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Gradient-based aerodynamic shape optimization is investigated using adaptive mesh re-
finement. Instead of using a mesh with a fixed cell spacing and total mesh size, the mesh
is adapted to each design iteration. In the early stages of optimization, the objective func-
tion is evaluated only on the coarse mesh, and progressively more mesh adaptations are
performed as the design approaches optimality. This approach has several features that
can reduce optimization time. First, the multifidelity aspect allows the early portion of
the optimization to be computed on meshes that require much reduced computational re-
sources. Second, output-based adaptive meshing allows the flow calculations to target areas
of the flow that most affect the objective function, which reduces total mesh size for a given
level of accuracy. Finally, output error estimates reduce the chance of over-optimizing on
a coarse mesh, or under-optimizing on a fine one. In this work, the framework is tested
on several airfoil optimization test cases, and it is compared in computational expense to
other approaches, which include a traditional fixed-mesh optimization, optimization using
a constant level of fidelity, and optimization using uniform refinement for the multifidelity
aspect. The multifidelity schemes require additional setup time, and a framework is intro-
duced to reduce this burden.

I. Introduction

Design optimization, especially for problems with a large number of design variables, requires many evalu-
ations of a particular objective function, which measures the quantity that is sought to be minimized. Even
gradient-based optimization, which typically requires fewer function evaluations for large problems [1], of-
ten requires hundreds or more function evaluations. For problems with constraints that must be evaluated
separately from the objective function, the resources required are even greater. Because the optimization
process requires many iterations, the highest-fidelity modeling tools are usually impractical to use.

Optimization of an acrodynamic shape is vital for aircraft design, yet challenging because of the potentially-

complex flows possible at the flight regimes of typical interest. Efficient algorithms for automated shape
optimization have thus been of interest for several decades. In particular, gradient-based shape optimization
algorithms [2-7] offer efficiency benefits for high-dimensional design parametrizations.

Even with gradient-based methods, the computational costs of high-fidelity aerodynamic optimizations
still remain high because of the expense of each high-fidelity simulation. To reduce this cost, multifidelity
optimization algorithms [8—14] have been devised that employ cheaper, lower-fidelity, models to accelerate
the design optimization. Lower-fidelity models could be generated from reduced-physics, from coarser
meshes, or from formal model reduction procedures. The associated algorithms rely on the ability of the
lower-fidelity model(s) to yield somewhat-accurate information useful for optimization, at a fraction of the
cost of the high-fidelity models.

Using lower-fidelity models, or surrogates, to accelerate high-fidelity optimization entails theoretical
and practical considerations that have been the subject of numerous previous studies. Proposed frameworks
have addressed topics such as management of multiple models [15], choice of model and conditions of
convergence [8, 9], and mappings between variable parametrizations [16]. These frameworks have shown
speedups of up to one order of magnitude in computational time relative to high-fidelity optimization.
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Multifidelity optimization algorithms typically assume that there exists a “truth” high-fidelity model,
and often the coarser models or surrogates are derived from this truth model. A natural question is then:
how does one generate the truth model for an optimal design that is not known? For example, computa-
tional fluid dynamics simulations rely on a mesh of the flow domain, but a given mesh, even if generated
according to best-practices, does not guarantee engineering accuracy that is necessarily worthy of a “truth”
designation [17]. Here, adaptively-tailored meshes [18] can help by providing resolution where it is needed,
together with error bars on outputs of interest. Furthermore, since the geometry changes during shape op-
timization, and since geometry affects the flow-field, which affects the optimal mesh distribution, adaptive
meshes are a natural choice in the optimization context.

The present work is related to that of Nemec and Aftosmis [19], who also use output-based mesh adapta-
tion for shape optimization. The present work extends the methodology to include constrained optimization
(rather than target-seeking) and a different metric for increasing the fidelity. Rather than treating the mul-
tifidelity problem as a sequence of optimizations in which the final result from a lower fidelity is used as
the initial design of a higher-fidelity optimization, an error estimate is used to decide when to increase the
fidelity. This approach seeks to prevent wasting resources needed to solve low-fidelity optimization prob-
lems to convergence. Another benefit that is potentially even more important is that our proposed algorithm
resists failure in cases where the low-fidelity optimum may be far from the high-fidelity optimum. In such
cases where the two models have very different optima, the criteria for increasing the fidelity is likely to be
reached before the low-fidelity method is able to guide the algorithm toward the errant low-fidelity optimum.

The combination of output-based error estimation and gradient-based optimization is natural as both
methods rely on output adjoint solutions. We use an in-house code in which a discrete adjoint serves this
dual purpose, and which has already been used for, separately, adaptive mesh generation [20—23] and design
optimization [24]. We note that the multifidelity approach used in this work is classified as hierarchical [16]
because the fidelity increases (order increase and mesh refinement) but the fundamental model (e.g. Navier-
Stokes equations) remains fixed.

The outline for the remainder of this paper is as follows. Section II describes the optimization prob-
lems considered. Section III presents the optimization approach, and Section IV reviews the numerical
discretization. We present results in Section V, and we conclude in Section VI.

II. Test Problem Description

The design space considered for this problem is the modified NACA 4-digit series [25]. This series of
airfoils has five degrees of freedom as opposed to the usual three for the unmodified NACA 4-digit series.
An example is NACA the 2310-65. Each digit has an effect that is explained in Table 1.

Table 1. Explanation of digits for the NACA 2310-65 airfoil.

Digit | Effect
2 maximum camber, in hundredths of chord
3 location of maximum camber, in tenths of chord
10 maximum thickness, in hundredths of chord
6 leading edge roundness index
5 location of maximum thickness, in tenths of chord

The decision variables (x) are scaled so that each of the five is on the order of unity. They are listed in
Table 2. In addition, the maximum thickness is represented by ¢, but this is held fixed during optimization.

A NACA XXXX-64 airfoil is almost equivalent to the unmodified 4-series, although the thickness profile
will be slightly different for the last 60% of the chord. In this work, the design space is generalized slightly
such that each of the five parameters in Table 1 is a continuous variable. For example the location of
maximum thickness can be at 41.2% of the chord, and so on.
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Table 2. Description of decision/design variables.

Index,i Symbolic value, x; | Description
1 10m maximum camber, scaled
2 Xm location of maximum camber
3 R/10 nose radius index, scaled
4 X location of maximum thickness
5 10« angle of attack, scaled

The mean camber line is the same for the common NACA 4-digit series.

(2xmx—2x)mx x < X,
Zc (x+ 1225, (1=x)m (1)
e X > Xm

The equation for the airfoil thickness is more complicated, in part because it is affected by more design
variables and in part because the original definition at times is based on tabulated values decided in the
1930s. The first step, based on the process described in [25], is to calculate the slope at the trailing edge.
When the modified 4-digit series was designed, these values were carefully selected based on the location
of maximum thickness (x;) to avoid inflection points in the airfoil surface. The reference values selected are

shown in Table 3.

Table 3. Trailing edge slopes as a function of location of maximum thickness for NACA modified 4-digit series.

Location of maximum thickness (x;) Trailing edge slope (d;)

0.2 0.2
0.3 0.234
0.4 0.315
0.5 0.465
0.6 0.7

Unfortunately, these values do not follow an analytical function, and we use cubic interpolation in this
work to determine the reference trailing edge slope for intermediate values. Additionally, these airfoils are
not defined for values of x; outside of the range from 0.2 to 0.6.

Much like the unmodified NACA 4-digit series, the official definition has a trailing edge thickness of
0.002. To close this trailing edge for convenience to the CFD analysis, the reference slope d; is corrected to

6do
1- Xt

61=d1+

) 2

where dp=0.002. Two other coefficients are defined for use in calculating the thickness profile of the aft
portion of the airfoil:

03 -2(1 -
o = ( 2xt)cl ’ 3)

(1 =x)

1- -0.2

c3 = % 4)

(1= x)

Then the thickness profile aft of the location of maximum thickness is
t

7(0) = 55 ((1=x)er +(1 = x)%cr + (1= x)c3), x> x. 5)
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To ensure smoothness at the point of maximum thickness, we calculate the curvature there, which is

o _ 21— x)d) 0588

(1= x)? ©

A value for the leading-edge radius is based on a linear scaling of its value from the unmodified NACA
4-digit series”.

R
ap = 0.29696. )

To get the remainder of the forward thickness profile, the remaining equations are applied.

bo = ap/x; (®)
ay = 0.5«x; + (0.3 = 1.875bg)/ x; )
ap = —k + (1.25by — O.3)/xt2 (10)
a3 = 0.5x/x, + (0.1 = 0.375bg)/ x> (11
Finally, the forward thickness profile is
t
T(x) = —(ao\/Zx) +ajx+ a2x2 + a3x3), x < Xq. (12)

0.2

The airfoil upper and lower surfaces are constructed by adding or subtracting, respectively, half of the
thickness to the mean camber line.

The model problem considered here is to select the airfoil design and an angle of attack to minimize drag
subject to a fixed lift coefficient and airfoil thickness. Therefore there are five decision variables (maximum
camber, location of camber, leading edge roundness, location of maximum thickness, and angle of attack),
and a single equality constraint (calculated lift coefficient minus target lift coefficient).

Symbolically, for a given thickness # and target lift coefficient ¢, the optimization problem can be written

F(t,cp) = rn]gg S, 1) (13)
st. h(x,1,¢7) =0 (14)

where f(X, ) calculates the drag coefficient, and
h(x,1,¢¢) = ce(X,1) — Cp. (15)

In the remainder of this description, the dependence on thickness and target lift coefficient variables is
dropped.

A. Inviscid Transonic Case

The first test problem considered is an inviscid transonic case with a freestream Mach number of 0.8. The
target lift coefficient is ¢,=1.0, and the thickness-to-chord ratio is r=0.12. Because of the high lift coeffi-
cient and Mach number, this case involves a strong shock, and the positioning of this shock is one of the
major drivers of the drag optimization. Although transonic cases at such a high lift coefficient are somewhat
rare in the literature, high transonic lift is important for combat aircraft that must exhibit high maneuver-
ability in the transonic flight regime [26]. However, three-dimensional considerations are important drivers
for high-angle-of-attack transonic flight, and this is study only considers an introduction to the true shape
optimization problem. We argue that the methods introduced in this paper make high-fidelity shape opti-
mization of the true high-lift transonic wing feasible, as the computational cost of more direct high-fidelity

# In the original modified 4-digit series, a value of R=9 was taken as a special case with twice the expected roundness (i.e. half
the curvature). This work does not duplicate that effect, but values of R greater than 10 are allowed.
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optimization would be prohibitively expensive. The problem is restricted to the simpler case so that the costs
of various optimization approaches can be compared.

The fidelity levels of this problem include an increasing solution approximation order, in the context of
a variable-order finite element method, followed by hanging-node spatial mesh adaptation. A description of
the flow calculation for each value of the fidelity parameter 7 is presented in Table 4.

Table 4. Description of fidelity levels indexed by the parameter 7 for the inviscid transonic shape optimization.

Parameter value (17) | Approximation Order Number of Mesh Adaptations
0 0 0
1 1 0
2 2 0
3 2 1
n 2 n—-2

B. Viscous Airfoil Optimization

The second optimization problem considers an airfoil in a freestream Mach number of 0.5 with a target lift
coefficient of ¢,=0.2. The thickness-to-chord ratio remains at 0.12, and the Reynolds number is 5 X 10°.
Because of the presence of a boundary layer (even though it is quite thick for this low-Reynolds-number
case), solving the low-order cases on the chosen initial coarse mesh is not possible for this problem. Instead,
all solutions are calculated using a p = 2 (third-order) method, and the fidelity parameter is equal to the
number of mesh adaptations, as shown in Table 5.

Table 5. Description of fidelity levels indexed by the parameter 7 for the viscous shape optimization.

Parameter value (17) | Approximation Order Number of Mesh Adaptations
0 2 0
1 2 1
2 2 2
n 2 n

III. Optimization Approach

For the most part, a standard BFGS [27-30] algorithm is applied, with a sequential quadratic programming
(SQP) approach [31] so that the equality constraint may be handled easily. However, some modifications
are made to this standard approach to accommodate the multiple levels of fidelity.

During the line search, an evaluation is accepted based on a merit function ¢. The sequential quadratic
programming technique gives a proposed next design Xy + p, and this defines the search direction py. If the
point suggested by SQP does not represent a decrease in the merit function, a smaller step is taken in the
same direction. Thus the line search becomes a matter of finding a value of the scalar « (usually between 0
and 1) such that x; + apy gives a decrease in the merit function.

m
dr(@) = f(Xx + apy) + pk Z|hi(xk + app)l, Wi = miaXMk,iL (16)
i=1

The constraints s; fori = 1,...,m are each associated with a Lagrange multiplier A;. The value 4;; denotes
the value of this Lagrange multiplier calculated during the SQP process at the beginning of the iteration.
Selecting the parameter yy at least as large as the largest of these Lagrange multipliers ensures that the SQP
direction py is a descent direction of the merit function.
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A. Fidelity Increases

There are many options for when to increase (or decrease) the fidelity parameter 7. The simple and practical
option proposed here is to estimate an error at each fidelity level and to increase fidelity whenever the
expected decrease in the objective function is smaller than that error.

Suppose at iteration kg that our method has been decided to increase the fidelity,

Mo Tk + 1. a7

One way to estimate the error, which is implemented in the present study, is to evaluate the objective function
and constraints at one level higher of fidelity and define the following measures of error:

or = fXe, e+ 1) = Xk, M), on = h(Xe, k + 1) — h(Xg, 7). (18)

As an alternative to this extra evaluation, one could use an output-based error estimate in this step, and this
is our plan for future work. In this work, the error is added to the constraint evaluation at each iteration, so
that the constraint becomes

h(X,n) + oy = 0. (19)

The benefit of doing this is that the early portion of the optimization, which is performed at lower fidelity,
does not get trapped driving inaccurate constraints to zero.

Fidelity increases are then made whenever both the expected decrease and the previous decrease in the
merit function are below a tolerance according to

max {~Agp-1,~Adk, ~Adyi1} < ol + pullballlorsl (20)

where ¢ is the merit function used during the line search, and Epk +1 18 an estimate of the merit function
decrease during the next iteration. The estimated function decrease is approximated very roughly using the

slope of the merit function:

A
T + Hie+1

This simple approach works fairly well, and does not get “stuck” in low-fidelity solutions because it moves
to the next fidelity level if consecutive line searches fail.

21

B. Geometry and Mesh Deformation

For each new value of the design variables X, a new mesh must be obtained. Instead of creating an entirely
new mesh, we use a two-step process to deform a baseline mesh (either from the previous iteration or from
an original mesh of a NACA 0012-64) so that it conforms to the new airfoil. After the geometry of the new
airfoil is computed using the formulas described in Sec. 11, the first step is to snap all airfoil boundary nodes
in the mesh to the updated geometry. This is done based on an arc-length parametrization of the two airfoils’
(that is, the old one that is being deformed and the target design that is having a mesh snapped to it) upper
and lower surfaces. This method prevents movement of the leading edge and distortion that can occur when
the two airfoils differ significantly in total arc length.

Next, the remaining nodes in the mesh are moved using a radial basis function technique. From the
first step, each mesh node that is on the boundary of the original airfoil has an assigned change in both x-
and y-coordinates. These shifts are then interpolated onto the remaining nodes using a radial basis function
network, which is a common method for interpolation on unstructured data sets [32]. The result is a shift in
both coordinates for each node in the mesh, and the other structure (for example connectivity and number
of elements) remains unchanged.

This technique has been applied in several scenarios in this work. In the baseline multifidelity routine, a
fixed coarse mesh is deformed to fit to the modified geometry, and the mesh adaptations occur starting from
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that deformed coarse mesh. In other cases, the deformation is applied to uniform fine meshes or meshes
that have been adapted one or more times. In all cases, a consistent mesh without surface bumps or negative
volumes was produced.

IV. Discretization and Adaptation

We discretize the compressible Navier-Stokes equations using a discontinuous Galerkin method on un-
structured, quadrilateral, body-fitted meshes. We approximate the state using order p polynomials on each
element of a tessellation of the domain. We use the Roe Riemann solver [33] for convective fluxes and the
second form of Bassi and Rebay (BR2) [34] for the viscous treatment. Details on the spatial discretization
can be found in previous work [20,21]. We write the final discrete form as

RH(UH’ X) = 07 (22)

where Ry is the residual vector, the components of which are nonlinear functions of the state vector Uy and
the geometry parameters X. The subscript H denotes the fidelity of the discretization and encompasses the
approximation order and mesh refinement level.

For a scalar output Jy(Up, X), we solve a linear system to determine the associated discrete adjoint
solution, Wy, which represents the sensitivity of that output to residual source perturbations [35]. This
linear system is given by the following equation

Ry \" aJ \!
| v — = 0. 2
(aUH) H+(aUH) 0 (23)

An example of an adjoint solution is shown in Fig. 1. Note how the regions of interest in the flow solution,
shown in Fig. 1a, are notably different from the regions of interest in the adjoint solution shown in Fig. 1b.
Cells can be selected for refinement for either reason, as the definition of the output error estimate shows in
the following paragraphs.

Since Wy gives us the linear sensitivity of J to residual perturbations, we use it to efficiently calculate
the sensitivities of J to the parameters in X,

dJ H T (’)RH aJ H

dx o Max o oax
Note, these are total sensitivities that account for the state changes that must occur per Eq. 22 when x
changes. We use these sensitivities for gradient-based optimization.

We also use the adjoint to drive an output-based strategy for spatially adapting the computational mesh
with the goal of reducing numerical errors. We approximate the numerical error in Jy by comparing it,
“hypothetically”, to an output computed on a finer discretization, denoted by subscript 4, which in this work
is the same mesh but with the approximation order incremented to p + 1. The comparison is hypothetical
because we do not actually evaluate the state or output on the finer discretization space. Instead, we only
evaluate the fine space adjoint and residual obtained after injecting the coarse space solution to the fine
space. The error estimate is then given by an adjoint-weighted residual,

(24)

output error = 6J = ¥} R,(U), (25)

where U}Ij is the coarse solution injected to the fine space. The fine-space adjoint, ¥y, is obtained approxi-
mately by applying several (five) iterations of an inexpensive iterative smoother to the injected coarse-space
adjoint.

When a fidelity increase is desired, the error estimate in Eq. (25) is localized to mesh elements, and a
fraction of the elements with the largest error estimate is chosen for isotropic refinement using a hanging-
node refinement strategy [22]. In this case, the fraction is fixed at 10% of the existing cells for each refine-
ment. Other useful schemes for deciding how many cells to refine have been discussed by Nemec et al. [36].
A schematic of the mesh adaptation process is shown in Fig. 2.
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Figure 1. Adjoint example.
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Figure 2. Graphical representation of mesh adaptation process.

V. Results

Some results of the baseline strategy as described in Sections II and III are shown in this section. The method
is applied to the transonic test problem in Sec. V. A and to the viscous test problem in Sec. V.B. In Sec. C, we
return to the transonic problem, but compare the results of the proposed multifidelity optimization method
with several alternative approaches.
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A. Inviscid Transonic Airfoil

Fig. 3 shows the results for the transonic inviscid test problem. In particular, it shows the Mach number at
interesting points in the optimization. The initial evaluation, which is a NACA 1412-64 airfoil at 3° angle
of attack, is shown in Fig. 3a, and Figs. 3b—3e show the last results before each fidelity increase.

The plots are constructed so that green represents subsonic flow and purple represents supersonic flow.
Flow close to the local sound speed is shown in white. Because of the relatively high lift, a shock is only
present on the upper surface even in the initial condition. As the fidelity increases, the resolution of this
shock increases dramatically. In Fig. 3b, it is not clear from the coarse mesh and low solution order that a
shock is even present. Without refining the mesh, increasing the solution order to 2, as in Fig. 3c, makes the
shock notably better resolved. As the mesh is refined, the shock, the leading edge, and the trailing edge are
the main targets for refinement, although other areas are refined, too. However, portions of the shock that
are not close to the airfoil surface receive very little refinement, even though the local gradients are high.
The cause for this is that the drag is not sensitive to those parts of the shock that are not close to the surface,
and this highlights an advantage of output-based adaptation versus other adaptation methods.

This advantage is most significant when the output value used to drive adaptation the same as or close to
the optimization objective function. In this case, drag is the output used to indicate where mesh refinement
should take place, and this is not quite a perfect match for the optimization problem because it is also im-
portant to estimate the lift accurately in order to satisfy the constraint. Work is currently ongoing to improve
adaptive indicators that address this effect of equality constraints. In most cases, even if the aerodynamic
analysis is a part of a larger optimization problem in which the overall objective function is not directly
tied to lift, drag, or the moment on a wing or airfoil section, it is likely that the important output from the
aerodynamic analysis is a function of these three parameters. Likely exceptions include heat transfer, aero-
dynamic derivatives (such as sensitivity of lift to angle of attack), and driving an aeroelastic analysis. The
last example is particularly challenging because the output of interest is the pressure profile along the entire
surface, and as such it is not a scalar.

Returning to the results of Fig. 3, an interesting feature is that the lowest-fidelity solution (in Fig. 3b)
does not appear to be “between” the initial and final solutions. In particular, it has a very sharp nose, sharper
than in the initial condition, whereas the later designs have a nose with approximately the same bluntness
as the initial condition. What is not apparent from the figures is that the n=0 solution does a very poor job
of estimating the lift. The correction in Eq. (19) helps somewhat, but at best it means that the lift estimate
cannot be trusted. The real benefit of this method is that the optimizer does not drive the =0 solution to its
optimum. This could be far from the true optimum indeed, and that could result in the optimizer finding a
local minimum once the fidelity is increased. Naturally, this method does not guarantee that the changing
fidelity does not result in finding a local optimum that would otherwise be avoided, but it appears to lessen
the probability of that occurrence.

As for the numerical values of the results, there is a significant reduction in drag from an initial value of
about 0.10 to nearly 0.07 (the value in Fig. 3a should not count because the lift is much lower). The majority
of this decrease occurs with p=1, and sequentially smaller decreases are found after that. The higher-fidelity
solutions are essentially refining the lower-fidelity results, although substantial computational effort is still
spent on the later stages, which can be seen from the iteration numbers (k) in Fig. 3. It may be possible
to reduce the number of evaluations required at the higher fidelities. Correcting slight errors in the lift
constraint immediately after a fidelity increase appears to be one cause for the number of evaluations, and
slight errors in the gradients may also be a factor.

B. Viscous, Subsonic Airfoil

Figure 4 shows the results from the viscous sample problem using the methods of Sections II and III. In this
case, there is no locally supersonic flow, so a different color scheme is used. White represents regions of the
flow with a Mach number close to the freestream value of 0.5. Regions in blue represent flow with a local
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Figure 3. Plots of local Mach number for inviscid transonic high-lift case. The conditions are M.=0.8, ¢,=1.0. Green
regions show subsonic flow, and purple regions show supersonic flow.
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Mach number below this value, while red represents higher-speed flow.

The results for this low-Reynolds-number case are unusual in at least two respects. First, the optimizer
selected a very sharp nose, which is not typical for subsonic airfoil sections. Running a few slight variations
of this problem, such as changing the initial condition, did not always lead to a sharp nose, although the final
drag value was consistently very close to the value shown in Fig. 4e.

The second peculiar aspect is the negative camber. Optimizing an airfoil for a single positive-lift value
usually results in positive camber, which allows the angle of attack to be decreased while still meeting
the lift condition. For this case, which has a fairly high Mach number but a very low Reynolds number,
combined with a significant thickness (=0.12), the negative camber was a consistent result. One test that
we ran to investigate the robustness of the counter-intuitive design was to repeat the optimization with the
lift constraint reversed to ¢, = —0.2. The result was an airfoil with a positive camber, which was almost a
perfect opposite to the design shown in Fig. 4e.

Because Fig. 4 shows solutions to a subsonic problem, there is no shock, which results in fewer obvious
places for the solution to adapt. The primary areas of the mesh that get adapted are regions of the flow
near the airfoil surface, along the near portion of the wake, and the areas above, below, and upstream of the
leading edge. Unlike the transonic test problem, there is a fairly consistent trend from the initial condition
to the optimized solution. The sharpening of the nose mostly occurs during the n=2 phase (between Figs. 4c
and 4d).

The drag reduction for this problem (about 7%) is much less than what it was for the transonic problem.
At the same time, fewer iterations were spent at the higher fidelities. In the later phases, there is a fidelity
increase every three iterations, which is a hard-coded minimum. This suggests that for easier problems, the
fidelity increases rapidly once a certain level is reached. The possibility exists that this will also be true for
more challenging problems, although the necessary level of fidelity may be higher for problems with shocks
such as the transonic test case shown in Fig. 3.

If the lower-fidelity solutions can be used as initial conditions for higher-fidelity flow solutions effi-
ciently, the benefits to multifidelity optimization could be even greater. Such a method was tried for the
present study, but the results were ambiguous, and the time savings was either unimpressive or slightly
negative in the attempts tried. The reason appears to be that deforming the mesh while leaving the states
(density, momentum, energy) unaltered detracts somewhat from the intuitive benefit of starting a flow anal-
ysis from a state that’s near the solution. However, the trials were far from exhaustive, and it remains a
potential way to go rapidly from a level of fidelity sufficient for optimization (which is determined automat-
ically during the iterations) to a higher level once the optimization is nearly complete. Such a technique, if
successful, will increase the efficiency over classical high-fidelity optimization by an even greater factor.

C. Comparison with Other Optimization Strategies

The purpose of this section is to begin to determine the benefits of each of the two main aspects to the pro-
posed optimization method: varying fidelity and adaptive mesh refinement. This results in four optimization
methods, which comes from turning on or off both of these aspects. In addition, we tested the effect of
restarting high-fidelity iterations with the results from previous lower-fidelity iterations. The results, though
preliminary since we consider only one test problem, suggest that there is significant savings due to both
adaptive mesh refinement and varying fidelity.

Figure 5 shows the result of an optimization using a uniformly refined mesh, which can be compared to
Fig. 3e. The flow solution is quite similar, but the mesh has significantly more elements. The Mach number
profiles from the remaining methods are all very similar to those of either Fig. 3 or Fig. 5, so snapshots are
not shown for those optimizations.

Table 6 shows two primary indicators of the five methods considered: final value of the objective func-
tion and total computational time. All results were run using 32 processors and on the same machine.
Method 1 corresponds to the results from Sec. A and Fig. 3. For method 2, a small change was made. In-
stead using a uniform freestream flow on the coarse mesh as the initial condition, previous results are used.
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Figure 4. Plots of local Mach number for viscous case. The conditions are M,=0.5, c,=0.2. Note the negative camber
selected by the optimizer.
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Figure 5. Final result of fixed-fidelity optimization using a uniformly refined grid.

Table 6. Comparison of results for various schemes

Number Method Wall time  Final ¢y
1 Adaptive method, baseline 3606 s 0.0670
2 Adaptive method with restart 4043 s 0.0668
3 Fixed fidelity, n = 6 4.8 hr 0.0780
4 Uniformly refined mesh, multifidelity 15.2 hr 0.0660
5 Uniformly refined mesh, fixed fidelity 20.5 hr 0.0703

Specifically, at iteration k, which has a fidelity of n, the CFD is initialized using the result from iteration
k — 1 at fidelity n — 1. This choice makes each function evaluation quicker by initializing the analysis with
a state close to the solution, but by using the previous 7 — 1 solution (instead of taking the final solution
from iteration k), there is still one round of adaptive mesh refinement to adapt to small changes in the flow
from one iteration to the next. Obviously there are several different choices for initial conditions that can be
used, and this is just one possibility that we guessed would provide speedup without compromising accu-
racy. However, this method actually took somewhat longer to complete the optimization. The explanation
appears to be that although most evaluations took less time to compute, the number of evaluations is a far
more important factor in total time for the optimization. Since the initial condition changes from iteration to
iteration, so too does the objective function, albeit very subtly. This results in a small error in the gradient,
which in this case increased the average number of evaluations per line search. Because the residuals are
near machine zero as a result of our Newton solver, the subtle change in the objective function is primarily
due to the mesh deformation stage. If a way to overcome these slight inconsistencies in the objective func-
tion can be found, using a restart strategy such as this one may become beneficial. In the meantime, the
results indicate that the increased setup effort required to use a restart strategy is unlikely to be justified by
future computational time savings.

Method 3 simply removes the multifidelity aspect of the optimization but retains the adaptive mesh
refinement. This took about 5 times longer to compute than the baseline multifidelity strategy, but it also
failed to fully converge, which explains the higher drag. Instead, the algorithm terminated when the decrease
was below a tolerance for four consecutive iterations. Removing the adaptive mesh refinement, as in methods
4 and 5, increased the computational time more dramatically. The speedup due to adaptive mesh refinement
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is essentially the same as the speedup for an individual function evaluation, and the iteration and evaluation
counts were similar whether adaptive mesh refinement was used or not.

VI. Conclusions

The feasibility was demonstrated for a multifidelity shape optimization method using CFD with adaptive
mesh refinement. The method applies to problems in which an integer list of fidelities can be constructed,
which in this case was essentially the number of refinements to the mesh. Determination of when to increase
the fidelity to the next level in this list is made automatically by the optimizer. To test the method, we applied
it to two airfoil shape optimization problems using a small number of design variables.

When compared against traditional fixed-fidelity optimization on a uniform fine mesh, we observed a
speedup factor of about 20 for the transonic airfoil test problem. Although one must be careful to generalize
this result to other optimization problems, the present result is promising and justifies applying the tech-
niques to more problems in the future. In addition, as the benefits of adaptive methods generally increase
with increasing accuracy demands, there is reason to believe that the speedup will increase with the highest
level of fidelity that is sought.
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