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Computational modeling is a pillar of modern aerospace research and is increasingly be-
coming more important as computer technology and numerical methods grow more pow-
erful and sophisticated. However, computational modeling remains expensive for many
aerospace engineering problems, including high-fidelity solutions to highly-complex, three-
dimensional unsteady vehicle simulations, large-scale aeroservoelastic control problems, and
multidisciplinary design optimization. Model reduction methods have therefore garnered
interest as an alternative means of preserving high fidelity at a much lower computational
cost. Evaluating the accuracy of these models is of a high priority, and reliable adaptation
of these reduced models is an on-going goal. This work presents a method for estimating
the output error in projection-based reduced models by developing discrete steady adjoint
solutions and applying an adjoint-weighted residual error estimation technique. Based on
those estimates, this work introduces an adaptation technique which expands the projec-
tion basis of the reduced order model with basis vectors chosen based on the error estimate.
Error estimation results ranging from scalar transport to compressible flow over a NLR
7301 airfoil are presented and adaptation results of the latter is demonstrated and analyzed.

I. Introduction

Advances in high-performance computing and numerical methods have enabled scientists and engineers
to generate high-fidelity solutions to difficult computational fluids problems, such as high-degree of freedom
unsteady simulations. Concurrently, the need for generating such high-fidelity solutions has increased with
advances in computational design techniques, such as multidisciplinary design optimization (MDO). This
need has outpaced the advances in CFD modeling, and the ability to generate solutions from high-fidelity
models is a bottleneck in modern aircraft design and optimization.

Model reduction, also known as reduced-order modeling, has garnered increasing attention as a means
for alleviating these computational issues. Two general types of model reduction techniques that have
gained interest within the aerospace community are interpolation-based and projection-based techniques.
Interpolation-based reduced-order modeling techniques attempt to create a surrogate model that directly
maps inputs to outputs of a system. Commons ways of approaching this includes the use of Volterra se-
ries,1,2 radial basis function neural network models,3,4 Kriging surrogate models,5,6 Gaussian processes,7

and principal component analysis.8 Advances in stochastic modeling and machine learning have increased
the efficiency and accuracy with which interpolation-based reduced order models are able to predict aero-
dynamics. However, a drawback of these techniques is the replacement of the physics of the system with a
black-box, often tunable, model.

On the other hand, projection-based techniques project the high-fidelity system to a lower-dimensional
space, thereby retaining some of the physics of the original equations. This projection is typically done
by using sampling techniques of the full-order model to find the most influential modes of the system
and then projecting the full-order system to a reduced space spanned by these influential modes. Many
projection-based techniques are based upon Proper Orthogonal Decomposition (POD), the use of which in
aerodynamics has been common since the late 1990s.9–12 These techniques include Trajectory Piecewise
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Linear models13–15 (TPL), the Continuous and Discrete Empirical Interpolation Method16–18 (EIM and
DEIM), and Least-Squares Petrov-Galerkin methods19,20 (GNAT and LSPG). The major drawbacks of
projection-based methods are the losses in guaranteed stability and difficulties in quantifying the error and
order of convergence of a reduced-order model.

Although reduced systems provide approximate solutions for a substantially lowered computational cost,
little value can be placed in these solutions without an understanding and quantification of their error.
Often, determining the true error of these systems would defeat the purpose of the model reduction as
FOM solutions would need to be computed. Fortunately, methods for determining the bounds of the error
and computing error estimates for projection-based reduced models have been investigated. With a first-
order Taylor expansion of the residual, LeGresley and Alonso21 estimated the error between a POD solution
and a solution to the same problem solved with the union of the original POD basis and addition basis
vectors. Applied to a transonic flow problem, this technique was used to determine spatial regions for
domain decomposition. With a focus on control problems, Homescu, Petzold, and Serban22 developed
an error estimate based on a combination of adjoint solutions and the small sample statistical condition
estimation method. Using this estimate, they were able to determine regions of validity for perturbations
about initial conditions where the use of POD ROMs would be appropriate.

Another approach for estimating errors, presented by Meyer and Matthies,23 uses the adjoint weighted-
residual. Their technique was demonstrated on a rotor-blade problem where a forward-time primal POD
solution and a backward-time dual problem POD solution were generated. Using the residuals from the
forward-time problem and the adjoints from the backward-time problem, the error contribution of each basis
vector used in the reduced model was determined. Meyer and Matthies then compared solutions generated
from POD models with ordering based on singular value energy and from POD models with ordering based
on error contribution from the earlier analysis, with variation of the reduced system size.

The work presented here is an extension of the work by Meyer and Matthies. The primary contribution
of this paper is the verification of the adjoint-weighted residual error estimation, and the introduction of an
adaptation technique based on the error estimates. The adapted basis presented by Meyer and Matthies
is constructed by first solving the problem with a large number of basis vectors and then constructing a
lower-rank POD basis from a ranking of the basis from the initial solve. Rather than filtering the POD basis
from a fine POD ROM solve, a POD solution with a low number of basis vectors is first generated, and then
the POD basis is expanded depending on the error estimates and the contribution of error from each basis
vector in a higher-rank basis set. This allows for reduced systems to remain coarse where accurate solutions
can still be generated and to be refined where inaccuracies in the output are present. Furthermore, this
method for adaptation is performed iteratively, in order to account for the effects of basis vector coupling in
nonlinear problems, and an analysis of the basis vectors activated during the adaptation is performed.

II. Projection-Based Model Reduction

II.A. System Formulation and Projection

A system of ordinary differential equations, generally arising from spatially-discretized partial differential
equations, can be written as,

G :

M dx
dt +R(x(t),u(t), t) = 0

y(t) = y(x(t),u(t), t)
. (1)

Generally, most fluid dynamics problems can be cast in this setting, with x ∈ RN a vector of flow state
variables, u ∈ Rp a vector of inputs (such as geometric parameters or boundary conditions), y ∈ Rq a vector
of outputs, and t the time. In the above system, M ∈ RN×N is the (sparse) mass matrix, and R ∈ RN is
the discretized spatial residual.

II.B. Proper Orthogonal Decomposition

Model reduction by means of projection reduces the degrees of freedom of the system by representing the
state vector as a linear combination of basis vectors,

x = V x̂, (2)
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where V : x̂→ x ∈ RN×n is a matrix whose columns contain the basis vectors, and x̂(t) ∈ Rn with n� N
is the reduced state. Substituting (2) into (1), and dropping the time dependence notation for clarity, yields

M d
dt (V x̂) +R(V x̂,u, t) = 0

y = y(V x̂,u, t)
.

The first equation above can be multiplied on the left with a left projection matrix, W T , where W TV = I,
to create the reduced system, M̂ d

dt (x̂) +W TR(V x̂,u, t) = 0

y = y(V x̂,u, t)
, (3)

where M̂ ≡ W TMV . Note, it is assumed that both V and W are time invariant. (3) represents the
reduced system, where the trajectory of x̂ is solved rather than x, reducing the degrees of freedom from N
to n.

For steady problems, the time derivative term and time dependence are not present, and so the full
system reads R(x,u) = 0

y = y(x,u)
, (4)

and the reduced formulation is R̂(V x̂,u) = 0

y = y(V x̂,u)
, (5)

with

R̂ = W TR.

There are several aspects of the above system that categorize the model reduction method in use. Many
methods employ either a Galerkin projection framework (W = V ), while others use a Petrov-Galerkin based
framework (W 6= V ). In this work the Galerkin-based framework is used.

A common method for deriving the set of basis vectors V is through proper orthogonal decomposition
(POD), also known as principal component analysis, combined with the method of snapshots, introduced by
Sirovich.24 This method involves collecting a series of full-order solutions (called “snapshots”), performing
a singular value decomposition of the set of snapshots, and truncating the resulting left singular vector set
to create the state basis vector set. For this discussion denote the set of solution snapshots by

S = [s1, s2, . . . , sK ] ∈ RN×K ,

where si ∈ RN is a solution for the full-order system for a given set of conditions and K is the number of
snapshots collected.

For many discretizations, a singular value decomposition of the snapshot matrix suffices for computing
the state basis vector set. However, for modal finite-element discretizations, such as the DG method used in
this work, the discrete singular value decomposition will depend on the finite-element basis functions used
in the discretization. To eliminate this dependence, a continuous spatial inner product is used, and the
singular vectors and values are computed from an eigendecomposition of the corresponding normal matrix.
This normal matrix takes the form,

Knorm = STMS, (6)

where M is the mass matrix. The eigenvectors of this system represent the singular vectors of the snap-
shot set, and the corresponding eigenvalues are the squares of the corresponding singular values (σi =√
λi(Knorm)).
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These singular vectors have two important properties: they span the snapshot space, and each basis
vector is associated with a singular value. The first property implies that if the snapshot set is a good
representation of the solution space of interest, then so is the basis set. Obtaining a “good” representation
of the solution space thus typically requires that the snapshots are obtained from effectively sampling the
parameters and inputs of interest of the system. The second property effectively ranks each singular vector
in order of importance to the recreation of the snapshot set. This means that basis vectors associated with
relatively small singular values can be removed without very large losses in solution space approximation.

The left singular vectors are truncated, and this smaller set of basis vectors is used as the projection
basis, V . The criterion for which basis vectors to remove is usually the cumulative sum of the singular values
compared to the total sum of singular values, where, for example,

Σn
i=1σi

Σk
i=1σi

≥ 99.9% (7)

is a typical threshold. Although this criterion measures the accuracy with which the state space can be
represented, it does not measure how well the outputs of the system, y, can be resolved, and often these
are of greater interest. This paper aims to presents ways to estimate the error in output predictions of
POD-ROMs by applying adjoint-based techniques in a reduced framework and to adapt based on these
estimations.

III. Discrete Steady Adjoints for Reduced Order Models

III.A. Fully Discrete Adjoints and Error Estimation

The adjoint is the sensitivity of an output of the system to perturbations in the residual of the system.
Let y ∈ y be a scalar output of (4), and define by ψ ∈ RN the associated adjoint. Given an infinitesimal
perturbation in the residual of (4), the change in y is

δy = ψT δR, (8)

The infinitesimal residual change elicits a state change, δx, which must satisfy the linearization of (4),

∂R

∂x
δx+ δR = 0. (9)

Linearizing the output with respect to the state and substituting (8) and (9) yields,

δy =
∂y

∂x
δx

∂y

∂x
= −ψT ∂R

∂x
. (10)

Transposing and rearranging yields the discrete adjoint equation,[
∂R

∂x

]T
ψ +

[
∂y

∂x

]T
= 0. (11)

Adjoint-weighted residual error estimation is now a commonly used technique for quantifying the output
error in CFD solutions. Such estimates can serve as output corrections or drive mesh adaptation.25 Presently,
the adjoint-weighted residual error estimate technique is briefly presented in order to discuss its application in
a reduced setting. The adjoint-weighted residual method estimates the error between the output computed
on a fine-space and that computed on a coarse-space, using state computation only on the coarse-space.
Typically, coarse and fine-spaces result from differences in mesh refinement or approximation order. Fine-
space variables are distinguished from coarse-space variables via h and H, respectively.

Given a coarse-space solution, xH , the injection of the coarse-space solution into the fine-space is defined
by, xH

h = IHh xH , where IHh is a prolongation matrix that interpolates the state variables from the coarse-
space to the fine-space. Also define the state error δxh ≡ xH

h −xh, where xh is the fine-space solution. The
output error between the coarse and fine-space solutions can then be estimated on the fine-space as

yH(xH)− yh(xh) ≈ ∂yh
∂xh

δxh ≈ −ψT
h

∂R

∂x
δx ≈ −ψT

h

(
Rh(xH

h )−Rh(xh)
)

= −ψT
hRh(xH

h ) (12)
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A similar adjoint equation and adjoint-weighted residual formula are presented for a reduced setting in the
next section.

III.B. Fully Discrete Adjoints and Error Estimation within a Projected Framework

The reduced-model analog of (11) is based on (5) and reads[
∂R̂

∂x̂

]T
ψ̂ +

[
∂y

∂x̂

]T
= 0. (13)

Assuming a Galerkin projection and expanding the linearizations with respect to x̂ via the chain rule yields[
V T ∂R

∂x
V

]
︸ ︷︷ ︸

n×n

T

ψ̂︸︷︷︸
n×1

+

[
∂y

∂x
V

]
︸ ︷︷ ︸

n×1

T

= 0. (14)

As mentioned earlier, the typical criterion for truncating the state basis set is based on singular value,
(7). This criterion, however, does not indicate how well the particular reduced system will be able to predict
the outputs of the system. In this work presents an adjoint-weighted residual error estimate that could be
used to provide such a metric. This technique was first introduced by Meyer and Matthies23 to evaluate
basis vectors used for reducing a rotor-blade model.

First, let the coarse-space and the fine-space reduced solutions be labeled with x̂H and x̂h, and the coarse
and fine-space state basis vector sets with VH and Vh which differ in the number of basis vectors retained.
Note, the coarse and fine-space solutions are related to their full-order expansions by xH = VH x̂H and
xh = Vhx̂h. If these two sets of vectors arise from the same snapshot set, it can been seen that VH ⊂ Vh,
which means that the state injection operator IHh is lossless. The derivation of the output error estimate
remains the same as in (12), and the result is

yH(x̂H)− yh(x̂h) ≈ −ψ̂T
h R̂h(x̂H

h ) (15)

where x̂H
h = IHh x̂H . The fine-space adjoint can be computed exactly by solving (13) on Vh by linearizing

about the injected coarse-space primal solution. The next section introduces a novel adaptation technique
based on the error estimate presented above.

III.C. POD Adaptation using Adjoint-Weighted Error Estimations

The basic idea of the proposed adaptation method is to use the error estimation in (15) as an adaptation
indicator for a coarse solution, and the inner product in (15) as a metric for deciding which basis vectors to
add to the coarse ROM when adapting. The general procedure is to generate a POD solution on a coarse
number of basis vectors (chosen in order of singular value); predict the error between the coarse basis and a
fine set of basis vectors; then, if the predicted error is greater than a chosen tolerance, create a new POD basis
that is the union of the coarse POD basis and the basis vectors with the largest inner product components
in (15), and then resolve the problem on this new basis. The reasoning for this type of adaptation is that
the reduced system can remain coarse in locations where outputs are sufficiently accurate and can be refined
where they are not. Additionally, the refinement comes in the form of expansion and not filtering. This
follows that the coarse basis is formed to sufficient span the solution space by truncating based on singular
value energy. Removal of these basis vectors may harm this property, and thus expansion allows for more
fluid dynamics to be introduced to the ROM with little effect on the state representation.

The inner product components in (15) describe the error contribution of the individual basis vectors in
the fine-space basis. When the coarse-space basis is a subset of the fine-space, the error contribution of the
shared basis vectors is zero. This is due to the coarse-space solution being found via a residual minimization
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process,

x̂H = arg min
ẑ
||VHR(ẑ)||2,

⇒ yH(x̂H)− yh(x̂h) ≈ −ψ̂T
h R̂h(x̂H

h ) = −
[
ψ̂T

H ψ̂T
h/∈H

] [ V T
HR(x̂H)

V T
h/∈HR(x̂H)

]
,

= −
[
ψ̂T

H ψ̂T
h/∈H

] [ 0

V T
h/∈HR(x̂H)

]
= ψ̂T

h/∈HV
T
h/∈HR(x̂H)

where h /∈ H are the components of the fine-space basis and adjoint that are not in the coarse-space.
If the estimated error of the coarse-space solution is higher than a desired error threshold, the error

contribution of the non-shared basis vectors can be used to determine which of them should be added to
the coarse-space basis. This allows each solution process to start with a very low-rank ROM and then only
increase the fineness of the solution where the error predictions are high, reducing the overall costs of the
online process. Algorithm 1 presents the adjoint-driven POD-ROM adaption process.

Algorithm 1 Simple Adjoint-Driven POD Adaptation

1: Given a coarse-space basis, VH , and a fine-space basis, Vh, such that VH ⊂ Vh.
2: Solve x̂H = arg minẑ ||VHR(ẑ)||2
3: Compute the error estimate, ψ̂h/∈HV

T
h/∈HR(x̂H) =

∑nh

i=nH+1 ei = E, from (15) between the coarse and
fine-spaces.

4: if E > tolerance then
5: Sort ei from largest to smallest, i.e. find j ∈ J where ej1 ≥ ej2 ≥ · · · ≥ ejnh

.

6: Choose c by
∑c

i=1 ejc , or apriori.
7: Construct VH+c = VH ∪ Vj1,...,jc

8: Solve x̂H+c = arg minẑ ||VH+cR(ẑ)||2
9: end if

This process can also be done progressively, where the adaption process is done with multiple small
iterative steps, as shown in Algorithm 2. This is attractive for nonlinear problems because due to the
inherent coupling between basis vectors, the addition of a basis vector to the working basis set can affect
the relative error contribution of the remaining basis vectors not yet added. However, this will inherently
increase the computational cost of the solution process, as the residual minimization process may need to
be undertaken more times than in the simple adaptation show in Algorithm 1.

Algorithm 2 Progressive Adjoint-Driven POD Adaptation

1: Given a coarse-space basis, VH , and a fine-space basis, , Vh, such that VH ⊂ Vh.
2: Set working basis to coarse-space basis VW = VH , and W = nH .
3: Choose c apriori.
4: while E > tolerance do
5: Solve x̂W = arg minẑ ||VWR(ẑ)||2
6: Compute the error estimate, ψ̂h/∈WV

T
h/∈WR(x̂W ) =

∑nh

i=W+1 ei = E, from (15) between the coarse
and fine-spaces.

7: Sort ei from largest to smallest, i.e. find j ∈ J where ej1 ≥ ej2 ≥ · · · ≥ ejnh
.

8: Construct VW = VW ∪ Vj1,...,jc

9: Set W = W + c
10: end while

Later sections of the paper use these two algorithms to adapt a nonlinear POD model, which shows the
benefits of using the progressive adaptation model over the simple adaptation model.

IV. Error Estimation on a Scalar POD Model

A scalar model serves as a perfect problem to verify error estimation technique. This is because, due to
the linear formulation, the error estimation in (15) will be exact. A simple scalar advection-diffusion system
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within a square on a uniform grid will serve as the linear test case. The mesh for this case is constructed with
272 quadrilateral elements with bi-linear solution interpolation, resulting in 2916 degrees of freedom. State
snapshots are obtained by varying the flow direction, α, in the range [0◦, 90◦] with a velocity magnitude of
1. The boundary conditions are all homogeneous Dirichlet (zero), and a constant unit source is added to the
equation. The diffusivity is 0.01, for a domain-based Peclet number of 100. The target output is heat flux
through the right boundary.

(a) α = 0◦ (b) α = 45◦ (c) α = 90◦

Figure 1: Solutions to scalar test problem.

Solutions to this system were generated with xflow – an in-house, high-order CFD solver.26 91 snapshots
were taken with even sampling of the internal flow angle. 99.9% of the total singular value energy is contained
in the first 15 singular values. Figure 2 shows a plot of the singular values, the heat flux of the FOM, as well
as the POD-ROM reconstruction, and their errors.

(a) Singular Values
(b) FOM and ROM solu-
tions

(c) Errors

Figure 2: Scalar FOM and ROM results.

Using the reduced-model error estimation technique developed in Section III.B, the between the outputs
of several coarse reduced-model solutions and the 91-basis vector reduced-model were computed. These error
estimates were exact, as shown in Figure 3. This demonstrates the validity of the error estimation for linear
problems. Nonlinear problems, however, are of much more interest and are more commonly found in modern
engineering applications. For nonlinear problems (15) will not be exact, but it will still be useful for analysis
and adaptation. This is demonstrated in the following section.
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(a) nH = 5 (b) nH = 15

(c) nH = 30 (d) nH = 75

Figure 3: Error estimation of output between coarse-space reduced models with nH number
of basis vectors and a fine-space reduced model with 91 basis vectors.

V. Nonlinear Example

V.A. Error Estimation of POD solutions

Figure 4: xflow Mach
contours solution for
Ma = 0.59 flow around
an NLR 7301 airfoil

The previous section demonstrated the ROM error estimation technique for
a linear problem with benign physics. The following example tests the error
estimates on a more complicated fluid model, turbulent flow, which is highly
nonlinear.

Using xflow, snapshots of an NLR 7301 airfoil at a constant 2◦ angle of
attack with a varying Mach number were collected, sampled at 51 uniformly
distributed points in Ma ∈ [0.30, 0.80]. This range was chosen so that both
subsonic and transonic flow regimes would be present in the snapshot set. The
Reynolds number for all snapshots was Re = 2.11M, and the snapshots were
Reynolds-Averaged Navier-Stokes solutions generated with a Spalart-Allmaras
turbulence model. To normalized the system, the static pressure at the bound-
aries was kept constant, as was the chord length. Variation of the Mach number
was achieved by variation of the inflow speed. A FOM solution of the system
can be seen in Figure 4.

The normalized cumulative sum of singular values reached 98% by the 22nd

singular value (22POD), 99% by the 26th singular value (26POD), and 99.999%

8 of 17

American Institute of Aeronautics and Astronautics



by the 35th singular value (35POD). Using these subsets of basis vectors, POD solutions were generated on
the Mach values contained in the snapshot set. The lift, drag, and pitch-up, nose-centered moment of these
solutions were determined in post-processing. Then, using the adjoint-based error estimation technique,
errors were predicted between the 22POD/26POD models and the 35POD model. As seen in Figure 5, the
outputs of the 35POD model align with the xflow solutions. Between the two coarser models, the 26POD
output predictions are more accurate. Additionally, its error estimates are generally smaller than the error
estimates of the 22POD model. Although, these error predictions are not exact, it is clear that the error
predictions are of the same order as the true error and are generally higher in locations of higher amounts
of error. This allows us to run adaptation as described in Section III.C.

(a) Singular Values
(b) POD Lift Predictions

(c) POD Drag Predictions (d) POD Moment Predictions

Figure 5: Singular values of the NLR 7301 example and POD predictions for lift and drag
using 22, 26, and 35 state basis vectors.

V.B. POD Adjoint-based Adaptation Example

To test the adaptation scheme, the 22POD basis solutions were adapted to have up to 26 basis vectors, using
the pool of 35POD basis vectors as the fine-space. Lift, drag, and moment coefficient errors were targeted for
adaptation, and for each of the loads targeted, three adapted solutions were generated: a simple adaptation
with 4 basis vectors added (22+4L, 22+4L, 22+4M), a progressive adaptation with 2 basis vectors added
per iteration (22P2L, 22P2D, 22P2M), and a progressive adaptation with 1 basis vector added per iteration
(22P1L, 22P1D, 22P1M). The tolerances for adaptation were 10−3 (lift), 10−4 (drag), and 10−3 (moment)
and were chosen with respect to the order of magnitude of their values in the FOM. Solution snapshots were
generated in a Mach number sweep, using the solution at the previous Mach number value as the initial
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guess for the next Mach number value.

(a) Lift solutions (b) Drag solutions (c) Moment solutions

Figure 6: Loads of POD solutions with and without adaptation.

From Figure 7, it can be seen that all of the adapted solutions improve the error of their targeted output
from the solution of the 22POD model. The average system size for each adapted solution lies between 23
and 24 basis vectors, with each finer progressive adaptation needing fewer basis vectors. This demonstrates
a strength of the adaptive mechanism as the adapted solutions are either on par or exceeded the 26POD
solution’s accuracy but at a lower cost. Additionally, the accuracy generally improves with the fineness of
the progressive adaptation. This supports the earlier assumption that due to nonlinear coupling when a
basis vector is added to the system, the contributions of the other basis vectors to the accuracy of the output
are affected. Although the progressively adapted solutions use fewer basis vectors than the simple adapted
solution, their computation requires more nonlinear ROM solves.

The lift and drag outputs are orthogonal, while the moment output is derived from a linear combination
of the two. Likewise, moment-targeted adaptation seems to be more robust and generally tends to adapt
in locations where drag or lift have large errors. This can be seen in Figure 8, which displays the activated
basis vectors for the adapted solutions. The lift-targeted solutions did not begin to adapt until about 0.59
Mach. This is because the 22POD model is fairly accurate in its lift predictions until this point. Moment
and drag, however, both detect the error at Ma = 0.4, and consequently adapt at that point. This corrects
the path of the drag and moment predictions for the moment and drag targeted adapted solutions in the
region Ma ∈ [0.4, 0.5], while the lift targeted adapted solution has the same errors as the 22POD solution
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for drag and moment.
Interestingly, the drag and moment targeted solutions activate the same exact basis vectors for the

Ma = 0.4 adaptation and are nearly the same for Ma = 0.51 and Ma = 0.52. An explanation for this
is that moment is a linear combination of lift and drag. In the lower Mach regions, the value of lift and
its contribution to the value and error estimation of moment is low, allowing for the influence of drag to
trigger the moment-targeted adaptation. As the Mach number increases, lift begins to increase in value, the
influence of drag on the moment decreases, and errors in drag might not be able to contribute to the error
in moment above the adaptation tolerance, especially since moment is dominated by lift.

In addition to improving the targeted outputs, all of the adapted solutions show improvements to the
predictions of the other integrated outputs. This indicates the possibility that the same characteristics that
are relevant to one of the integrated outputs are relevant to the other integrated outputs and are contained
in basis vectors that are not necessarily the next largest rank in singular value. This is important, as it
demonstrates that the use of singular value as a metric for basis selection, while giving the most optimal
basis for state representation, does not give the optimal basis for output prediction.

(a) Lift (b) Drag (c) Moment

Figure 7: Average Total Absolute Error in loads.
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(a) Targeting Lift

(b) Targeting Drag

(c) Targeting Moment

Figure 8: Activated basis vectors for
adapted solutions

The level of consistency with which the adaptation methods
select additional basis vectors can be determined by measuring
the similarity of basis activation between all of the adapted
runs. This can reveal if there is a common set of basis vectors
which are used for adaptation and can support the idea that
singular values do not choose the most optimal basis vectors
for output prediction.

The cosine similarity is used to properly assess the level of
coherency between the activated basis vectors for the lift, drag,
and moment targeted runs. For each of the adapted solutions,
the sum of activations for each basis vector is computed. For
example, for the 22P1D solutions, the total number of activa-
tions for each basis vector from basis vector 23 to 35 can be
expressed as,

C22P1D =
[

5 2 8 2 5 0 6 2 5 9 8 8 4
]
,

which coincides with the histogram in Figure 9.
The cosine similarity measures the level of orthogonality

between two vectors, a and b, of equal length. A common use
of cosine similarity is to examine the similarity of two pieces of
texts by comparing frequency of specific terms in each.27 The
benefits of cosine similarity comes from the normalization with
the magnitudes of the two vectors, preventing the length of the
texts from biasing the results. Similarly here, the number of
adaptations does not affect the similarity measurement. The
cosine similarity is defined by,

sim(a, b) = cos θa,b =
a · b
||a|| ||b||

, (16)

and its value varies between 0 (completely orthogonal/uncorre-
lated) and 1 (exactly similar). The closer the cosine similarity
is to 1, the more similar the two vectors are.

Table 2 presents a matrix of the cosine similarities between
the lift, drag, and moment adapted runs. The subscripts reflect
the activation count vector with C22totL, C22totD, and C22totM

being the activation count vector for all of the lift, drag, and
moment runs, respectively. The diagonal blocks of this ta-
ble compare runs of similar adaptation targets, while the off-
diagonal blocks compare runs that target different outputs.

Comparing the totals, the moment and lift adapted outputs
have the highest similarity (0.9504), followed by the similarity
between the moment and drag (0.9361), with the similarity
between the drag and lift falling last (0.9101). These similarity
rankings between all of the total runs comport with earlier
observations. Since moment is composed of both lift and drag,
it can be expected that basis vectors that are relevant to either
lift or drag would be relevant to moment. Additionally, the
contribution from lift dominates the moment value, naturally
leading it to have a higher similarity with moment than drag. Additionally, drag and lift are orthogonal
to each other, which explains their lower similarity; however, the similarity between all of the runs remains
very high.
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Figure 9: Histogram of 22P1D activations.

Table 1: Modes of total activation vectors.

Targeted Output Most activated basis (descending)

Lift 34 33 29 23 27 32 31 30

Drag 32 34 33 25 31 23 29 27

Moment 32 34 27 33 29 23 31 30

From (Figure 1), it can be seen that basis vectors 33 and 34 both appear in the first 4 most commonly
added basis vectors; basis vector 32 appears as the most commonly activated basis for both drag and moment;
and basis vectors 29, 27, and 23 appear to be somewhat important for all three runs as well. This supports
the earlier assertion that singular value ranking does not choose the most optimal basis for output prediction
as many of the commonly chosen basis vectors are outside of the range of the 24th to 26th basis vectors,
with the exception of the 23rd which appears as only the 4th most commonly chosen basis vector for lift
adaptation.

Table 2: Cosine similarity between adapted runs targeting drag and moment. Lift to Drag, Lift to
Moment, Drag to Moment.

C22totL C22P1L C22P2L C22+4L C22totD C22P1D C22P2D C22+4D C22totM C22P1M C22P2M C22+4M

C22totL 1.000 0.9658 0.9724 0.9736 0.9101 0.9117 0.9009 0.8762 0.9504 0.9278 0.9564 0.8921

C22P1L 0.9658 1.000 0.9182 0.9085 0.8788 0.8865 0.8775 0.8359 0.8822 0.8880 0.8939 0.8066

C22P2L 0.9724 0.9182 1.000 0.9144 0.8687 0.8977 0.8650 0.8138 0.9331 0.9370 0.9383 0.8605

C22+4L 0.9736 0.9085 0.9144 1.000 0.9006 0.8733 0.8813 0.8813 0.9442 0.8785 0.9462 0.9159

C22totD 0.9101 0.8788 0.8687 0.9006 1.000 0.9789 0.9883 0.9792 0.9361 0.8657 0.9146 0.9306

C22P1D 0.9117 0.8865 0.8977 0.8733 0.9789 1.000 0.9742 0.9251 0.9354 0.8738 0.9211 0.9185

C22P2D 0.9009 0.8775 0.8650 0.8813 0.9883 0.9742 1.000 0.9443 0.9379 0.8847 0.9154 0.9226

C22+4D 0.8762 0.8359 0.8138 0.8813 0.9792 0.9251 0.9443 1.000 0.8936 0.8066 0.8690 0.9038

C22totM 0.9504 0.8822 0.9331 0.9442 0.9361 0.9354 0.9379 0.8936 1.000 0.9384 0.9910 0.9743

C22P1M 0.9278 0.8880 0.9370 0.8785 0.8657 0.8738 0.8847 0.8066 0.9384 1.000 0.9241 0.8462

C22P2M 0.9564 0.8939 0.9383 0.9462 0.9146 0.9211 0.9154 0.8690 0.9910 0.9241 1.000 0.9544

C22+4M 0.8921 0.8066 0.8605 0.9159 0.9306 0.9185 0.9226 0.9038 0.9743 0.8462 0.9544 1.000

A final point worth noting is how the adaptively added basis vectors do not contribute to the state
solution significantly but enable the ROM to push the coarse basis vectors towards the desired solution
by contributing to the test space of the problem. At 95% of the singular value energy, a 17POD model
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already spans the solution space well. This can be seen in Figure 10, which shows the projections of the
FOM solutions into a 17POD, 22POD, and 26POD coarse-spaces. The errors of the outputs of the 22POD
projection are orders of magnitude smaller than the results from any of the ROM solutions. This shows
that improving a ROM once the POD basis contains a sufficient amount of singular value energy is most
effectively done by improving the test space of the POD-ROM as additional basis vectors do not significantly
contribute to the trial space. Singular value energy gives the metric of a basis vector’s contribution to the
trial space but not to the test space and thus does not optimally choose the basis vectors to add to the test
space. Higer fidelity was achieved from the adapted ROMs when choosing basis vectors to add to 22POD
that were not necessarily the next largest in terms of singular value.

(a) Lift (b) Drag (c) Moment

Figure 10: FOM solutions projected into coarse POD spaces.

VI. Conclusions

This paper demonstrated an adjoint-based error estimation techniques for projection-based reduced order
models and developed adaptation methods based on those techniques. These error estimates were verified
as exact on a linear scalar problem. Following the scalar example, the error estimates were demonstrated
on a nonlinear problem consisting of turbulent, compressible flow around an airfoil. Although these error
estimates were not exact, they were nevertheless relatively accurate. Following this study, a POD adaptation
scheme driven by these error estimations was demonstrated on the nonlinear problem. The overall results
demonstrated that with fewer basis vectors, a higher output prediction accuracy could be achieved when
basis vectors are chosen progressively with adaptation. Additionally, there was a high similarity between the
basis vectors activated during the lift, moment, and drag adaptation. These basis vectors tended not to be
in the set of the basis vectors with the next highest singular value energies. This showed that the choice of
basis vectors based on singular value energy does not produce the most optimal basis for output prediction.
Singular value only measures the contribution of a basis vector to the trial space and not the test space of
a ROM; when the value of normalized cumulative sum is already very high, contribution to the test space
become more important, and thus error estimation based basis expansion is able to create a more optimal
basis than singular value expansion for output prediction.
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A. xflow Solution and First 5 POD Basis Vectors

(a) xflow solution at Ma = 0.80 (b) 1st basis vector (c) 2nd basis vector

(d) 3rd basis vector (e) 4th basis vector (f) 5th basis vector

Figure 11: Density contours for FOM at Ma = 0.80 and first 5 state basis vectors.
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B. Histograms of Activated Basis Vectors

(a) 22+4L Adapted Basis His-
togram

(b) 22P2L Adapted Basis His-
togram

(c) 22P1L Adapted Basis His-
togram

(d) 22+4D Adapted Basis His-
togram

(e) 22P2D Adapted Basis His-
togram

(f) 22P1D Adapted Basis His-
togram

(g) 22+4M Adapted Basis His-
togram

(h) 22P2M Adapted Basis His-
togram

(i) 22P1M Adapted Basis His-
togram

Figure 12: Activated basis vectors for adapted runs.
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