
Output-Based Error Estimation and Mesh Adaptation

Using Convolutional Neural Networks: Application to

a Scalar Advection-Diffusion Problem

Guodong Chen∗ and Krzysztof J. Fidkowski†

Department of Aerospace Engineering, University of Michigan, Ann Arbor, MI 48109, USA

In this paper, we introduce a new method to perform output error estimation and mesh
adaptation in computational fluid dynamics (CFD) using machine-learning techniques. The
error of interest is the functional output error induced by the numerical discretization, in-
cluding the finite computational mesh and approximation order. Given the data of adaptive
flow simulations guided by an adjoint-based error estimation method, a surrogate model
is trained to predict the output error with only the low-fidelity solution as input. The
goal is to generalize the error modeling knowledge from the simulation data at hand. The
proposed method uses an encoder-decoder type convolutional neural network (CNN), su-
pervised by both the adaptive error indicator field and the total output error to capture
both the local and global features related to the numerical error. The feasibility of the
proposed machine-learning approach for error prediction and mesh adaptation is demon-
strated in a two-dimensional advection-diffusion problem. Both the output error and the
localized adaptive indicators are well predicted by the trained CNN model, which is then
used to drive the mesh adaptation as an alternative to the adjoint-based method. The good
performance and relatively simple deployment encourage more study and development of
the proposed method.

I. Introduction

Over the past several decades, Computational Fluid Dynamics (CFD) has become increasingly prevalent
in aerospace design and analysis. The fast turnaround time, high degree of geometric flexibility, and almost
arbitrary test conditions offered by CFD have enabled the rapid and efficient design of new configurations
and analysis of complex geometries. However, reliable use of CFD simulations in practice is still challenging
as their accuracy can suffer from a variety of errors. The two main categories of errors in CFD simulations are
modeling errors due to assumptions or simplifications of the actual physics, and discretization errors induced
by the finite-dimensional discretization of the continuous model. Both types of error affect the numerical
solution of the CFD simulations, which can often lead to non-negligible error in the outputs of interest.

Typically, the choice of model and discretization is problem dependent, and these are chosen based on
the best knowledge or the experience of practitioners; the task is generally nontrivial for non-expert users.
Physical models used in CFD can usually be improved by calibrations with data from experiments or direct
numerical simulations, and this remains an active research area [1–4]. In this paper, we focus on the error
caused by the discretization of the continuous well-selected model, i.e., the governing equations are assumed
to be accurate. Commonly used a priori meshes in CFD runs, even when generated with best practice
guidelines, cannot guarantee accurate solutions [5]. Quantifying the uncertainty due to discretization errors
is essential for successful use of CFD in practice. However, this liability cannot be managed easily for complex
flow-fields, even by experienced practitioners.

Adjoint-based error estimation, also known as the dual-weighted residual method, provides a more robust
and effective approach to quantify the uncertainty in a chosen output of interest [6–8]. The adjoint variables
weight the local readily-available flow residual to form an error measure of the output, which can be used
to provide error bounds or pure signed correction for the output. The key feature of the adjoint-based

∗Graduate Research Assistant, AIAA Student Member
†Associate Professor, AIAA Senior Member

1 of 23

American Institute of Aeronautics and Astronautics

error estimation is the ability to localize the output error and to identify the regions important for accurate
output prediction. Solution-adaptive methods via adjoint-based output error estimation have dramatically
improved the accuracy and efficiency of CFD [9–16]. Unfortunately, adjoint-based error estimation requires
solving a dual linear system of the same size, or larger when solving on enriched spaces, as the flow primal
problem. The additional memory and computational costs associated with the adjoint solves, in addition
to the implementation costs, hinder the effective use of adjoint-based error estimation methods in unsteady
problems or in a many-query setting.

More recently, error surrogate models based on machine learning techniques have received much attention,
largely because of their non-intrusive nature and fast on-line evaluations. Several contributions have been
made in error modeling for parameterized reduced-order models (ROM) [17, 18], and the ideas have been
extended to estimate discretization-induced errors [19]. Efforts have also been devoted to predicting the
errors in flow solutions and the outputs of interest obtained on coarse computational meshes [20, 21], and
the models have been used to guide the selection of a set of a priori meshes [22]. Nonetheless, in these studies,
no output error indicator is provided to perform mesh adaptation. Manevitz et al. used neural networks to
predict the solution gradients in time-dependent problems, which then provided an indicator to drive the
mesh adaptation [23]. However, feature-based adaptive indicators are generally not as effective as adjoint-
based indicators, especially for functional outputs and problems with discontinuities [16, 24]. Furthermore,
these works rely on a set of user-selected local features (feature engineering) to construct the model, requiring
either expert knowledge or fine tuning. Moreover, due to the local nature of the selected features (although
some neighboring information comes in with the gradient features), these models either largely ignore the
error transport, and thus are not expected to be effective for convection-dominated problems, or still require
the adjoint variables to bring in the global sensitivity information.

In this paper, we focus on inferring the output error for a CFD simulation, as well as the corresponding
localized error indicator field to drive mesh adaptation, directly from the solution field without access to
the adjoint variables. The latter task is more challenging as both the flow state field and the output
error indicator field can be high-dimensional. We introduce an encoder-decoder type convolutional neural
network to construct the high-dimensional map, inspired by the image-to-image regression tasks in computer
vision [25–27], as well as their applications in physical modeling [28–31]. The network is composed of two
subnetworks: an encoder convolutional neural network (CNN) that extracts a low-dimensional representation
(code) from the input data, i.e., the solution field, followed by a decoder CNN that reconstructs the high-
dimensional output field, i.e., the adaptive error indicator field. The ability to automatically learn internal
invariant features and multi-scale feature hierarchies alleviates the need for a tedious, hand-crafted feature
engineering process, making this approach more flexible. Instead of using the network output field to obtain
the total output error, we connect the codes (low-dimensional representations) extracted from the input field
to a fully-connected network (FCN) to predict the total output error. The two regression tasks are trained
simultaneously to avoid separate models and additional training costs.

The remainder of this paper proceeds as follows. We describe the general output-based error estimation
and mesh adaptation problem in Section II. Section III presents the details of the network architecture and
training procedure. The primary results are shown in Section IV, and Section V concludes the present work
and discusses potential future work.

II. Problem Formulation

II.A. Parameterized Governing Equations

In this work, we consider parameterized flow governing equations in a fully-discretized form,

R(U(µ);µ) = 0, (1)

where µ ∈ RNµ is a vector of parameters sampled from the parameter space Dµ, characterizing the physics of
the system, e.g., initial and boundary conditions, material properties, or shape parameters in an optimization
problem; U ∈ RNu denotes the flow state vector, uniquely defining the continuous flow state field u ∈ V,
where V is the approximation space defined by the finite-dimensional discretization; and R : RNu × RNµ →
RNu is a nonlinear residual vector, which implicitly defines U as a function of the parameter vector, U(µ) :
RNµ → RNu .

Often in engineering applications, the quantities of particular interest are scalar outputs such as drag or

2 of 23

American Institute of Aeronautics and Astronautics

lift, defined as,
J ≡ J(U(µ)) = S(µ), (2)

where J : RNu → R and S : RNµ → R represent the maps to the scalar output from the state vector and
the parameter vector, respectively. J(U) is often explicitly defined, while the form of S(µ) is fairly complex
and generally intractable explicitly. As discretization error always appears in Eqn. 1 on a finite dimensional
space and affects the calculation of the state vector U, the resulting error in the output has to be quantified
and the mesh has to be adapted accordingly to ensure the accuracy of a CFD simulation.

II.B. Adjoint-Based Error Estimation and Mesh Adaptation

In practice, it is generally not possible to obtain the true discretization error of an output, since the exact
infinite-dimensional solution is often inaccessible. Instead, the difference between outputs evaluated on a
coarse approximation space VH and on a relatively finer space Vh is often used as an acceptable surrogate,

output error: δJ ≡ JH(UH)− Jh(Uh). (3)

The subscripts H and h denote the coarse and fine spaces, respectively. However, the error estimate in Eqn. 3
is hardly used in practice, as it requires the state vector solution on the finer space, and more importantly
the resulting error cannot be localized to guide the mesh adaptation. Instead, an adjoint variable is used to
bypass the expensive solve for Uh on the finer space, and to provide localized error in each mesh element to
drive the mesh adaptation.

For a given output J(U), the associated adjoint vector, Ψ ∈ RNu , can be defined as the sensitivity of J
to infinitesimal residual perturbations [16], and it satisfies

[
∂R

∂U

]T
Ψ +

[
∂J

∂U

]T
= 0. (4)

The adjoint vector can be used to weight the residual perturbation to produce an output perturbation,

δJ = JH(UH)− Jh(Uh)

= Jh(UH
h)− Jh(Uh) ≈ ∂Jh

∂Uh
δU

= −ΨT
h δRh = −ΨT

h

[
Rh(UH

h)−Rh(Uh)
]

= −ΨT
hRh(UH

h),

(5)

where Uh is the (hypothetical) exact solution on the fine space, and UH
h is the coarse state injected into the

fine space, which generally will not give a zero fine-space residual, Rh(UH
h) 6= Rh(Uh) = 0. Eqn. 5 gives a

first-order approximation of the output error and is valid when the perturbations are small. Furthermore, the
output definition is assumed to be unchanged between the coarse and fine spaces, i.e., JH(UH) = Jh(UH

h).

In our implementation, Galerkin orthogonality, i.e., ΨT
HRH(UH) = 0, is assumed to be consistent during

the projection, and is subtracted from Eqn. 5 to account for remaining convergence errors in both the primal
and adjoint solves on the coarse space,

δJ = −ΨT
hRh(UH

h)

= −[ΨT
hRh(UH

h)−ΨT
HRH(UH)]

= −[ΨT
hRh(UH

h)− (ΨH
h)TRh(UH

h)]

= −[Ψh −ΨH
h]TRh(UH

h)

= −δΨT
hRh(UH

h).

(6)

This form of the adjoint-weighted residual indicates that in regions where the fine space adjoint is well
approximated by the coarse space, the contribution of local residual errors to the output error will be small.

The inner product in Eqn. 6 can be localized to each element using the local adjoint vector to weight the
local residual (perturbation) vector, which provides a measure of elemental contributions to the total output
error,

δJ = −δΨT
hRh(UH

h) = −
Ne∑

e=1

δΨT
h,eRh,e(U

H
h) ⇒ εe = |δΨT

h,eRh,e(U
H
h)|, (7)

3 of 23

American Institute of Aeronautics and Astronautics

where Ne is the total number of elements in the mesh, and the subscript e indicates the product restriction
to element e. The adaptive error indicator εe is obtained by taking the absolute value of the elemental
error contribution. The error indicator can then be used to drive mesh adaptation, actively controlling the
discretization error to ensure output accuracy. Although adjoint-based error estimation and mesh adaptation
have shown success in many CFD applications, they require solving the linear adjoint equation, Eqn. 4,
exactly or approximately on the finer space, which has the same dimension as the fine-space flow problem.
These additional solves can add non-negligible costs in unsteady problems or in a many-query setting. Also,
Eqn. 4 requires the transpose of the Jacobian matrix, ∂Rh

∂Uh
, which is not always available in Jacobian-

free methods [32]. In this paper, we avoid the adjoint implementation and reduce the cost by directly
constructing the maps from the injected flow state vector UH

h to the output error δJ and the error indicator
field ε = {ε1, ε2, ..., εNe}.

III. Methodology

III.A. Surrogate Model as a Regression Problem

We consider two regression problems at the same time: given the input solution vector from a CFD simulation
U ∈ RNu , we would like to predict the scalar output error δJ as well as the adaptive indicator for each
mesh element ε. The output and input dimensions can be very different; for example in a finite-element
simulation, the state vector can be post-processed into several state components of the same dimension
UT = [UT

1 ,U
T
2 , ...,U

T
Nf

], where Nf is the state rank. We call these state components channels following

the convention in computer vision. For each channel we have Ui ⊆ RNp×Ne ,∀i = 1, 2, ..., Nf , where Ne is
the number of elements in the mesh and Np is the degrees of freedom (DOF) per element of approximation
order p (assumed to be the same everywhere in the mesh). On the other hand, the error indicator field ε
is of the same dimension as the mesh size, ε ∈ RNe . The input (each channel) and output can be made to
have the same dimension, either by averaging the state vector over each mesh element on every individual

channel i, Ûi ≡ PUi ∈ RNe (P is the averaging or projection operator), or by further localizing the error
estimate in Eqn. 7 into each degree of freedom in every mesh element, even though their dimensions are not
required to be the same in the proposed method.

Although the solution is obtained in vector form, it is usually interpreted as a field variable on the
computational domain. Consider a flow problem solved on a two-dimensional rectangular mesh with H
elements in height and W elements in width, i.e., H ×W = Ne, the regression functions we are seeking are

δ̃J = ferror(U) : RNf×Hin×Win → R; ε̃ = findicator(U) : RNf×Hin×Win → RHout×Wout , (8)

where Hin and Win are the height and width of each input channel, while Nf (state rank) denotes the
number of channels, or alternatively denoted as depth of the input Din, Din = Nf . The input dimension
of each channel depends on the mesh size, the approximation order, and the operator P if projection is
applied. Hout and Wout are height and width of the single-channel output, determined by the way in which
the output errors are localized. If we interpret the solution field of each component (channel) as an image,
then the first map ferror is an image-wise prediction often considered in image classification problems, while
the latter map findicator is a pixel-wise prediction in image segmentation tasks. The main difference is that
in computer vision applications, the inputs and outputs are often integer-valued, while they are generally
real valued in physical systems. Convolutional neural networks (CNN) were introduced in the 1990’s as a
variant of fully-connected neural networks (FCN) by taking into account the input spatial information [33].
With the ability of automatically learning spatially-invariant features, CNNs have demonstrated state of the
art performance in many computer vision benchmarks and have become the dominant approach in pattern
recognition [34–36]. As a CNN often contains FCN layers and the two structures are often used together in
many network architectures, both of them are introduced in Section III.B and are stacked together in our
proposed network architecture discussed in Section III.C.

III.B. Fully-Connected and Convolutional Neural Networks

III.B.1. Fully-Connected Neural Networks

Fully-connected neural networks (FCN) are often known as artificial neural networks (ANN) or multilayer
perceptrons (MLP) in the early days of machine learning [37]. A simple three-layer FCN is shown in

4 of 23

American Institute of Aeronautics and Astronautics

Figure 1a. It receives an input vector x (input layer) and applies an affine transformation followed by a
nonlinear activation function (hidden layer) to produce an output vector y (or a scalar). The map between
x and y can be written as

y = f(Wouth); h = σ(z); z = θinx + b ≡Winx. (9)

z is an affine transformation of the input x with parameters Win, which contains both the linear map weights
θ ∈ Rdim(z)×dim(x), and a translation or bias term b ∈ Rdim(z). A nonlinear activation function σ then maps
z element-wise to the hidden units h, often referred to as the hidden neurons. The nonlinear activation
σ provides the power of modeling complex phenomena and are often defined a priori, such as sigmoid or
rectified linear unit (ReLU) [38] functions. From the hidden layer to the output, we only showed an affine
map Wout in Figure 1a. However, one more nonlinear or linear activation f can also be applied.

The complexity and approximation power of a network increase as the number of neurons increases. One
can also stack the hidden layers to increase the approximation capacity, resulting a multi-layer network.
Deep FCNs are usually obtained by both increasing the number of hidden layers and the number of neurons
in each layer, as shown in Figure 1b. For a neural network of L hidden layers, the corresponding model can
be written as,

h1 = σ(W1x) ∈ RN1 ;

hl = σ(Wlhl−1) ∈ RNl , l = 2, 3, ..., L;

y = f(WouthL).

(10)

The number of hidden layers L, and the dimension of each hidden layer Nl, are hyper-parameters of the
network, which can be fine-tuned to achieve higher efficiency and better performance. The network trainable
parameters (weights and bias) Wl and Wout, are obtained by minimizing an objective function, often called
the loss function, measuring the deviation between the model outputs and the target values from the observed
data.

Input layer

Hidden layer

Output layer

(a) Simple three-layer FCN

Input layer
Hidden layers

Output layer

(b) Stacked deep FCN

Figure 1: Structures of fully-connected neural networks (FCN).

III.B.2. Convolutional Neural Networks

Traditional FCNs can be inefficient as each neuron is directly connected to all the neurons in the previous
layer and the layer after, i.e., the network is fully connected. The structure of FCNs forces the hidden neurons
to learn global features spanning the entire visual field (output from the previous layer), which introduces
redundancy in the network parameters and poses challenges in the network training. A convolutional neural
network is designed to discover localized features which are spatially invariant. Hence, only a small region
of the previous layer (receptive field) is connected to each neuron and the corresponding weights and bias
are shared over the entire visual field.

A traditional CNN architecture is defined similarly to the FCN, with the difference that each fully-
connected hidden layer is replaced with a layer containing a linear convolution with nonlinear activations
(convolutional layer), and very often followed with a feature pooling layer. The essential convolutional layer
follows the equation below,

hli = σ(θli ⊗ hl−1 + bli) ≡ σ(Wl
i ⊗ hl−1), i = 1, 2, ..., Dl, l = 1, 2, ..., L; (11)

5 of 23

American Institute of Aeronautics and Astronautics

where ⊗ is the discretized convolution operation; assume the dimension of hidden units (often called feature
maps in CNN) from the previous layer hl−1 is Hl−1 × Wl−1 × Dl−1; the ith convolutional filter θli of
dimension F × F × Dl−1 is applied to hl−1 with a shared bias term bli (a scalar), again, followed by a
nonlinear activation. The convolution operation produces a new feature map of the output layer (one single
channel) hli ∈ RHl×Wl×1, hence the feature maps at layer l is of dimension Hl ×Wl ×Dl. The convolution
operation has the flexibility to deal with various input and output dimensions. The filter (receptive field)
slides over the input domain with stride s to perform the convolution, which often down-samples the input
layer hl−1. Zeros can be padded around the borders of the input layer to adjust the width and the height
of the output feature maps. An example of a 3× 3× 1 Laplacian-like convolution filter with bias b = 1 and
stride s = 1 applied on a 4 × 4 × 1 input feature map is demonstrated in Figure 2. A pooling operation is
often used right after a convolutional layer, which further down-samples the input feature maps by extracting
the max values (max pooling) or the averaged values (average pooling) of subregions (pooling filter) sliding
through the input features with strides larger than 1. As the convolutional layer has the ability to do the
down-sampling with bigger strides and less padding, the pooling layer is not always required and is not used
in current work.

1 2 0 1

1 001

4

1220

314

0 1 0

1 1-4

010 1

2 1 2 0 1

1 001

4

1220

314

42

1 2 0 1

1 001

4

1220

314

42

-3

1 2 0 1

1 001

4

1220

314

42

-1-3

1 2 0 1

1 001

4

1220

314 42

-1-3

Figure 2: An example of convolution operations.

In traditional CNNs, the last convolutional or pooling layer (last feature map) is reshaped to a vector and
is connected to several fully-connected layers to perform the final classification or regression tasks. However,
in our error indicator prediction task, we would like to reconstruct an indicator field which requires an
image-to-image regression. A paradigm for these type of problems in semantic segmentation [25–27] is the
encoder-decoder network architecture shown in Figure 3. The intuition is that the high-dimensional inputs
often lie on an embedded low-dimensional nonlinear manifold or latent space, specifically representative of
the high-dimensional output field. Hence, an efficient way to find the map between high-dimensional inputs
and outputs is to go through the latent space, featuring an encoder subnetwork to extract the high-level
features (codes) from the input field, and a decoder subnetwork to construct the output field from the low-
dimensional codes. The encoder subnetwork is a down-sampling process, often through convolution and
pooling operations or sole convolutions. To reconstruct the high-dimensional output filed, an up-sampling
or deconvolution process has to be performed, either through transposed convolution [39], or using nearest-
neighbor interpolation or bilinear interpolation [40]. The transposed convolution approach is used in this
work.

III.C. Proposed Architecture and Network Training

In the output error estimation and mesh adaptation problem, we would like to predict the error in the output
as well as the localized error indicator field. Instead of constructing and training models separately for these
two tasks, we propose a network architecture capable of learning the two maps simultaneously, as shown in
Figure 4. The network consists of an encoder-decoder CNN to reconstruct the error indicator field and a
FCN connected to the latent layer (codes) of the CNN for output error estimation. The encoder-decoder
CNN is used to learn the latent features (codes) representative for the indicator field, while the regression
FCN guides the learning of the latent space and the total output error as well. The network design is based
on a simple assumption that the total output error and the error indicator field should share some embedded
features in the inputs. The network is trained to minimize the loss of the reconstruction task in the decoder
CNN, and the loss of the regression task in the FCN, together with an L2 regularization penalty to avoid

6 of 23

American Institute of Aeronautics and Astronautics

Fully connected layers

Input Convolution Pooling

Reshape Reshape

Deconvolution Deconvolution

DecoderEncoder

Codes

Figure 3: An example of an encoder-decoder convolutional neural network. The input dimension is reduced
through convolution and pooling operations, followed by fully-connected layers to further reduce the feature
dimension until the low-dimension codes are obtained. The subnetwork performing this dimension reduc-
tion is the encoder part; the decoder part performsthe opposite operations with fully-connected layers and
deconvolution operations, increasing the dimension to reconstruct the output.

excessive over-fitting. The training process is then an optimization problem formulated as

W∗ = arg min
W

Lnet + λregLreg

= arg min
W

Lε + λδLδ + λregLreg

= arg min
W

1

Nd ×Ne

Nd∑

i=1

‖ε̃i − εi‖2F + λδ
1

Nd

Nd∑

i=1

‖δ̃J i − δJ i‖22 + λreg
1

Nd ×Nθ
‖θ‖22

= arg min
Wen,Wde,Wδ

1

Nd ×Ne

Nd∑

i=1

‖findicator(Ui; Wen,Wde)− εi‖2F

+ λδ
1

Nd

Nd∑

i=1

‖ferror(Ui; Wen,Wδ)− δJ i‖22 + λreg
1

Nd ×Nθ
‖θ‖22.

(12)

In the equation above, Lnet denotes the total loss of the network, including the indicator prediction loss
Lε and the output error prediction loss Lδ. The regularization loss Lreg penalizes all the network weights
θ of dimension Nθ (including the linear map weights and the convolution filters) to avoid over-fitting. λδ
and λreg are the weights for the output error prediction loss and the regularization loss, which are hyper-
parameters of the model. Quantities with ·̃ indicate the predicted values of the model, while those without
·̃ are the values from the training data with Nd samples; W = {Wen,Wde,Wδ} are the trainable network
parameters (including all the weights θ and the bias terms b), where Wen,Wde,Wδ represent the parameters
in the encoder, decoder, and the fully-connected regression layers, respectively. The superscript ∗ indicates
the optimal solution to the optimization problem. The gradients of the loss function are calculated using
back-propagation [41], and the parameters are updated using stochastic gradient descent algorithms.

Fully connected layers

Input Convolution Pooling

Reshape

Reshape
Deconvolution Deconvolution

Decoder

Encoder

Codes

+

Figure 4: Proposed network architecture. The network is composed of an encoder network, a decoder
network, and a fully-connected regression network; the decoder and the regression networks share the latent
layer to improve the efficiency and to avoid using separate models. The parameter vector µ is added into
the latent layer as additional codes to help the training.

In contrast to computer vision tasks, often in physical modeling we know a set of low-dimensional codes

7 of 23

American Institute of Aeronautics and Astronautics

beforehand: the parameters µ that govern the system, e.g., Reynolds number and Mach number in a flow
simulation. Although it is conceptually helpful to add these parameters into the codes in the training process,
and this is implemented in the present work, it does not improve the model performance much in our tests.
The authors believe that the network should be able to extract the parameters information directly from the
state input, while these extra codes may be more helpful if the training dataset size is limited.

III.D. Fixed Network for Adaptive Simulation Prediction

Since the network model is often trained with data of fixed input and output dimensions, it is not readily
useful for adaptive simulations as the dimensions of the state and error indicator fields both change as the
mesh is adapted. In order to generalize the model for adaptive simulations, we use a fixed reference mesh
to do the error estimation for the adaptive simulations, i.e., the fine space h in Eqn. 6 is achieved using
a fixed reference mesh that is much finer than the current mesh. At each adaptive iteration, the states
are solved on the current mesh and then projected to the reference mesh to obtain a fixed-dimension state
vector UH

h . After applying Eqn. 6 on the reference mesh, we obtain a fixed-dimension error-indicator field,
εh, which is then projected back to the current mesh to drive the mesh adaptation, as shown in Figure 5.
This procedure is different from standard adjoint-based error estimation, where the fine space is usually
achieved with approximation order increment, p to p+ 1. During an adaptive simulation, the state data UH

h

and the error indicator data εh are collected on the same reference mesh at each adaptive iteration, resulting
in multiple samples for every complete adaptive simulation.

Figure 5: An example of error estimation using a fixed reference mesh (fine space).

This treatment is straightforward in the present work since the simulations are on rectangular computa-
tional meshes without interior geometry. For more complicated simulations with complex geometries, either
local projections to rectangular meshes or topology mapping from the current mesh to a rectangular mesh
will be considered.

IV. Results and Discussion

We test our proposed network architecture on a scalar advection-diffusion problem, with the governing
equation written as

~V · ∇u− ν∇2u = 0, (x, y) ∈ Ω, (13)

where ~V denotes the advection velocity, ν is the viscosity, and u is the scalar state. The computational
domain Ω is a unit square, Ω ∈ [0, 1]2, and a Dirichlet boundary condition is used,

u = exp(0.5 sin(−4x+ 6y)− 0.8 cos(3x− 8y)), (x, y) ∈ ∂Ω. (14)

8 of 23

American Institute of Aeronautics and Astronautics

The governing equation is discretized with a discontinuous Galerkin (DG) method, using the Roe [42] con-
vective flux and the second form of Bassi and Rebay treatment for the viscous flux [43]. The resulting
discretized algebraic equations are in the form of Eqn. 1,

R(U;µ) = 0, µ = {~V , ν}. (15)

The output of interest J is the integral of the flux, −ν∇u, at the right boundary of the domain.

IV.A. Data Generation and Preprocessing

In the test problem, we restrict the advection velocity magnitude to be unit, |~V | = 1; and we use the non-
dimensional Péclet number Pe instead of the viscosity to parameterize the system. Thus, the parameter
space is reduced to two dimensions, µ = {α, Pe}, where α is the advection angle defined by ~V = [cosα, sinα],

and the Péclet number is defined as Pe ≡ |~V |L/ν, where L is the domain length. We generate the data by
uniformly sampling 21 points in the advection angle space α ∈ [0, 60] degrees and 50 points in the Péclet
number space Pe ∈ [1, 50], resulting a data set of 1050 adaptive simulations, Dµ = {µi}, i = 1, 2, ..., Nµ
(Nµ = 1050).

At each parameter point µi, the governing equation is solved with a DG p = 1 discretization on a uniform
mesh starting with 5× 5 elements. Then the output error indicator field is obtained with the adjoint-based
method as shown in Figure 5, with a reference mesh consisting of 320× 320 elements. Both the adjoint and
state vectors are solved exactly on the fine reference mesh for the error estimation and error localization.
Since the state vector is solved exactly on the fine mesh, we use the exact difference between the outputs
on the current mesh and the reference mesh as the truth value for the output error in our data. If the state
and adjoint vectors are solved approximately on the reference mesh, the adjoint-weighted residual can be
used as the true output error instead. In each adaptive simulation, 19 mesh adaptations are performed,
resulting in 20 data points including the data on the initial mesh. Therefore, the entire dataset contains
Nd = Nµ × 20 = 21000 samples. The dataset is then randomly shuffled and split into a training dataset
of 14700 samples (70%), a validation dataset of 4200 samples (20%), and a testing dataset of 2100 samples
(10%).

Since the error indicator is localized to a scalar per element, the state vector (per channel) with order p > 0
will have higher dimension compared to the error indicator field. Nonetheless, the network can be carefully
designed to handle the dimension mismatch. However, the state non-uniqueness at element interfaces in the
DG method makes the network design and training cumbersome. In the current implementation, we average
the states at the element interfaces to make the solution “continuous”. This can also be considered in the
CNN point of view as a down-sampling or convolution operation only on the element interfaces. However,
this filter is defined a-priori, which may not be optimal in our regression tasks. For approximation order
p = 1, the averaging process results a state vector of the same size as the reference mesh nodes, while the
output has the same size as the reference mesh elements. Therefore, the network input and output sizes in
this problem are 321 × 321 and 320 × 320, respectively. A logarithm transformation is also applied to the
indicator field log(|ε|) and the output error log(|δJ |) before training, as the transformed output has lower
variance and generally helps the training [17, 18]. Several samples from the dataset are shown in Figure 6,
in which the second column shows the projected state fields (inputs), and the fourth column presents the
error indicator fields (outputs), both on the fine reference mesh.

IV.B. Network Implementation and Training

The network is designed following the architecture proposed in Section III.C, and the detailed structure
is summarized in Table 1. The training loss is defined as Eqn. 12 with λδ = 64 and λreg = 0.001 a. λδ
is large since the output error modeling is found to be more difficult than the indicator field prediction
though the latter has much higher dimension. The output error allows cancellations of the errors in different
elements such that its behavior is more oscillatory compared to the more conservative error indicator field.
The network is implemented in TensorFlow [44] and trained with the adaptive moment estimation (Adam)
algorithm [45]. The starting learning rate is set to be 0.0001, and 500 total epochs with mini-batch size of
20 are run in the training. The training and validation losses are recorded in Figure 7, and the performance

aλδ and λreg are hyper-parameters that can be further tunned to achieve better performance. The outputs have to be
normalized to make the tuned hyper-parameters more generalizable, yet this is not performed in our training.

9 of 23

American Institute of Aeronautics and Astronautics

0.5

1.0

1.5

2.0

2.5

3.0

0.5

1.0

1.5

2.0

2.5

3.0

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

−16

−14

−12

−10

−8

−6

−4

−2

0

−2.0

−1.5

−1.0

−0.5

0.0

0.5

0.5

1.0

1.5

2.0

2.5

3.0

0.5

1.0

1.5

2.0

2.5

3.0

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

−16

−14

−12

−10

−8

−6

−4

−2

0

−4.50

−4.25

−4.00

−3.75

−3.50

−3.25

−3.00

−2.75

0.5

1.0

1.5

2.0

2.5

3.0

0.5

1.0

1.5

2.0

2.5

3.0

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

−16

−14

−12

−10

−8

−6

−4

−2

0

−8.0

−7.5

−7.0

−6.5

−6.0

−5.5

−5.0

−4.5

−4.0

(a) UH (b) UH
h (c) Ψh (d) εh (e) εhH

Figure 6: Three samples from the dataset. The first and the last columns show the state and the indicator
fields on current adapted meshes. The second and the fourth columns are the projected sates and the error
indicators on the reference mesh, used as inputs and outputs respectively in our problem. The third column
depicts the adjoint variables on the reference mesh. The reference mesh has 320 × 320 elements, and the
mesh lines are not shown to make the contours clearer. The small indicator regions (blue lines) in the fine
space indicator fields are characterized by small δΨh or Rh(UH

h), though they are relatively less important
for the adaptation purpose, as often only larger indicators drive the adaptation.

10 of 23

American Institute of Aeronautics and Astronautics

of the resulting model on both the training and validation datasets is shown in Figure 8 and Figure 9. The
model shows good predictions for both the adaptive error indicator fields and the total output errors on the
validation set, as shown in Figure 8 and Figure 9, indicating a good generalization of the model b. The
model performance is investigated in details on the testing dataset in Section IV.C.

Table 1: Network architecture

Subnetwork Sublayer Input layer Operation Output dim Activation

Input States 321× 321× 1

Pe 1

α 1

Encoder Conv1 Input Convolution (F = 2× 2× 128, s = 1) 321× 321× 128 ReLU

Conv2 Conv1 Convolution (F = 2× 2× 128, s = 2) 161× 161× 128 ReLU

Conv3 Conv2 Convolution (F = 2× 2× 128, s = 2) 81× 81× 128 ReLU

Conv4 Conv3 Convolution (F = 4× 4× 128, s = 4) 21× 21× 128 ReLU

Conv5 Conv4 Convolution (F = 4× 4× 64, s = 4) 6× 6× 64 ReLU

Flat Conv5 Reshape 2304× 1 None

Compress Flat Fully-connected 800× 1 ReLU

Codes Compress, Pe, α Concatenate 802× 1 None

Decoder Decompress Codes Fully-connected 1600× 1 ReLU

Unflat Decompress Reshape 5× 5× 64 None

Deconv1 Unflat ConvolutionT (F = 4× 4× 128, s = 4) c 20× 20× 128 ReLU

Deconv2 Deconv1 ConvolutionT (F = 4× 4× 128, s = 4) 80× 80× 128 ReLU

Deconv3 Deconv2 ConvolutionT (F = 2× 2× 128, s = 2) 160× 160× 128 ReLU

Deconv4 Deconv3 ConvolutionT (F = 2× 2× 128, s = 2) 320× 320× 128 ReLU

IndPred Deconv4 Convolution (F = 2× 2× 1, s = 1) 320× 320× 1 None

Regressor Dense1 Codes Fully-connected 400× 1 ReLU

Dense2 Dense1 Fully-connected 200× 1 ReLU

Dense3 Dense2 Fully-connected 100× 1 ReLU

ErrEst Dense3 Fully-connected 1 None

IV.C. Network Testing and Model Deployment

The model obtained in Section IV.B is first tested on the testing set generated in Section IV.A to assess
the generalization power of the model on unseen data. This can also be considered as an interpolation test
since the testing data and the training data show strong similarity as they are both sampled from the same
dataset generated in Section IV.A. To further study how well the model generalizes, we also generated more
data with parameters that are out of the parameter space sampled in Section IV.A and tested the model
on them, which we called extrapolation tests in this work. On each testing set, we also deploy the trained
model in the flow solver to validate the effectiveness of the model predictions in real-time simulations.

IV.C.1. Interpolation on Unseen Data

In this test, the testing samples are from the testing set generated in Section IV.A. The performance of the
model is shown in Figure 10, from which we can see that the model achieves good accuracy on both the
adaptive error indicator and output error predictions. The model is then deployed to perform two adaptive
simulations using the parameters chosen from Figure 10a. Standard adjoint-based error estimation and mesh
adaptation are also performed on these two cases. All the simulations start with the same initial mesh with

bIn general, the validation dataset is used to monitor the model generalization and tune the model hyper-parameters during
the training, and thus is not suitable as testing data although the model does not see the validation data in the training.

cThis is a transposed convolution operation [39].

11 of 23

American Institute of Aeronautics and Astronautics

0 50000 100000 150000 200000 250000 300000 350000
Mini-batch training iterations

10−1

100

101

102

M
in

i-
b

at
ch

lo
ss

es

Training loss

Training loss (smoothed)

Validation loss

Validation loss (smoothed)

Figure 7: Training history of the model.

5× 5 elements. The final adapted meshes and the output error convergence are compared using our model
and the standard adjoint-based approach, as shown in Figure 11. We can see that the trained model is able
to identify important regions for the output prediction and produce similar final adapted meshes compared
to the adjoint-based method, although the true output errors are slightly higher than the adjoint-based
method. On other other hand, the CNN model also gives acceptable error estimation on the true output
error, with accuracy comparable to the adjoint-based approach.

IV.C.2. Extrapolation on Unseen Data

Unseen Péclet Numbers Pe For the extrapolation test, we first test the model on unseen Péclet num-
bers. Keeping the advection angles α ∈ [0, 30], the testing data is randomly sampled from Pe ∈ [51, 60]. The
testing results are shown in Figure 12. The model is able to predict the adaptive error indicator fields and
the output errors accurately on the testing data, indicating good generalizations on the Pe space. Again,
adaptive simulations using the CNN model and the adjoint-based approach are compared on two samples
chosen from Figure 12a. The comparison is shown in Figure 13, from which we can see that the trained model
is able to effectively drive the mesh adaptation, though the true output error is higher than the adjoint-based
method. The error estimation provided by the CNN model is again accurate, and the accuracy is close to
the adjoint-based method.

Unseen Advection Angles α In this extrapolation test, the model is tested on unseen advection angles.
The testing data is sampled from α ∈ {63, 66, 69}, while keeping Pe ∈ [1, 50]. The model performance on the
error indicator prediction and the output error prediction is presented in Figure 14. We see that the model
again generalizes well on the error indicator field predictions but tends to underestimate the output errors
in this test. Adaptive simulations on two samples from Figure 14, are again compared in Figure 15. As
expected, the adaptation performance is comparable to the adjoint-based method, while the error estimation
provided by the CNN model is unreliable. We expect that more training samples in the advection angle space
should help generalize the model, as currently the sample points in α space are very limited (only 21 points
compared to 50 points in the Pe space). On the other hand, given the fact that the error estimation of the
adjoint-based method in this test dataset is also less accurate, the output error behavior in the current test
region may be much different from the sampling space used in the training. A more detailed investigation
of the model generalization on advection angles α will be performed in the future.

12 of 23

American Institute of Aeronautics and Astronautics

Pe = 26, α = 54, i = 09

S
ta

te
s

Pe = 20, α = 51, i = 05 Pe = 20, α = 21, i = 00 Pe = 37, α = 30, i = 18 Pe = 45, α = 39, i = 11 Pe = 06, α = 27, i = 18 Pe = 28, α = 42, i = 08 Pe = 49, α = 39, i = 02 Pe = 23, α = 42, i = 08 Pe = 06, α = 03, i = 11

T
ru

e
In

d
ic

a
to

r
C

N
N

P
re

d
ic

ti
o
n

−10 −5

N
o
rm

a
li

ze
d

H
is

t

−10 −5 −10 −5 −15 −10 −10 −5 −20 −15 −10 −10 −5 −10 −5 −10 −5 −15 −10 −5
0.0

0.2

0.4

0.6

0.8

1

2

3

−15

−10

−5

0

−15

−10

−5

0

(a) Error indicator field predictions on the training set.

Pe = 35, α = 12, i = 13

S
ta

te
s

Pe = 08, α = 09, i = 01 Pe = 37, α = 36, i = 16 Pe = 16, α = 54, i = 06 Pe = 19, α = 36, i = 00 Pe = 31, α = 51, i = 15 Pe = 44, α = 48, i = 03 Pe = 37, α = 45, i = 08 Pe = 03, α = 03, i = 16 Pe = 29, α = 12, i = 07

T
ru

e
In

d
ic

a
to

r
C

N
N

P
re

d
ic

ti
o
n

−15 −10 −5

N
o
rm

a
li

ze
d

H
is

t

−10 −5 −20 −15 −10 −5 −15 −10 −5 −10 −5 −20 −15 −10 −5 −10 −5 −15 −10 −5 −15 −10 −5 −10 −5
0.0

0.2

0.4

0.6

1

2

3

−15

−10

−5

0

−15

−10

−5

0

(b) Error indicator field predictions on the validation set.

Figure 8: Model performance of error indicator field predictions on the training and validation sets. The
top row shows the inputs to the network; the top caption shows the parameters of the current data point,
in which i indicates the index of the current adaptive iteration, starting from 0. The second row presents
the ground truth, while the third row contains the predictions made by the network model. The last row
compares the normalized histograms of the predictions (orange) and the ground truth (blue).

13 of 23

American Institute of Aeronautics and Astronautics

−4.5 −4.0 −3.5 −3.0 −2.5 −2.0 −1.5
True output error log(|δJ |)

−5.0

−4.5

−4.0

−3.5

−3.0

−2.5

−2.0

−1.5

N
et

w
or

k
p

re
d

ic
ti

on
lo

g
(|̃δ
J
|)

Correlation factor r = 0.9990

True error

Network prediction

(a) Output error predictions on the training set.

−5.5 −5.0 −4.5 −4.0 −3.5 −3.0 −2.5 −2.0 −1.5
True output error log(|δJ |)

−5.5

−5.0

−4.5

−4.0

−3.5

−3.0

−2.5

−2.0

−1.5

N
et

w
or

k
p

re
d

ic
ti

on
lo

g
(|̃δ
J
|)

Correlation factor r = 0.9818

True error

Network prediction

(b) Output error predictions on the validation set.

Figure 9: Model performance of output error predictions on the training and validation sets. Each plot is
generated using 200 samples randomly sampled from the training and validation sets.

Pe = 27, α = 45, i = 17

S
ta

te
s

Pe = 26, α = 12, i = 04 Pe = 03, α = 30, i = 04 Pe = 46, α = 60, i = 06 Pe = 31, α = 48, i = 06 Pe = 07, α = 09, i = 01 Pe = 09, α = 51, i = 17 Pe = 30, α = 12, i = 17 Pe = 15, α = 60, i = 16 Pe = 46, α = 33, i = 01

T
ru

e
In

d
ic

a
to

r
C

N
N

P
re

d
ic

ti
o
n

−15 −10 −5

N
o
rm

a
li

ze
d

H
is

t

−10 −5 −15 −10 −5 −10 −5 −10 −5 −10 −5 −15 −10 −5 −15 −10 −5 −15 −10 −5 −10 −5
0.0

0.2

0.4

0.6

1

2

3

−15

−10

−5

0

−15

−10

−5

0

(a) Interpolation test of the error indicator field predictions on the testing set.

−5.5 −5.0 −4.5 −4.0 −3.5 −3.0 −2.5 −2.0 −1.5
True output error log(|δJ |)

−5.5

−5.0

−4.5

−4.0

−3.5

−3.0

−2.5

−2.0

−1.5

N
et

w
or

k
p

re
d

ic
ti

on
lo

g
(|̃δ
J
|)

Correlation factor r = 0.9954

True error

Network prediction

(b) Interpolation test of the output error predictions on the testing set (200 samples).

Figure 10: Model interpolation test on the testing dataset. Refer to Figure 8 and Figure 9 for a detailed
figure interpretation.

14 of 23

American Institute of Aeronautics and Astronautics

0.5

1.0

1.5

2.0

2.5

3.0

0.5

1.0

1.5

2.0

2.5

3.0

10−1

h = 1/
√
Ne

10−4

10−3

10−2

O
u

tp
u

t
er

ro
r

2

CNN model

CNN true error

Adjoint method

Adjoint true error

(a) (Pe, α) = (31, 48)

0.5

1.0

1.5

2.0

2.5

3.0

0.5

1.0

1.5

2.0

2.5

3.0

10−1

h = 1/
√
Ne

10−3

10−2

O
u

tp
u

t
er

ro
r

2

CNN model

CNN true error

Adjoint method

Adjoint true error

(b) (Pe, α) = (46, 33)

Figure 11: Comparison of the CNN model and the adjoint-based method in adaptive simulations. The first
column shows the states on the final adaptive meshes from the CNN model, while the second column presents
the ones from the adjoint method. The last column shows the output error convergence history in these two
methods. The solid lines are the error estimates computed by the CNN model and the adjoint method, while
the dashed lines are the “true” output error compared to the “true” outputs obtained on the reference fine
mesh with order increment, i.e., p→ p+ 1 = 2.

15 of 23

American Institute of Aeronautics and Astronautics

Pe = 56, α = 45, i = 07

S
ta

te
s

Pe = 57, α = 54, i = 02 Pe = 60, α = 21, i = 14 Pe = 55, α = 42, i = 03 Pe = 58, α = 09, i = 19 Pe = 58, α = 57, i = 02 Pe = 52, α = 15, i = 06 Pe = 54, α = 45, i = 18 Pe = 57, α = 51, i = 14 Pe = 59, α = 09, i = 18

T
ru

e
In

d
ic

a
to

r
C

N
N

P
re

d
ic

ti
o
n

−10 −5

N
o
rm

a
li

ze
d

H
is

t

−10 −5 −10 −5 −10 −5 −20 −15 −10 −5 −10 −5 −10 −5 −20 −15 −10 −5 −15 −10 −5 −20 −15 −10 −5
0.0

0.2

0.4

0.6

1

2

3

−15

−10

−5

0

−15

−10

−5

0

(a) Extrapolation test of the error indicator field predictions on the testing set (unseen Pe)

−6 −5 −4 −3 −2
True output error log(|δJ |)

−6

−5

−4

−3

−2

N
et

w
or

k
p

re
d

ic
ti

on
lo

g
(|̃δ
J
|)

Correlation factor r = 0.9929

True error

Network prediction

(b) Extrapolation test of the output error predictions on the testing set (unseen Pe, 200 samples).

Figure 12: Model extrapolation test on the testing data (unseen Pe). Refer to Figure 8 and Figure 9 for a
detailed figure interpretation.

16 of 23

American Institute of Aeronautics and Astronautics

0.5

1.0

1.5

2.0

2.5

3.0

0.5

1.0

1.5

2.0

2.5

3.0

10−1

h = 1/
√
Ne

10−3

10−2

O
u

tp
u

t
er

ro
r

2

CNN model

CNN true error

Adjoint method

Adjoint true error

(a) (Pe, α) = (54, 45)

0.5

1.0

1.5

2.0

2.5

3.0

0.5

1.0

1.5

2.0

2.5

3.0

10−1

h = 1/
√
Ne

10−3

10−2

O
u

tp
u

t
er

ro
r

2

CNN model

CNN true error

Adjoint method

Adjoint true error

(b) (Pe, α) = (58, 09)

Figure 13: Comparison of the CNN model and the adjoint-based method in adaptive simulations (unseen Pe).
From left to right: final CNN adapted meshes, final adjoint-based adapted meshes, output error convergence.
Refer to Figure 11 for a more detailed figure interpretation.

17 of 23

American Institute of Aeronautics and Astronautics

Pe = 22, α = 63, i = 09

S
ta

te
s

Pe = 26, α = 69, i = 19 Pe = 15, α = 69, i = 00 Pe = 08, α = 63, i = 19 Pe = 15, α = 69, i = 02 Pe = 07, α = 66, i = 05 Pe = 35, α = 63, i = 13 Pe = 46, α = 69, i = 05 Pe = 44, α = 66, i = 01 Pe = 38, α = 66, i = 17

T
ru

e
In

d
ic

a
to

r
C

N
N

P
re

d
ic

ti
o
n

−10 −5

N
o
rm

a
li

ze
d

H
is

t

−20 −15 −10 −15 −10 −5 0 −20 −15 −10 −10 −5 −10 −5 −15 −10 −5 −15 −10 −5 −10 −5 −20 −15 −10
0.0

0.2

0.4

0.6

0.8

1

2

3

−15

−10

−5

0

−15

−10

−5

0

(a) Extrapolation test of the error indicator field predictions on the testing set (unseen α).

−5 −4 −3 −2
True output error log(|δJ |)

−7

−6

−5

−4

−3

−2

N
et

w
or

k
p

re
d

ic
ti

on
lo

g
(|̃δ
J
|)

Correlation factor r = 0.8201

True error

Network prediction

(b) Extrapolation test of the output error predictions on the testing set (unseen α, 200 samples).

Figure 14: Model extrapolation test on the testing data (unseen α). Refer to Figure 8 and Figure 9 for a
more detailed figure interpretation.

18 of 23

American Institute of Aeronautics and Astronautics

0.5

1.0

1.5

2.0

2.5

3.0

0.5

1.0

1.5

2.0

2.5

3.0

10−1

h = 1/
√
Ne

10−6

10−5

10−4

10−3

10−2

O
u

tp
u

t
er

ro
r

2

CNN model

CNN true error

Adjoint method

Adjoint true error

(a) (Pe, α) = (26, 69)

0.5

1.0

1.5

2.0

2.5

3.0

0.5

1.0

1.5

2.0

2.5

3.0

10−1

h = 1/
√
Ne

10−5

10−4

10−3

10−2

O
u

tp
u

t
er

ro
r

2

CNN model

CNN true error

Adjoint method

Adjoint true error

(b) (Pe, α) = (44, 66)

Figure 15: Comparison of the CNN model and the adjoint method in adaptive simulations (unseen α). From
left to right: final CNN adapted meshes, final adjoint-based adapted meshes, output error convergence. Refer
to Figure 11 for a more detailed figure interpretation.

19 of 23

American Institute of Aeronautics and Astronautics

V. Conclusion

Output error estimation and mesh adaptation are essential for accurate and efficient numerical simu-
lations. However, it is a challenging task in practice, even for experienced users. Adjoint-based methods
provide an approach to quantify the output error and to guide the mesh adaptation, but they require an
adjoint solution, which imposes both implementation and cost challenges in practice. We proposed a new
method to manage this liability with machine learning techniques. A composite encoder-decoder type neural
network, containing both convolutional and fully-connected layers, is used to predict both the output error
and the localized error indicator field. The feasibility of the proposed method has been demonstrated in a
simple advection-diffusion problem on rectangular meshes. A properly-trained model is able to accurately
predict the adaptive error indicator field as well as the output error on unseen data in the interpolation test.
In extrapolation regions, the error indicator field predictions generalize well in a wide range of parameter
space. Model deployment in real-time adaptive simulations also shows the effectiveness of the predicted
indicator fields for driving the mesh adaptation. The output error predictions generalize well in different
Péclet numbers, though lack generalizability in the advection angle space. We expect that more training
samples in the advection angle space should help to generalize the model, as currently the sample points in
α space are limited. On the other hand, the output error prediction task is also more difficult than the error
indicator field prediction, although the the latter has a much higher dimensional output. As the output
error allows for error cancellations among different mesh elements, its behavior is more oscillatory compared
to the more conservative error indicator filed, making it harder to learn a consistent model for the error
estimation.

The problem considered in this paper is fairly simple: a rectangular computational domain without any
geometry. For more complicated simulations with an irregular computational domain or in the presence of
complex geometries, the state and indicator projections should be more carefully designed. The application
of the current method to more complex problems will be studied in the future. Presently, the network is not
finely tuned, and better performance may be obtained with more tuning. Additionally, advanced training
techniques such as batch normalization and dropout can be used to improve the training efficiency and
to improve the model performance. Furthermore, the symmetry of the encoder and decoder subnetworks
suggests sharing the network parameters through the corresponding layers, which can substantially reduce
the number of parameters and improve the training efficiency. Sparsity constraints of the latent space codes
can also be added into the training loss to force the network to learn independent embedded representations.

Acknowledgments

The authors acknowledge the support of the Boeing Company, with technical monitor Dr. Mori Mani,
and the Department of Energy under grant DE-FG02-13ER26146/DE-SC0010341.

References

[1] Oberkampf, W. L. and Trucano, T. G., “Verification and validation in computational fluid dynamics,” Progress
in Aerospace Sciences, Vol. 38, No. 3, April 2002, pp. 209–272, doi:10.1016/S0376-0421(02)00005-2.

[2] Guillas, S., Glover, N., and Malki-Epshtein, L., “Bayesian calibration of the constants of the k − ε turbulence
model for a CFD model of street canyon flow,” Computer Methods in Applied Mechanics and Engineering ,
Vol. 279, September 2014, pp. 536–553, doi:10.1016/j.cma.2014.06.008.

[3] Parish, E. J. and Duraisamy, K., “A paradigm for data-driven predictive modeling using field inversion and
machine learning,” Journal of Computational Physics, Vol. 305, 2016, pp. 758 – 774, doi:10.1016/j.jcp.2015.
11.012.

[4] Duraisamy, K., Iaccarino, G., and Xiao, H., “Turbulence Modeling in the Age of Data,” Annual Review of Fluid
Mechanics, Vol. 51, No. 1, 2019, pp. 357–377, doi:10.1146/annurev-fluid-010518-040547.

[5] Levy, D. W., Zickuhr, T., Vassberg, J., Agrawal, S., Wahls, R. A., Pirzadeh, S., and Hemsch, M. J., “Data
Summary from the First AIAA Computational Fluid Dynamics Drag Prediction Workshop,” Journal of Aircraft ,
Vol. 40, No. 5, September 2003, pp. 875–882, doi:10.2514/2.6877.

[6] Becker, R. and Rannacher, R., “An optimal control approach to a posteriori error estimation in finite element
methods,” Acta Numerica, Vol. 10, May 2001, pp. 1–102, doi:10.1017/s0962492901000010.

20 of 23

American Institute of Aeronautics and Astronautics

http://dx.doi.org/10.1016/S0376-0421(02)00005-2
http://dx.doi.org/10.1016/j.cma.2014.06.008
http://dx.doi.org/10.1016/j.jcp.2015.11.012
http://dx.doi.org/10.1016/j.jcp.2015.11.012
http://dx.doi.org/10.1146/annurev-fluid-010518-040547
http://dx.doi.org/10.2514/2.6877
http://dx.doi.org/10.1017/s0962492901000010

[7] Pierce, N. A. and Giles, M. B., “Adjoint Recovery of Superconvergent Functionals from PDE Approximations,”
SIAM Review , Vol. 42, No. 2, January 2000, pp. 247–264, doi:10.1137/s0036144598349423.

[8] Giles, M. B. and Süli, E., “Adjoint methods for PDEs: a posteriori error analysis and postprocessing by duality,”
Acta Numerica, Vol. 11, 2002, pp. 145236, doi:10.1017/S096249290200003X.

[9] Hartmann, R. and Houston, P., “Adaptive Discontinuous Galerkin Finite Element Methods for the Compressible
Euler Equations,” Journal of Computational Physics, Vol. 183, No. 2, December 2002, pp. 508–532, doi:10.1006/
jcph.2002.7206.

[10] Venditti, D. A. and Darmofal, D. L., “Grid Adaptation for Functional Outputs: Application to Two-Dimensional
Inviscid Flows,” Journal of Computational Physics, Vol. 176, No. 1, February 2002, pp. 40–69, doi:10.1006/
jcph.2001.6967.

[11] Fidkowski, K. J. and Darmofal, D. L., “A triangular cut-cell adaptive method for high-order discretizations of
the compressible Navier-Stokes equations,” Journal of Computational Physics, Vol. 225, 2007, pp. 1653–1672,
doi:10.1016/j.jcp.2007.02.007.

[12] Nemec, M. and Aftosmis, M., “Adjoint Error Estimation and Adaptive Refinement for Embedded-Boundary
Cartesian Meshes,” 18th AIAA Computational Fluid Dynamics Conference, American Institute of Aeronautics
and Astronautics, June 2007, doi:10.2514/6.2007-4187.

[13] Nemec, M., Aftosmis, M., and Wintzer, M., “Adjoint-based adaptive mesh refinement for complex geometries,”
46th AIAA Aerospace Sciences Meeting and Exhibit , American Institute of Aeronautics and Astronautics, Jan
2008, p. 725, doi:10.2514/6.2014-2576.

[14] Wang, L. and Mavriplis, D. J., “Adjoint-based h–p adaptive discontinuous Galerkin methods for the 2D com-
pressible Euler equations,” Journal of Computational Physics, Vol. 228, No. 20, Nov. 2009, pp. 7643–7661,
doi:10.1016/j.jcp.2009.07.012.

[15] Yano, M. and Darmofal, D. L., “An optimization-based framework for anisotropic simplex mesh adaptation,”
Journal of Computational Physics, Vol. 231, No. 22, September 2012, pp. 7626–7649, doi:10.1016/j.jcp.2012.
06.040.

[16] Fidkowski, K. J. and Darmofal, D. L., “Review of Output-Based Error Estimation and Mesh Adaptation in
Computational Fluid Dynamics,” AIAA Journal , Vol. 49, No. 4, April 2011, pp. 673–694, doi:10.2514/1.
J050073.

[17] Drohmann, M. and Carlberg, K., “The ROMES Method for Statistical Modeling of Reduced-Order-Model Error,”
SIAM/ASA Journal on Uncertainty Quantification, Vol. 3, No. 1, January 2015, pp. 116–145, doi:10.1137/
140969841.

[18] Moosavi, A., Ştefănescu, R., and Sandu, A., “Multivariate predictions of local reduced-order-model errors and di-
mensions,” International Journal for Numerical Methods in Engineering , Vol. 113, No. 3, October 2017, pp. 512–
533, doi:10.1002/nme.5624.

[19] Freno, B. A. and Carlberg, K. T., “Machine-learning error models for approximate solutions to parameterized
systems of nonlinear equations,” Computer Methods in Applied Mechanics and Engineering , Vol. 348, May 2019,
pp. 250–296, doi:10.1016/j.cma.2019.01.024.

[20] Rauser, F., Korn, P., and Marotzke, J., “Predicting goal error evolution from near-initial-information: A learning
algorithm,” Journal of Computational Physics, Vol. 230, No. 19, Aug. 2011, pp. 7284–7299, doi:10.1016/j.jcp.
2011.05.029.

[21] Hanna, B. N., Dinh, N. T., Youngblood, R. W., and Bolotnov, I. A., “Machine-learning based error prediction
approach for coarse-grid Computational Fluid Dynamics (CG-CFD),” Progress in Nuclear Energy , Vol. 118, Jan.
2020, pp. 103140, doi:10.1016/j.pnucene.2019.103140.

[22] Bao, H., Dinh, N. T., Lane, J. W., and Youngblood, R. W., “A data-driven framework for error estimation
and mesh-model optimization in system-level thermal-hydraulic simulation,” Nuclear Engineering and Design,
Vol. 349, Aug. 2019, pp. 27–45, doi:10.1016/j.nucengdes.2019.04.023.

[23] Manevitz, L., Bitar, A., and Givoli, D., “Neural network time series forecasting of finite-element mesh adapta-
tion,” Neurocomputing , Vol. 63, Jan. 2005, pp. 447–463, doi:10.1016/j.neucom.2004.06.009.

21 of 23

American Institute of Aeronautics and Astronautics

http://dx.doi.org/10.1137/s0036144598349423
http://dx.doi.org/10.1017/S096249290200003X
http://dx.doi.org/10.1006/jcph.2002.7206
http://dx.doi.org/10.1006/jcph.2002.7206
http://dx.doi.org/10.1006/jcph.2001.6967
http://dx.doi.org/10.1006/jcph.2001.6967
http://dx.doi.org/10.1016/j.jcp.2007.02.007
http://dx.doi.org/10.2514/6.2007-4187
http://dx.doi.org/10.2514/6.2014-2576
http://dx.doi.org/10.1016/j.jcp.2009.07.012
http://dx.doi.org/10.1016/j.jcp.2012.06.040
http://dx.doi.org/10.1016/j.jcp.2012.06.040
http://dx.doi.org/10.2514/1.J050073
http://dx.doi.org/10.2514/1.J050073
http://dx.doi.org/10.1137/140969841
http://dx.doi.org/10.1137/140969841
http://dx.doi.org/10.1002/nme.5624
http://dx.doi.org/10.1016/j.cma.2019.01.024
http://dx.doi.org/10.1016/j.jcp.2011.05.029
http://dx.doi.org/10.1016/j.jcp.2011.05.029
http://dx.doi.org/10.1016/j.pnucene.2019.103140
http://dx.doi.org/10.1016/j.nucengdes.2019.04.023
http://dx.doi.org/10.1016/j.neucom.2004.06.009

[24] Balasubramanian, R. and Newman, J. C., “Comparison of adjoint-based and feature-based grid adaptation for
functional outputs,” International Journal for Numerical Methods in Fluids, Vol. 53, No. 10, 2007, pp. 1541–1569,
doi:10.1002/fld.1361.

[25] Ronneberger, O., Fischer, P., and Brox, T., “U-Net: Convolutional Networks for Biomedical Image Segmenta-
tion,” Lecture Notes in Computer Science, Springer International Publishing, 2015, pp. 234–241, doi:10.1007/
978-3-319-24574-4_28.

[26] Long, J., Shelhamer, E., and Darrell, T., “Fully convolutional networks for semantic segmentation,” Proceedings
of the IEEE conference on computer vision and pattern recognition, 2015, pp. 3431–3440.

[27] Noh, H., Hong, S., and Han, B., “Learning deconvolution network for semantic segmentation,” Proceedings of
the IEEE international conference on computer vision, 2015, pp. 1520–1528.

[28] Guo, X., Li, W., and Iorio, F., “Convolutional neural networks for steady flow approximation,” Proceedings of
the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining , ACM, 2016, pp.
481–490.

[29] Zhu, Y. and Zabaras, N., “Bayesian deep convolutional encoder–decoder networks for surrogate modeling and
uncertainty quantification,” Journal of Computational Physics, Vol. 366, Aug. 2018, pp. 415–447, doi:10.1016/
j.jcp.2018.04.018.

[30] Bhatnagar, S., Afshar, Y., Pan, S., Duraisamy, K., and Kaushik, S., “Prediction of aerodynamic flow fields using
convolutional neural networks,” Computational Mechanics, Vol. 64, No. 2, June 2019, pp. 525–545, doi:10.1007/
s00466-019-01740-0.

[31] Winovich, N., Ramani, K., and Lin, G., “ConvPDE-UQ: Convolutional neural networks with quantified un-
certainty for heterogeneous elliptic partial differential equations on varied domains,” Journal of Computational
Physics, Vol. 394, Oct. 2019, pp. 263–279, doi:10.1016/j.jcp.2019.05.026.

[32] Knoll, D. and Keyes, D., “Jacobian-free Newton–Krylov methods: a survey of approaches and applications,”
Journal of Computational Physics, Vol. 193, No. 2, Jan. 2004, pp. 357–397, doi:10.1016/j.jcp.2003.08.010.

[33] LeCun, Y., Boser, B., Denker, J. S., Henderson, D., Howard, R. E., Hubbard, W., and Jackel, L. D., “Back-
propagation Applied to Handwritten Zip Code Recognition,” Neural Computation, Vol. 1, No. 4, Dec. 1989,
pp. 541–551, doi:10.1162/neco.1989.1.4.541.

[34] Krizhevsky, A., Sutskever, I., and Hinton, G. E., “ImageNet Classification with Deep Convolutional Neural
Networks,” Advances in Neural Information Processing Systems 25 , edited by F. Pereira, C. J. C. Burges,
L. Bottou, and K. Q. Weinberger, Curran Associates, Inc., 2012, pp. 1097–1105.

[35] Simonyan, K. and Zisserman, A., “Very deep convolutional networks for large-scale image recognition,” arXiv
preprint arXiv:1409.1556 , 2014.

[36] He, K., Zhang, X., Ren, S., and Sun, J., “Deep residual learning for image recognition,” Proceedings of the IEEE
conference on computer vision and pattern recognition, 2016, pp. 770–778.

[37] Rosenblatt, F., The perceptron, a perceiving and recognizing automaton Project Para, Cornell Aeronautical
Laboratory, 1957.

[38] Nair, V. and Hinton, G. E., “Rectified linear units improve restricted boltzmann machines,” Proceedings of the
27th international conference on machine learning (ICML-10), 2010, pp. 807–814.

[39] Dumoulin, V. and Visin, F., “A guide to convolution arithmetic for deep learning,” arXiv preprint
arXiv:1603.07285 , 2016.

[40] Odena, A., Dumoulin, V., and Olah, C., “Deconvolution and Checkerboard Artifacts,” Distill , 2016, doi:10.
23915/distill.00003.

[41] Rumelhart, D. E., Hinton, G. E., Williams, R. J., et al., “Learning representations by back-propagating errors,”
Cognitive modeling , Vol. 5, No. 3, 1988, pp. 1.

[42] Roe, P., “Approximate Riemann solvers, parameter vectors, and difference schemes,” Journal of Computational
Physics, Vol. 43, 1981, pp. 357–372.

22 of 23

American Institute of Aeronautics and Astronautics

http://dx.doi.org/10.1002/fld.1361
http://dx.doi.org/10.1007/978-3-319-24574-4_28
http://dx.doi.org/10.1007/978-3-319-24574-4_28
http://dx.doi.org/10.1016/j.jcp.2018.04.018
http://dx.doi.org/10.1016/j.jcp.2018.04.018
http://dx.doi.org/10.1007/s00466-019-01740-0
http://dx.doi.org/10.1007/s00466-019-01740-0
http://dx.doi.org/10.1016/j.jcp.2019.05.026
http://dx.doi.org/10.1016/j.jcp.2003.08.010
http://dx.doi.org/10.1162/neco.1989.1.4.541
http://dx.doi.org/10.23915/distill.00003
http://dx.doi.org/10.23915/distill.00003

[43] Bassi, F. and Rebay, S., “GMRES discontinuous Galerkin solution of the compressible Navier-Stokes equations,”
Discontinuous Galerkin Methods: Theory, Computation and Applications, edited by B. Cockburn, G. Karni-
adakis, and C.-W. Shu, Springer, Berlin, 2000, pp. 197–208.

[44] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G. S., Davis, A., Dean, J.,
Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser,
L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens,
J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O.,
Warden, P., Wattenberg, M., Wicke, M., Yu, Y., and Zheng, X., “TensorFlow: Large-Scale Machine Learning
on Heterogeneous Systems,” 2015, Software available from tensorflow.org.

[45] Kingma, D. P. and Ba, J., “Adam: A method for stochastic optimization,” arXiv preprint arXiv:1412.6980 ,
2014.

23 of 23

American Institute of Aeronautics and Astronautics

	Introduction
	Problem Formulation
	Parameterized Governing Equations
	Adjoint-Based Error Estimation and Mesh Adaptation

	Methodology
	Surrogate Model as a Regression Problem
	Fully-Connected and Convolutional Neural Networks
	Fully-Connected Neural Networks
	Convolutional Neural Networks

	Proposed Architecture and Network Training
	Fixed Network for Adaptive Simulation Prediction

	Results and Discussion
	Data Generation and Preprocessing
	Network Implementation and Training
	Network Testing and Model Deployment
	Interpolation on Unseen Data
	Extrapolation on Unseen Data

	Conclusion

