as the optimization proceeds, the specific resolution for the initial design is
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Table 2: Operating conditions for multipoint optimization problems

Case Point Weights wi Mach c` Reynolds number M − c` plot
7.1 1 0.50 0.70 0.750 –

0.7

0.725

0.75

0.775

0.8

c `

2 0.50 0.76 0.750 –

7.2 1 0.25 0.70 0.761 4.79× 106

0.7 0.71 0.72 0.73 0.74 0.75 0.76
Mach Number

0.65

0.675

0.7

0.725

0.75

c `

2 0.50 0.73 0.700 5.00× 106

3 0.25 0.76 0.646 5.21× 106

wasted. Particularly, we expect in this case for the shape to be modified such that the shock strength is
significantly weakened. Any substantial refinement on the initial shock location will thus not effectively
increase the accuracy but instead add considerable computational cost to the optimization.

We test both the error-based and cost-based optimization frameworks as described in Algorithm 1 and
Algorithm 2, with various adaptation methods. For error-based optimization, we use error-based Hessian
adaptation; while for the cost-based optimization, both MOESS and cost-based Hessian adaptation are used.
All these three optimizations start with the same initial mesh consisting of 393 triangular elements, as shown
in Figure 2(a). In the error-based optimization, a set of optimization tolerance levels is specified with an
ultimate tolerance of 0.02 drag counts, i.e., 2× 10−6. On the other hand, the cost-based optimization starts
with a fairly low cost level, and degrees of freedom are added once the optimization converges at current
cost level, until the final optimization tolerance is below 0.02 drag counts. To compare with traditional
methods, we also run fixed-fidelity optimization on two fixed meshes. The coarse one has comparable DOF
as the finest mesh used in the variable-fidelity optimization while the fine one has double the cost. The
optimization tolerances are also set to be 0.02 drag counts. The meshes used in these different optimizations
are summarized in Figure 2(b)—2(h). Only the coarse mesh used in the fixed-fidelity optimization is
shown for conciseness, as the finer one has more elements but similar uniform refinement around the airfoil
boundary.

The objective convergence and mesh evolution are shown in Figure 3. In Figure 3(a), we plot the
objectives verses the aggregated total degrees of freedom, which are only accumulated at each optimization
major iteration, i.e., not including the line search. We see in the plot that the estimated discretization error
of the objective is always above the optimization tolerance in the fixed-fidelity (fixed-mesh) optimization.
On the coarse fixed mesh, the discretization error is large and sometimes even comparable to the objective
values. Although the objective error decreases as the finer fixed mesh is used, it is still fairly large compared
to the optimization tolerance. In these scenarios, the optimizer may work on the numerical error instead
of the physics to minimize the drag, leading to inaccurate designs. On the other hand, discretization error
is always controlled to be below the optimization tolerance, or the optimization tolerance is adjusted to be
equal to the discretization error in the proposed methods. Furthermore, the variable-fidelity optimizations
with different adaptation methods all converge faster at the highest fidelity by virtue of a better starting
point obtained from the lower fidelity. Significant computational resources can be saved with fast, low-fidelity
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(a) Initial mesh for variable-fidelity optimization (b) The coarse mesh for fixed-fidelity optimization

(c) Final mesh at M = 0.70 (error-based Hessian adapta-
tion)

(d) Final mesh at M = 0.76 (error-based Hessian adapta-
tion)

(e) Final mesh at M = 0.70 (cost-based Hessian adapta-
tion)

(f) Final mesh at M = 0.76 (cost-based Hessian adapta-
tion)

(g) Final mesh at M = 0.70 (MOESS) (h) Final mesh at M = 0.76 (MOESS)

Figure 2: Meshes for variable-fidelity and fixed-fidelity optimization (inviscid, transonic)
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Figure 3: Convergence history and mesh size evolution for different methods (inviscid, transonic)

We can also observe from the mesh evolution plot in Figure 3(b) that the mesh sizes, if adapted, required
to achieve similar accuracy on different operating conditions are different. For all the mesh adaptation
methods considered, the final mesh size for Mach number of 0.70 is smaller than the one required for
Mach number 0.76. Mesh adaptation prevents unnecessarily fine meshes from being used for relatively
simple operating conditions. The distinction among these methods comes from the difference between
error-based and cost-based approaches, and the difference between Hessian adaptation and MOESS. The
error-based approach refines the mesh every time the error is above the optimization tolerance, keeping it
fixed otherwise, and hence it tends to over-refine areas that are important for some intermediate designs
but not necessary for the final design. On the other hand, the cost-based approach always adapts the
mesh while keeps the cost fixed at the same fidelity, so that the redistribution of the degrees of freedom
avoids over-refinement and improves the accuracy. If we look at the error-based Hessian adaptation and the
cost-based Hessian adaptation (blue and green lines) in Figure 3, they have very similar convergence and
costs at low fidelities. However at the highest fidelity, the error-based approach has more refinements, which
are added for some intermediate designs. Those extra refinements do not affect the final accuracy much
as we can see both methods have similar final accuracy. This suggests using the cost-based optimization
framework with cost-based adaptation methods. Although it requires several adaptive iterations with fixed
DOF at each major optimization iteration, it prevents extremely fine meshes from being used at the highest
fidelity, which is always the main overhead in the optimization. In terms of adaptation methods, both using
cost-based approach, MOESS benefits from more appropriate anisotropy detection, resulting in lower cost
and better accuracy. As we can see in Figure 2(f) and Figure 2(h), MOESS meshes tend to have more
anisotropic elements in the post shock locations, though they have similar refinement at the shocks. If
we look at the upstream region of these two meshes, as shown in Figure 4, the difference is more evident:
Hessian adaptation only has isotropic refinement along the stagnation streamline since it is important for
the output prediction but the Mach number field is isotropic across it; However, MOESS is able to detect
the anisotropy through sampling and puts anisotropic resolution along the stagnation streamline. This
refinement also indicates the trim output effects on the adaptation, as this anisotropy is more important for
the lift calculation, i.e., the trim output, while not very relevant to the prediction of the objective, i.e., the
drag. Therefore, we can see in Figure 3 that at the low fidelities, with similar cost, MOESS achieves lower
objective error, hence better convergence and better design at the low fidelities. With a better starting
design, the optimization at the highest fidelity has smoother convergence, as the sharp objective change at
the highest fidelity that occurs in both error-based and cost-based Hessian adaptation is not observed in
MOESS. Since the flow solve in the optimization always restarts from the solution on the previous design,
MOESS converges faster and consumes less CPU time compared to cost-based Hessian adaptation due to
smaller design changes, even though the aggregated total degrees of freedom are close. The computational
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cost saving is reflected in Table 3. Computational time results are obtained using parallel runs with 8
processors on the same machine (Intel Core i7-3770 3.40 GHz CPU with 16GB total RAM). The proposed
variable-fidelity optimization frameworks with adapted meshes achieve substantial time savings compared
to fixed-fidelity optimization with fixed meshes. As mentioned, the cost-based algorithm out-performs the
error-based one with considerable time savings on the highest fidelity; cost-based optimization with MOESS
achieves the most time savings, around 3 times and 8 times speedup compared to the optimizations on the
coarse and fine fixed meshes respectively.

Figure 4: Meshes around the stagnation streamline, the left mesh is from cost-based Hessian adaptation, the right one is the
MOESS adapted mesh.

Table 3: Computational cost comparison (inviscid, transonic). In cost-based optimization, the optimization tolerance is
dynamically adjusted to be equal to the objective error estimate; the approximate values of the optimization tolerance in this
table are from the last iteration on each fidelity.

Optimization level Optimization tol (Drag count) CPU time (s)

Fixed-fidelity (coarse fixed mesh) L3 0.020 6.861 × 104

Fixed-fidelity (fine fixed mesh) L3 0.020 1.924 × 105

Variable-fidelity (error-based Hessian)
L1 2.000 7.880 × 102

L2 0.200 7.153 × 103

L3 0.020 3.668 × 104

Variable-fidelity (cost-based Hessian)
L1

δJadapt
m

≈ 1.329 2.149 × 103

L2 ≈ 0.130 8.241 × 103

L3 ≈ 0.015 2.113 × 104

Variable-fidelity (MOESS)
L1

δJadapt
m

≈ 0.822 2.334 × 103

L2 ≈ 0.074 5.550 × 103

L3 ≈ 0.007 1.630 × 104

The initial and optimized airfoils are compared in Figure 5, while the final objective values are collected
in Table 4, in which the corresponding “true” objective values are also obtained via adapted meshes on
the final designs, with discretization error controlled to be one order of magnitude smaller than the final
optimization tolerance. All of the optimizations flatten the upper surface near the forward section, while
curving and increasing the thickness at the lower surface. The curvature reduction on the top surface
smooths the flow acceleration region to weaken the shock, while the thickened lower surface and curved aft
section are required to maintain the lift and area constraints. Therefore, the strong shocks are significantly
reduced at both operating conditions, as shown in the pressure distributions in Figure 5(a)–5(b). In the
optimization runs with adapted meshes, areas around the airfoil leading and trailing edges are significantly
refined, and many elements are dedicated to the shocks and the stagnation streamline. However, in the
optimization with fixed meshes, elements are not efficiently distributed, and areas that are important for
output predictions are not well-resolved, which as a result causes high objective error as seen in Figure 3(a).

20



When the numerical error is too high, for example on the coarse fixed mesh, the optimization converges
to a noticeably different design compared to the designs obtained from other optimizations, as shown in
Figure 5(c). Thus the “true” objective value for the optimized design on the coarse fixed mesh is much
higher compared to designs obtained on the other meshes. In the optimization with the fixed fine mesh,
the discretization error is still high, but the optimization is able to converge to a similar design compared
to designs produced by optimizations with discretization error control, as shown in Figure 5(c). Although
the “true” objective value is also close to (still slightly higher) the objective values of our proposed methods
with mesh adaptation (the difference among these methods is below or comparable to the optimization
tolerance, which means that the optimization on these meshes converges correctly), the final objective value
reported on the fixed mesh is far from accurate for practical design and the cost is extremely high compared
to our proposed methods, which is observed in both Table 3 and Table 4. The proposed methods with
mesh adaptation are able to obtain a reasonable design, and the associated error estimation is also accurate
enough to provide confidence in the final design and computed output quantities.
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Figure 5: Pressure distribution for the initial and optimized designs (inviscid, transonic)

7.2. Multipoint Turbulent Transonic Airfoil Optimization

Another problem considered in this paper is a more sophisticated fully-turbulent case. We set up a
three-point optimization problem, analogous to minimizing the integrated drag coefficients over a range of
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Table 4: Optimization results on different meshes (inviscid, transonic)

Final mesh DOF Jadapt
m Jadapt

m (“true”)
Fixed mesh (coarse) 51144 1.978× 10−4 ± 1.477× 10−4 4.932× 10−5

Fixed mesh (fine) 107688 6.854× 10−5 ± 2.208× 10−5 4.552× 10−5

Error-based Hessian 66630 4.466× 10−5 ± 1.311× 10−6 4.338× 10−5

Cost-based Hessian 51324 4.513× 10−5 ± 1.504× 10−6 4.383× 10−5

MOESS 49116 4.333× 10−5 ± 7.202× 10−7 4.278× 10−5

Mach numbers at a fixed aircraft weight and altitude. The optimization again starts with the RAE 2822
airfoil, and seeks an optimal shape and angles of attack to minimize the composite drag coefficients with
fixed lift constraints and non-decreasing airfoil volume; the details of the case setup are given in Table 2.

For turbulent flow simulations at high Reynolds number, one of the key flow features is the thin boundary
layer. Due to the linear velocity profile in the viscous sub-layer, Hessian-based mesh adaptation is usually
inefficient since the Mach number Hessian is close to zero within this region. Therefore, only MOESS with
cost-based variable-fidelity optimization is used in this case. The starting and final mesh at each flight
condition are compared in Figure 6. At all the flight conditions considered, MOESS is able to effectively
detect strong directional flow features and put highly-anisotropic elements around the airfoil boundary, at
shock locations on the top surface, along the stagnation streamline and also near the wake region.

(a) Initial mesh (b) Final mesh at M = 0.70

(c) Final mesh at M = 0.73 (d) Final mesh at M = 0.76

Figure 6: Initial mesh and final meshes during the optimization (turbulent, transonic)

The objective and mesh size are collected at each optimization step as shown in Figure 7. In the
convergence plot, we can see that the composite objective errors are close even for different designs at the
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same optimization fidelity, as the total degrees of freedom are optimally distributed among different flight
conditions, and the meshes are optimized individually at each of them. The degrees of freedom assigned to
the design point at Mach number of 0.73 are consistently higher than at the other two points, mainly due
to the higher weight used during the optimization. On the other hand, the cost distribution between Mach
number of 0.70 and 0.76 changes as the design varies. As the optimization progresses, the meshes get refined
and optimized, and more detailed design improvement is then made with smaller objective error and tighter
optimization tolerance, i.e., both the design and meshes converge to the optimum.
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Figure 7: Convergence history and mesh size evolution for different methods (turbulent, transonic)

Figures 8(a)–8(c) shows the initial and final pressure distributions at each design point. The correspond-
ing final airfoil shape is shown in Figure 8(e). As in the inviscid case, the upper surface of the airfoil is
flattened, while more curvature is added to the lower surface aft section. As we can see in the pressure
distribution plots, both the location and the strength of the original strong shock at each design point
are modified. The optimizer weakens the shock at both Mach numbers of 0.73 and 0.76, while slightly
strengthens the shock at the Mach number of 0.70, resulting in a significant reduction in the composite drag
coefficient as shown in Figure 7(a). The drag divergence curves for the original RAE 2822 airfoil and the
optimized design around the nominal flight conditions are depicted in Figure 8(d). Despite some sacrifice
in the performance at low cruise speeds, the new design achieves significantly lower drag values for Mach
numbers above 0.73 and is able to maintain good performance over a much wider range of Mach numbers
compared to the original design.

8. Conclusions

In practical aerodynamic design processes, the optimization problem has to be posed such that a range of
operating conditions, including off-design points, are considered in the objective as well as the constraints.
To ensure convergence to the “true” optimal design, the numerical error at each design point has to be
carefully controlled. As the flow conditions involved can vary dramatically, a priori meshes appropriate
for all the design points can be hard to generate and are generally not sufficient for the requirements of
high-fidelity optimization.

In this work, we presented a variable-fidelity framework that integrates output-based error estimation and
mesh adaptation with a gradient-based algorithm for multipoint aerodynamic shape optimization problems.
The proposed framework can considerably facilitate the optimization setup and accelerate the design process.
The designer only needs to input an initial mesh, which can be fairly coarse and easy to generate. The mesh
adaptation (fidelity increase) is then tightly coupled with the optimization algorithm either with an error-
based or a cost-based strategy. The variable-fidelity optimization framework driven by mesh adaptation is
capable of preventing over-optimizing and over-refining, as shown in the test cases. Design optimization with
mesh optimization via error sampling and synthesis (MOESS) is shown to be more efficient and effective
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Figure 8: Pressure distribution for the initial and optimized designs (turbulent, transonic)
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by optimized computational cost distribution among various flight conditions and optimized meshes at each
point. This benefit can become more significant when higher fidelity is required, or when more highly
anisotropic physics govern the system.

With more judicious considerations of the objective functions and constraints, and additional parameters,
the new method can provide realistic configurations in practical design scenarios. Also, the computational
cost allocation adopted in this work still partially relies on a priori error-cost relations, which can be
inefficient when inappropriate convergence rates are predicted/used. More appropriate error and cost models,
such as a posteriori ones constructed during the optimization, can be developed to guide the cost distribution
among different design points. Furthermore, only mesh adaptation (h-adaptation) is considered here to
control the discretization error. More efficient adaptation mechanics, such as approximation order increment
(p-adaptation), and combinations (hp-adaptation), can also be applied to the proposed methods in the future.
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Appendix A. Trimming Algorithm

In the trimming process, given an active design xs, we want to satisfy the flow equation and the trim
equation simultaneously, at each design point,

R =

 R1(U1,xt)
...

RNm(UNm ,xt)

 = 0,

Rtrim =

 Jtrim
1 (Ui,xt)− J̄trim

1
...

Jtrim
Nm

(UNm
,xt)− J̄trim

Nm

 = 0.

(A.1)

The Newton update of the system can be written as,

∂Ri

∂Ui

∂R1

∂xt

. . .
...

∂RNm

∂UNm

∂RNm

∂xt

∂Rtrim
1

∂U1

∂Rtrim
1

∂xt

. . .
...

∂Rtrim
i

∂Ui

∂Rtrim
i

∂xt




∆U1

...
∆UNm

∆xt

+


R1

...
RNm

Rtrim

 = 0. (A.2)

We can first solve the upper block of the system to obtain ∆Ui, then substitute it back to the lower block
to solve for ∆xt, i.e., solve the system via a Schur complement. The resulting equation for ∆xt is[

∂Rtrim
i

∂xt
− ∂Rtrim

i

∂Ui

(
∂Ri

∂Ui

)−1
∂Ri

∂xt

]
∆xt +

[
Rtrim
i − ∂Rtrim

i

∂Ui

(
∂Ri

∂Ui

)−1

Ri

]
= 0,

⇒

[
∂Jtrim

i

∂xt
− ∂Jtrim

i

∂Ui

(
∂Ri

∂Ui

)−1
∂Ri

∂xt

]
∆xt +

[
Jtrim
i − J̄trim

i − ∂Jtrim
i

∂Ui

(
∂Ri

∂Ui

)−1

Ri

]
= 0,

⇒
[
∂Jtrim

i

∂xt
+ (Ψ̃

trim

i )T
∂Ri

∂xt

]
∆xt +

[
Jtrim
i − J̄trim

i + (Ψ̃
trim

i )TRi

]
= 0, i = 1, ..., Nm;

(A.3)
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where Ψ̃
trim

i has the same definition as the trim adjoint Ψtrim
i , while the latter is evaluated at converged flow

solutions, i.e., when Ri = 0. If ∆Ui and ∆xt are updated simultaneously, the system requires concurrent

adjoint solves for Ψ̃
trim

i , through which the flow solver module may need to be re-designed. Instead in this
paper, we fix xt first and solve for Ui to enforce the flow equations Ri = 0, then update the trim variables
using Eqn. A.3 which then simplifies to[

∂Jtrim
i

∂xt
+ (Ψtrim

i )T
∂Ri

∂xt

]
∆xt +

[
Jtrim
i − J̄trim

i

]
= 0,

dJtrim
i

dxt
∆xt +

[
Jtrim
i − J̄trim

i

]
= 0, i = 1, ..., Nm;

=⇒ dJtrim

dxt
∆xt +

[
Jtrim − J̄trim

]
= 0,

(A.4)

where

dJtrim

dxt
=



dJtrim
1

dxt

dJtrim
2

dxt

...
dJtrim

Nm

dxt

 , Jtrim − J̄trim =


Jtrim

1 − J̄trim
1

Jtrim
2 − J̄trim

2

...
Jtrim
Nm
− J̄trim

Nm

 . (A.5)

The process iterates until Eqn. A.1 is satisfied, as shown in Figure A.1. Although this approach is less
efficient than solving xt and Ui simultaneously, it requires minimal rewrites of the flow solver code. For the

lift-constrained problem considered in this work, dJ
trim

dxt
is diagonal, i.e., the trim constraints at each design

point are decoupled and can be iterated independently.

The trimming process converges successfully most of the time when the sensitivity dJtrim

dxt
is measured

accurately, however, we do observe failures of the trimming process for some intermediate designs in the
line search process, though these designs are never accepted as penalty is added if the lift constraint is not
satisfied. More detailed investigations on these airfoil shapes show non-uniqueness of the solution at the
same flow condition. The resulting bifurcation of the trim outputs hinders the convergence of the trimming
process, which has also been observed by other researchers [50, 51, 52]. In this paper, we restrict the
maximum number of trimming iterations to exit the loop in Figure A.1 if the trimming fails. Improved
treatment of such situations will be considered in future work.

Figure A.1: Feedback trimming process
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