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We present an output-based adaptive error control strategy based on unsteady r-
adaptation, i.e. mesh motion, for the discontinuous Galerkin finite element method.
The method uses a discrete unsteady adjoint to compute an error estimate in a
scalar output of interest. Localized to space-time elements, this estimate yields
an error indicator that identifies regions in space and time where refinement is
required to reduce the output error. Rather than employing standard h or p re-
finement techniques, we adapt the mesh by moving its nodes. This allows elements
to grow or shrink without increasing the degrees of freedom. The mesh motion is
performed using analytical contraction/expansion functions and node-interpolated
motion driven by a spring analogy in an arbitrary Lagrangian-Eulerian framework,
and we demonstrate the ability of such motion to reduce output error in scalar
advection-diffusion problems.

I. Introduction

The purpose of mesh adaptation is to reduce numerical errors inherent in simulation. The
error in consistent and stable numerical methods depends on the mesh size, h, which can refer to
a measure of the size of elements or the spacing between nodes, and on the approximation order,
p, which can refer to the order of polynomials in a finite-element method or to the order of a
finite-difference scheme. To reduce the error, we must decrease h and/or increase p, and this gives
rise to what we call standard h,1–3 p,4–7 or hp8–12 refinement strategies.

Numerous techniques exist for adapting the size of a mesh. These include hanging-node refine-
ment,13–15 local mesh operations,16–18 and global re-meshing.19,20 All of these techniques have the
capability to increase resolution in some areas and to decrease the resolution in other areas, so that
the total number of degrees of freedom can grow, shrink, or remain the same. A related adaptation
technique, that is more restricted, but relatively underutilized, is r adaptation21–26 , in which the
nodes of the mesh undergo motion in order to redistribute the resolution to areas that need it the
most. The total number of degrees of freedom remains constant, and hence r adaptation is limited
in the maximum possible error reduction that it can achieve. However, when coupled with h and/or
p refinement, the combined strategy yields a flexible and efficient means for reducing the output
error.

In steady-state calculations, r adaptation is expected to produce final meshes that are similar
to other h-refinement mechanics, when the number of degrees of freedom is held constant. For
example, if global re-meshing is available, there may be no incentive to use r refinement, except
possibly to reduce the cost of mesh re-generation. However, in unsteady calculations, r adaptation
presents a distinct advantage in its ability to dynamically and smoothly track important features
without abrupt refinement changes (e.g. sudden element split) and without error-prone inter-grid
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solution transfers. As long as the mesh motion is smooth, solution techniques on deformable
domains/meshes can be applied without the need for solution interpolation or projection.

In this paper, we use an arbitrary Lagrangian-Eulerian framework27,28 in order to solve a system
of unsteady equations on a deforming mesh. Our mesh motion takes two forms: 1) mesh motion
governed by analytical mapping functions between the reference and physical space that cause the
mesh to either contract or dilate in regions where mesh resolution is needed or not, respectively; 2)
mesh motion directed by a spring analogy that indicates where resolutions is needed or not, with the
motion’s degrees-of-freedom equals to the number of nodes that can be moved. The finite-element
discretization is applied on the static reference domain, so that the error reduction arises from the
fact that the size of the mapped elements, in physical space, changes in time.

An error indicator is required to drive the r adaptation. This indicator must provide information
about where and when the error is largest. In a node/slab-based time marching scheme, this
translates to localization of the error to spatial elements and time slabs or nodes. For robust error
control of scalar outputs, we use an unsteady adjoint-weighted residual,29 where the discrete adjoint
equations are solved after the primal solution through a reverse time marching procedure.

The remainder of this paper is organized as follows. Section II presents the primal discretization
using the discontinuous Galerkin finite-element method and reviews the arbitrary Lagrangian-
Eulerian framework. Section III introduce two mesh motion algorithms, 1) analytic function based
mesh motion and 2) mesh motion based on interpolation of node data. Section IV presents the
adjoint-based error estimation and mesh adaptation strategies. Section V shows preliminary results,
and Section VI discusses conclusions.

II. Discretization and Mesh Motion

A. Discretization

We apply the discontinuous-Galerkin (DG) finite-element method to conservation laws of the form

∂u

∂t
+∇ · ~H(u,∇u) = 0, u(~x, 0) = u0(~x), (~x, t) ∈ Ω⊗ [0, T ], (1)

where u(~x, t) ∈ Rs is the state vector, u0(~x) is the initial condition, and ~H = ~F(u) + ~G(u,∇u)
is the total flux consisting of inviscid (~F) and viscous (~G) contributions. Boundary conditions are
specified on ∂Ω in the form of knowledge of components of the state or the flux. The ith spatial
component of the viscous flux is linear in ∇u, Gi = −Kij∂uj (summation implied on j ∈ 1 . . . dim),
where Kij is the (i, j) component of the viscous diffusivity tensor.

Denote by Th the set of Ne elements in a non-overlapping tessellation of the domain Ω. In DG,
the state is approximated by polynomials on each element, with no continuity constraints imposed
on the approximations on adjacent elements. uh ∈ Vh = [Vh]s, where

Vh = {u ∈ L2(Ω) : u|Ωe ∈ Pp ∀Ωe ∈ Th} ,

and Pp denotes polynomials of order p on an element Ωe.
We obtain the weak form of Eqn. 1 by multiplying the PDE by test functions wh ∈ Vh and

integrating by parts to couple elements via fluxes. These consist of Roe’s approximate Riemann
solver30 for F̂, and the second form of Bassi and Rebay (BR2)31 for the viscous flux, Ĝ. Choosing
a basis for the trial/test spaces turns the weak form into a nonlinear system of ordinary differential
equations,

M
dU

dt
+ R(U) = 0, (2)
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where U and R are the discrete state and residual vectors, respectively, and M is the spatial mass
matrix. We solve this system using an implicit time marching method, presently DG-in-time, with
a preconditioned Newton-GMRES solver at each time step.

B. Arbitrary Lagrangian-Eulerian Framework

In an arbitrary Lagrangian-Eulerian (ALE) method, the mesh can move at a velocity different from
that of the flow, which is useful for modeling problems in which objects move or deform. In the
present case, we are not specifically concerned with deforming domains, and instead use the motion
of the mesh to redistribute resolution in the physical domain.

The ALE method uses a map between the static reference domain and the deforming physi-
cal domain and solves transformed equations on the reference domain.27 This transformation is
illustrated graphically in Figure 1, and Table 1 defines key quantities.

Reference domain: ~X,uX , ~HX

~NdA

∂uX

∂t

∣∣∣
~X
+∇X · ~HX(uX , ~qX) = 0

Mapping

⇒

~X, t ⇒ ~x( ~X, t)

G = ∂~x
∂ ~X

g = det(G)
uX = gu

~qX = gGT~q
~vG = ∂~x

∂t

~HX = gG−1 ~H− uXG−1~vG

~nda = gG−T ~NdA

~NdA = g−1GT~nda

⇒

Physical domain: ~x,u, ~H

~nda

∂u
∂t

∣∣∣
~x
+∇ · ~H(u, ~q) = 0

Figure 1. Summary of the mapping between reference and physical domains. The equations are
solved on the reference domain, which remains fixed for all time. When denoting reference-
domain quantities, we use a subscript X.

Table 1. Definitions of variables used in the ALE mapping. Bold indicates a state vector and
an arrow indicates a spatial vector.

~X = reference-domain coordinates

uX = state on reference domain

~qX = gradient variable on reference domain
~HX = flux vector on reference domain

dA = differential area on reference domain
~N = normal vector on reference domain

V = reference domain (static)

G = mapping Jacobian matrix

g = determinant of Jacobian matrix

~x = physical-domain coordinates

u = physical state

~q = physical gradient variable
~H = flux vector on physical domain

da = differential area on physical domain

~n = normal vector on physical domain

v(t) = physical domain (dynamic)

~vG = grid velocity, ∂~x/∂t

Using a general mapping, ~x = ~x( ~X, t), the PDE on the reference domain becomes

∂uX
∂t

∣∣∣∣
~X

+∇X · ~HX(uX ,∇XuX) = 0, (3)

where uX = gu, ~HX = gG−1 ~H − uXG−1~vG, and ∇X denotes the gradient with respect to the
reference coordinates. The transformed flux, ~HX , separates into inviscid and viscous contributions,

~HX = ~FX + ~GX , ~FX = gG−1~F− uXG−1~vG, ~GX = gG−1 ~G. (4)

3 of 13

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d 

by
 K

rz
ys

zt
of

 F
id

ko
w

sk
i o

n 
O

ct
ob

er
 2

1,
 2

01
7 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/6

.2
01

7-
41

11
 



Eqn. 3 is the form to which the DG method is applied. The mapping Jacobian determinant, g,
might not be a polynomial in ~X, which leads to slight conservation errors that can be mitigated with
a geometric conservation law (GCL).27,28 Such a GCL is not used in this work as the conservation
errors decrease with higher-order approximation and adaptation.28

III. Mesh motion algorithm for r-Adaptation

Mesh motion introduces additional error into the solution process comparing to a solve on a
static mesh. For r-adaptation to be useful, the error introduced by mesh motion should be smaller
than the scheme discretization error.

The choice of the mesh motion algorithm for r-adaptation is dictated by considerations, 1)
introducing as little error as possible and 2) handling universal motions, because r-adaptation
needs to be flexible enough to handle general error distributions.

Mesh motion based on analytic functions can be made smooth and hence of low error due to
mesh motion, yet it is limited in the types of motion that can be realized to control an arbitrary
error distribution. On the other hand, mesh motion based on interpolation of nodal velocities is
much more flexible in addressing general error distributions, though it is more difficult to implement
and it introduces more errors arising from non-smooth features of the mapping. In this work we
present implementations of both methods and compare their results.

A. Analytic Function Based Mesh Motion

1. Mapping

In standard applications of ALE, the mapping from reference to global space is chosen to move
or deform the geometry in a desired fashion. In the present work, we consider mesh motions that
increase or decrease resolution in certain areas of the mesh, at certain targeted times. Such a
mapping, categorized as contraction or dilation, follows the following form:

~x =
(
~X − ~X0(t)

)
f( ~X, t) + ~X0(t), (5)

where ~X represents the reference-space coordinates, ~X0(t) represents the center of the contrac-
tion/dilation, and f( ~X, t) is a function that dictates the magnitude of the contraction or dilation.
We henceforth call f the contraction function, though specifically, f < 1 indicates a contraction,
while f > 1 indicates a dilation. Limiting cases include f = 1, in which ~x = ~X (no motion), and
f = 0, in which all of the mesh points coalesce to ~x = ~X0.

We note that the mapping in Eqn. 5 is only a contraction/dilation locally near ~X0. In the
surrounding region, the effect of the mapping is opposite, as a contraction near one point causes
stretching of the mesh (larger elements) further away from the point, with the distance dependent
on the form of f( ~X, t). We choose the following parametrized form for the contraction function,

f( ~X, t) = 1−A(t) exp
[
−( ~X − ~X0(t))TW( ~X − ~X0(t))

]
, (6)

where W is a dim×dim symmetric, positive-definite matrix that encodes the stretching magnitudes
and directions. Specifically, the eigenvectors of W give the direction of stretching, whereas the
eigenvalues relate to the stretching magnitude. To make the contraction active for only a certain
time, we choose a localized form of the contraction amplitude, A(t),

A(t) = A0 exp[−w(t− t0)2]. (7)

This is a Gaussian, illustrated in Figure 2, with w related to the duration of the contraction (i.e.
the width of the Gaussian), and t0 the time of peak deformation. The amplitude A0 is set based on
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0.9

1

A
(t

)

Figure 2. Sample temporal amplitude function for a contraction/dilation map.

user-defined maximum contraction ratio, g0, which is defined as the volume fraction of an element
in physical space relative to reference space. A calculation of the Jacobian of the mapping in Eqn. 6
reveals that the corresponding choice of A0 is 1−√g0.

2. Superposition

To handle multiple locations and times of large error, we superimpose several contraction mappings,
centered at locations of largest error. When dealing with domains of finite extent, we have to take
care not to inadvertently alter the geometry under consideration when applying the r-adaptation
maps. As the presented spatial function in Eqn. 6 has global effect, we must clip its region of
influence. Otherwise we will observe deformation of the computational boundary, as shown in
Figure 3.

To avoid this problem, we measure the wall distance, defined as the distance to the closest
wall, from each proposed contraction center, ~X0, and use this wall distance to limit the stretching
magnitudes. Specifically, we clip the eigenvalues of W in Eqn. 6 so that the location of the closest
wall corresponds to a minimum of three standard deviations of the Gaussian contraction function.

B. Node-Interpolated Mesh Motion Based Mesh Motion for r-Adaptation

In node-interpolated mesh motion (NIMM), the position and velocity of each node is are degrees of
freedom that can be used to design a tailored mesh motion. In contrast to analytic function based
mesh motion (AFBMM), NIMM does not rely on analytic functions and can hence express more
complex motions that are often necessary in r-adaptation.

The NIMM approach to mesh motion is still based on the ALE framework, which requires the
mapped coordinates, nodal velocities, and mapping Jacobians and determinant. These are obtained
in two steps: 1) interpolation and 2) Jacobian G smoothing.
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(a) Original static mesh (b) Mesh with contractions, 3 contracting sources in
effect at the same time and caused deformed bound-
aries

Figure 3. Effect of superimposed contractions without clipping on the computational domain.

1. Interpolation

Interpolation refers to mapping mesh motion information from the mesh nodes to element interiors.
This introduces an error that depends on the order of interpolation: for example, a second order
error will be introduced when using linear interpolation.

The ALE formulation requires six geometric properties: physical coordinates ~x, velocities ~v,
mapping Jacobian G, Jacobian determinant g, Jacobian derivatives ∂G/∂~x and ∂G/∂t. Two of

these, in our case ~x and ~v, can be prescribed. With ~x and ~v information, G = ∂~x

∂~ξ
×
(
∂ ~X

∂~ξ

)−1
and

g = detG. Lastly, ∂G/∂ ~X and ∂G/∂t are zero within an element because the prescribed velocity
~v is constant, which results in zero second-order derivatives with respect to ~x.

~v and ~x are prescribed at mesh nodes (vertices). For any other points where no information
was provided, we calculate the information required for ALE through interpolation as explained
in Figure 4, with the example of a 2D triangular reference element. This interpolation is used
to obtain ~x, ~v, and G inside the element. The Jacobian determinant, g, is computed from the
interpolated Jacobian: g = detG.

2. Jacobian smoothing

As a result of the linear interpolation of coordinates from vertices to the interior of the element,
the reference-to-global mapping Jacobian matrix G is constant within each element. For general
mesh motion, the discontinuous representation of G across elements causes errors that pollute the
results and destroy the high-order accuracy of the method. We reduce this error by smoothing G
to create a piecewise-linear, continuous representation.

The Jacobian is smoothed by first averaging the matrix from elements to nodes: G at each
node is set equal to the average of G over the adjacent elements. The Jacobian is then interpolated
linearly back to the element interiors to provide the desired piecewise-linear representation.
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↑→

η

ǫ

Figure 4. Interpolation in a 2D reference space, (ξ, η). Black dots represent linear Lagrange basis
function nodes, which are used to interpolate ALE information from the nodes to any other points
(blue dots) inside an element or on its edges.

As an example of the effect of smoothing, we consider a scalar advection simulation. The
primal initial condition is a constant box function that is nonzero in a region defined by four
vertices, [0.5 0.5], [1.5 0.5], [1.5 1.5] and [0.5 1.5]. This scalar initial condition advects through the
computational domain at a velocity ~a = [2.0 0.1], for time t = 1.0 with a prescribed sinusoidal
mesh motion,

x0 = X0 +Ax sin(2πx0/X0) sin(2πx1/X1) sin(2πt/t0)

x1 = X1 +Ay sin(2πx0/X0) sin(2πx1/X1) sin(4πt/t0)
(8)

where, Xi are reference-space coordinates and xi are physical-space coordinates, Ax = 0.3, Ay = 0.2
and t0 = 1.0, and the computational domain is a 3 by 2 rectangle. The output is a boundary integral
at the right boundary of the computational domain measured at every time step.

The prescribed motion in Equation 8 is an analytic expression, and hence we can run AFBMM:
we treat the result as a reference solution for the NIMM runs. We perform an L2 error convergence
study on NIMM with and without Jacobian smoothing. For the refinement study, the L2 error is
defined as

L2 =
1

Nt

√√√√i=Nt∑
i=0

(
Uanalytic
i − UNIMM

i

)2
, (9)

where Nt is the total number of time steps.
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(a) Output evolution with time, first refinement cy-
cle, element number = 96
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(b) Output evolution with time, fourth refinement
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(c) Refinement study, (d) Primal problem is a scalar advection prob-
lem, snapshot at t=0.45

Figure 5. Error reduction through a smoother nodal G values.

Figure 5 (a) and (b), shows output time histories for both runs, using two different meshes. The
output of interest in this case is the integral of the state on the right boundary of the domain. We
see that with Jacobian smoothing, NIMM approximates the solution better throughout the whole
time history.

Figure 5 (c) shows the L2 error convergence study with mesh refinement. We see that Jaco-
bian smoothing significantly reduces the l2 error, though the convergence rate is not affected. In
subsequent runs we by default employ Jacobian smoothing.

IV. Error Estimation and Adaptation

A. Error Estimation

An adjoint solution allows us to estimate the numerical error in the corresponding output of interest,
J̄ , through the adjoint-weighted residual.32,33 The equation governing the discrete unsteady adjoint
is obtained by linearizing the residual and output and solving a transposed system backwards in
time. To estimate the error, we use this adjoint to weight the unsteady residuals obtained by
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injecting the primal solution into a finer space, both spatially and temporally.
Denote by UH(t) the approximate primal solution obtained from a chosen time integration

method and time step size. To estimate the numerical error in UH(t), we solve for the adjoint on
a discretization space that is refined in both space and time. For the present study, we use a unit
order increment in both space and time to obtain this fine space, denoted by subscript h. The
resulting final form of the error estimate is

δJ̄ ≈ −
∫ T

0
ΨT
h R̄h(UH

h ) dt, (10)

where UH
h is the injection of the primal from space H to space h. The integral in Eqn. 10 is a

summation of integrals over time intervals, each performed with appropriate quadrature.
The output error estimate in Eqn. 10 is separated into spatial and temporal components by

selectively refining the fine space only in space or only in time.34 This separation then drives the
decision of whether to refine in space or in time.

B. Error Localization and Adaptation

For r-adaptation instructed by analytic function based mesh motion, we employ a simplified lo-
calization and adaptation procedure in which a separate contraction mapping is created for every
space-time element in the top fadapt = 10% fraction of elements with the largest error. The spatial
centroid of each selected element serves as the center of the contraction, ~X0. The magnitude of the
contraction is set to be as large as possible, subject to the no-wall motion constraint discussed in
Section 2. In addition, we heuristically set w in Eqn. 7 to produce a temporal Gaussian function
with standard deviation equal to two time steps.

For node-interpolated r-adaptation, the adaptation is driven by a spring analogy previously
used for the Active Flux method.23 The localized error within each element is re-distributed onto
element edges via averaging, and we relate this error to the equilibrium length of a spring on the
edge. The whole mesh is treated as a web of springs, and a force balance is used to equidistribute
the error. At each time step, we move nodes by balancing the forces inside the spring web, where
the force on an edge is given by

F = −K × (Ledge length − Ledge-wise error) (11)

The force balance process is enforced via several iterations during each time step of the unsteady
solve. After mesh movement, the error indicator information obtained from the previous adaptive
iteration will not be accurate, though after many adaptation iterations, the variation in error
indicators becomes smaller and the motion converges. Presently, a termination condition consists
of a fixed number of adaptation iterations.

V. Results

We consider a scalar advection-diffusion problem for the unknown concentration u, with ad-
vection velocity ~V = [1, 0.1], viscosity = 1.0 and homogeneous Dirichlet boundary conditions. The
domain is a rectangle, and the initial condition is a zero distribution of the state throughout the
domain, with the exception of a square region on the left portion, where u = 1. Figure 6 shows
this initial condition, as well as the solution at the final time.

The spatial domain is discretized with quadrilaterals in reference space, and the order of ap-
proximation is pspatial = 1. The total simulation time is ttotal = 1.6. The problem is solved using
DG-in-time with 20 time steps of order ptemporal = 1 initially. r-adaptation may generate smaller
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(a) Initial condition (b) Final time

Figure 6. Initial condition and final-time primal solution of the scalar advection-diffusion problem.

elements and result in additional time steps, as determined by the space-time adaptation algorithm.
The output of interest is a boundary integral of the state on the right-hand side boundary at the
final time.

We apply the output-based error estimation procedure to this problem to identify the localized
elemental error. We then use the space-time indicators to drive the proposed r-adaptation strategy.
Figure 7 and Figure 8 show the resulting mesh at t = 0.88 and t = 1.6 respectively in the simulation.
The contractions of the mesh near the output measurement for both cases are clearly evident.

Figure 7 shows that AFBMM tends to locally alternate mesh resolution while NIMM tends to
re-distribute mesh resolution globally. Similarly, Figure 8 displays the same observation, where
AFBMM picks the single element with the largest error to place a contraction source, while NIMM
shrinks the whole column of elements at the right boundary of the computational domain to achieve
a more accurate right-hand-side boundary integral output.

For a quantitative comparison, we measure the error estimate without mesh motion as −1.03×
10−2. After three iterations of r-adaptation, i.e. using the no-motion error indicators to drive the
r refinement procedure, the error estimate drops to −1.31× 10−3 for AFBMM, which is almost an
order of magnitude error reduction. The error estimate drops to −6.04× 10−3 for NIMM, which is
around a 50% error reduction.

VI. Conclusions

In this paper, we have described a method for mesh adaptation using r-refinement and presented
results from an implementation in a discontinuous Galerkin finite element method. The method
uses an arbitrary Lagrangian-Eulerian framework for moving the mesh, with two different mesh
movement algorithm, AFBMM and NIMM. Both methods show positive results in dropping total
error in the simulation, though the NIMM method is expected to be more robust for arbitrary error
indicator distributions. In future work, three dimensional cases and complicated physics will be
considered.
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(a) AFBMM, snapshot at t = 0.88. Several
contraction sources are placed to redistribute
the mesh resolution.

(b) NIMM, snapshot at t = 0.88. The mesh is
mildly contracted near the center of the scalar
profile and a contracting wave that propagates
through the domain is observed in the anima-
tion.

Figure 7. Snapshot of AFMM and NIMM at t = 0.88. AFBMM tends to pick out elements with the
highest error and places contraction sources on these elements. On the other hand, NIMM motion
deforms the mesh in a more uniform/global fashion.

(a) AFBMM, snapshot at t = 1.6. One con-
traction function is placed around the element
with the highest error.

(b) NIMM, snapshot at t = 1.6. Elements near
the right boundary are warped by NIMM.

Figure 8. Snapshot of AFMM and NIMM at t = 1.6.
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