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Abstract

In this paper, we introduce an algorithm for reducing the cost of output-based error estimation

and mesh adaptation through the use of a sub-iteration algorithm. A single sub-iteration is an

adaptation iteration in which the most expensive solves—the primal and fine-space adjoint—are

calculated only approximately. We intersperse sub-iterations with standard full-solve iterations

to obtain accurate error estimates. The use of sub-iterations in between full-solves reduces the

computational cost while improving solution accuracy per full-solve iteration. We demonstrate

this method for steady, compressible Euler and Navier-Stokes simulations, discretized with the

discontinuous Galerkin (DG) finite-element method. Because the acceleration in the output-

based method is based on sub-iterations of the adaptation cycle, regardless of the discretization,

the idea is not specific to DG and can be applied to general discretizations.

Keywords: Acceleration Algorithm, Adjoint-Based Methods, Error Estimation,

Discontinuous Galerkin, Mesh Adaptation

1. Introduction

Solution-adaptive techniques are becoming popular in Computational Fluid Dynamics re-

search as a means of improving solution accuracy and reducing computational cost. They

are particularly important for aerospace engineering applications, where convective transport

phenomena on complex three-dimensional geometries make a priori mesh design a difficult

task. One of the most rigorous solution-adaptive techniques is output-based error estimation

and adaptation [1]. Compared to residual-based adaptation, i.e., using solver residuals as an
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adaptive indicator, output-based methods target a scalar output of interest more efficiently for

convection-dominated modeling, leading to faster convergence for the outputs of interest. Com-

pared to feature-based adaptation, e.g., using a pressure gradient as an adaptive indicator, output

based methods are less ad-hoc and require less user input.

Output-based error estimates quantify the impact of numerical discretization errors on spe-

cific scalar outputs [2, 3, 4, 5, 6, 7, 8, 9]. The resulting estimates reflect the extent to which

mesh resolution and distribution affect an output of interest. Furthermore, the error estimates

provide information on regions of the spatial and temporal domains that are most responsible

for the output error.

However, output error estimation in its most rigorous form is not computationally economic

in terms of computational (CPU) time. The CPU time inefficiency is due, in large part, to the

fact that the error is typically estimated relative to a finer discretization space, Vh, and while

no primal solution is usually required on Vh, many estimates still have to employ a fine-space

adjoint solution in addition to a fine-space residual evaluation. These fine-space calculations

generally make the cost of error estimation and adaptation burdensome for practical simula-

tions, especially in three dimensions. The fine-space adjoint calculation, when coupled with

an adaptive algorithm, produces an accurate solution using relatively few degrees of freedom

(DOF)— i.e. a low adaptation DOF cost. However, calculating a fine-space adjoint at every

adaptation solve corresponds to a significant increase in the CPU time for the entire simulation,

and in some cases, makes the adaptive process less efficient than uniform refinement. Although

the error estimates are themselves useful, this high computational cost diminishes the utility of

output-based adaptation.

In this paper, we introduce and formalize an acceleration algorithm for estimating the output

error and for adapting the mesh using the adjoint-weighted residual: a sub-iteration algorithm.

Sub-iterations refer to re-using the fine-space adjoint for more than just one adaptation iteration.

We show that this strategy reduces the computational time for all cases tested while maintaining

the DOF performance of the adaptation.

The remainder of this paper is organized as follows. Section 2 presents the adjoint-weighted
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residual error estimate and explains why the standard output-based method is efficient in terms

of DOF while less efficient in terms of computational time, by estimating errors on a finer dis-

cretization space, Vh. Section 3 discusses the proposed strategies for accelerating the adapta-

tion. Section 4 presents results for several test cases, using DG for steady-state flows. Section 5

summarizes the performance of sub-iteration algorithm through results from various tests, and

finally, Section 6 offers concluding remarks.

2. Output-Based Method: The Adjoint-Weighted Residual and Associated Costs

The sub-iteration algorithm accelerates output-based adaptation and is independent of the

solver discretization. In this paper, we adopt the DG discretization. The target partial differen-

tial equation is a system of conservation laws,

∂tu +∇ · ~F(u) = 0, (1)

where u ∈ Rs is the state vector, ~F ∈ Rd×s is the total flux, and d is the spatial dimension. We

will focus on steady problems, ∂tu = 0.

2.1. The Discontinuous Galerkin Discretization

In the discontinuous Galerkin (DG) finite-element method, the state u is spatially approxi-

mated in functional form, using linear combinations of basis functions, usually polynomials, on

each element [10, 11, 12, 13, 14, 15, 16]. No continuity constraints are imposed on the approx-

imations across elements. Denote by Th = {Ωe} the set of Ne elements in a non-overlapping

tessellation of the domain Ω =
⋃
e Ωe. We seek an approximate solution uh ∈ Vh = [Vh]s,

where

Vh = {u ∈ L2(Ω) : u|Ωe ∈ Pp ∀Ωe ∈ Th} ,

and Pp denotes polynomials of order p on each element.

We obtain a weak form of Eqn. 1 by multiplying the PDE by test functions vh ∈ Vh and by

integrating by parts to couple elements via fluxes. The convective fluxes on element faces are
3



handled via a traditional finite-volume (approximate) Riemann solver [17], whereas diffusive

fluxes are handled using a penalty formulation, BR2 [18]. The final semilinear weak form reads

Rh(uh,vh) = 0, ∀vh ∈ Vh, (2)

which, by linearity of the second argument, we can decompose into contributions from each

element,

Rh(uh,vh) =
Ne∑
e=1

Rh(uh,vh|Ωe) = 0, ∀vh ∈ Vh. (3)

Integrating by parts, we find that the semilinear form associated with each element is

Rh(uh,vh|Ωe) =

∫
Ωe

vTh ∂tuh dΩ−
∫

Ωe

∂iv
T
hFi dΩ

+

∫
∂Ωe\∂Ω

v+T
h F̂ ds+

∫
∂Ωe∪∂Ω

v+T
h F̂b ds, (4)

where (·)T denotes transpose, and on the element boundary ∂Ωe, the notations (·)+ and (·)b

respectively denote quantities taken from the element interior and boundary. On a boundary

face, σb, the flux is typically computed directly from the boundary state, ub, which is a function

(projection) of the interior state and the boundary-condition data, ubh = ubh(u
+
h ,BC).

After choosing a basis for Vh and using this basis for both the approximation expansion

and for the test functions, we obtain a discrete system of equations (i.e. residuals),

R(U) = 0. (5)

Note that both U and R lie in RN , where N is the total number of degrees of freedom, in-

cluding equation states (s). When considering different discretization spaces, we will append a

subscript h(fine space) or H(coarse space) to the variables R, U, and N . This system of equa-

tions can be obtained for any scheme and is the starting point for output-based error estimation
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and adaptation, which is discussed in Section 2.2.

2.2. Output-Based Error Estimation

Output-based error estimates rely on the concept of an adjoint-weighted residual [19, 20,

21, 22, 23, 24, 25, 26], which is based on the definition of an output adjoint. An adjoint is the

sensitivity of an output to residual perturbations. On a particular mesh, residuals are typically

driven to negligible size by the solver. Subsequently, when we start varying mesh resolution,

we can uncover nonzero residuals. That is, when a primal solution on a particular mesh, call

it a “coarse” mesh, is transferred/injected/interpolated to a “fine” mesh, i.e., one with more

degrees of freedom, residuals are generally going to be nonzero on the fine mesh. An adjoint

solution on the fine space can then weight these residuals to yield an estimate of the output

difference between the coarse and fine mesh solutions. This calculation is attractive because

it does not require a primal solution on the fine mesh. However, it does require a fine space

adjoint solution and a fine-space residual evaluation, and these are not always computationally

economic in terms of CPU time. In some cases, the resultant CPU cost is comparable with

standard uniform refinement to achieve the required output accuracy.

Denote by UH and Uh the primal solutions on the coarse and fine space, respectively.

Also, let RH and Rh denote discrete residual vectors, both functions of their respective primal

states. Finally, let JH and Jh be scalar outputs computed on the coarse and fine spaces. We

assume that the output definition does not change between the coarse and fine spaces, so that

JH (UH) = Jh
(
UH
h

)
, where UH

h is the injection of the coarse solution, UH , into the fine

space. The standard adjoint-weighted residual error estimate of the output difference between

the coarse and fine spaces reads [19, 21, 1]

Jh
(
UH
h

)
− Jh (Uh)︸ ︷︷ ︸
δJ

= ΨT
h δRh = −ΨT

hRh

(
UH
h

)
, (6)

where δRh is the residual perturbation due to the difference between UH
h and Uh. The discrete

fine-space adjoint, Ψh, weights the residual perturbation, δRh, to give a linearized estimate of

the output difference between solutions on the coarse and fine spaces. It is a vector of the same
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size as the state and residual vectors, and it satisfies the following adjoint equation:

(
∂Rh

∂Uh

)T
Ψh +

(
∂Jh
∂Uh

)T
= 0. (7)

2.3. Cost of Output-Based method

Although the fine-space primal state is not required in output-based error estimation, the

computational and storage costs associated with Eqn. 6 are not trivial, as indicated below:

δJ ≈ −ΨT
h︸ ︷︷ ︸

fine space adjoint

Rh︸︷︷︸
fine space residual operator

(
UH
h︸︷︷︸

injected state

)
. (8)

First, we need to inject the state into the fine space [27, 28, 29, 30, 31, 32, 33, 34, 35, 36]. A

common way to construct a finer space is uniform mesh refinement, which increases the spa-

tial DOF four-fold in two dimensions and eight-fold in three dimensions, for steady problems.

Second, along with the increase in DOF, computational overhead occurs in the form of element

geometry quantities, basis functions, mappings, etc., some or all of which are used in the cal-

culation of the fine-space residual. Third, Eqn. 8 requires the fine-space adjoint solution, and

this involves either a reconstruction or a system solve on the fine space [37, 38, 39, 40, 41, 42].

The adjoint-weighted residual error estimate is typically paired with mesh adaptation, and

the mesh is successively refined to reduce the error. Often, the mesh is refined incrementally;

for example, using hanging-node element subdivision of a fixed-fraction of elements with the

highest error. In such cases, many adaptive iterations may be required to sufficiently reduce the

output error, and at each iteration the adjoint-weighted residual calculation must be repeated in

order to obtain adaptive indicators to drive the adaptation process.

3. Addressing the Cost of Output-Based Adaptation: A Sub-Iteration Algorithm

As discussed in Section 2, the adjoint computation in output-based methods may be ex-

pensive, due to the need for fine-space calculations. In contrast, residual-based methods and

feature-based methods are often readily computable from the primal state.
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Figure 1 illustrates a standard adaptive solution scheme based on the adjoint-weighted resid-

ual. Each adaptive iteration requires the calculation of an error estimate, a critical part of which

is the fine-space adjoint solve: after solving the primal problem exactly (practically, to some

low residual tolerance) on the coarse space (H), we solve the coarse-space adjoint problem,

inject the primal to a fine space (h), solve the fine-space adjoint corresponding to the injected

primal solution, calculate the fine-space residual of the injected primal, and weight this residual

by the fine-space adjoint to obtain the error estimate. A localized form of the error estimate then

coarse space fine space

2. Solve ΨH exactly
1. Solve UH exactly

4. Solve Ψh

∣∣∣
UH

h

exactly
3. Inject UH ,ΨH

5. Calculate Rh(U
H
h )

UH
h ,Ψ

H
h

6. Compute adjoint-weighted residual:

ε = (Ψh −ΨH
h )TRh(U

H
h )7. Localize ε to

coarse elements
8. Adapt coarse space

Figure 1: Schematic of a “standard” error estimation and adaptation iteration in which the fine space adjoint is
solved exactly at every iteration.

drives adaptation. In a fixed-fraction setting, only the elements with the highest contribution to

the error are targeted for refinement. The above-process repeats until the desired accuracy is

reached.

As in the previously depicted standard adaptive scheme, we often solve the fine-space ad-

joint exactly in order to obtain an accurate error estimate, which we use to correct the solution

and to improve the order of accuracy of the output prediction. To reduce the computational

burden of this exact solve, we can approximate the fine-space adjoint, either through iterative

smoothing or reconstruction [43, 44, 45, 46, 47, 48]. However, the accuracy of error estimates

often suffers when using such approximations. As discussed further in Section 4, the majority

of CPU time expenditure of output-based adaptation arises from the fine-space adjoint solution

and error estimation.

In fixed-fraction output-based adaptation, a group of cells with the highest absolute element-

wise error estimates is targeted for adaptation. Therefore, the accuracy of individual element-
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wise error estimates may not affect the adaptation process, as long as the same group of cells

with the highest absolute element-wise error estimates is designated as the adaptive cells. An

approximate adjoint solve then possesses merit for adaptation purposes because the ranks of

cell-wise error estimates determine the targeted adaptation cells, assuming that the approxi-

mate solve can yield the correct relative ranks among cells. This motivates the sub-iteration

algorithm, which is based on the following two fundamental steps:

1. Calculate adaptive sub-iterations where the primal problem is not solved on every adap-

tive iteration so as to minimize the cost of multiple nonlinear primal solves.

2. Reuse the fine-space adjoint between adaptive iterations to avoid the cost of solving a

large fine-space adjoint problem at each iteration.

Figure 2 illustrates this scheme, which consists of two types of iterations: a standard error

estimation and adaptation iteration involving an exact fine-space adjoint solve, followed by one

or more adaptive “sub-iterations” that further refine the mesh at a lower computational cost.

Note that in these adaptive sub-iterations, neither the coarse-space primal nor the fine-space

adjoint are solved exactly. However, the coarse-space adjoint is solved exactly in order to

accurately quantify the coarse space error estimate and to remove the portion of error in the

estimate caused by an incomplete coarse-space primal solve. This prevents the sub-iterations

adaptive indicator from becoming polluted by coarse-space primal residuals that are nonzero

solely because of the inexact primal solves on the sub-iterations. Instead, the sub-iteration

indicator still targets errors relative to the fine space.

The effectiveness of the sub-iterations depends on, among other things, the fine-space ad-

joint retaining accuracy as it is transferred from one fine space (e.g. h0) to another (e.g. h1). In

our work, we use hanging-node mesh refinement, so that this transfer is injective and results in

no information loss. Of course, not losing information is itself not sufficient, and that is why

we smooth the adjoint on the fine space to which it is transferred. Smoothing of the adjoint and

primal solutions incorporates new characteristics of the fine space into these solutions.

Algorithm 1 presents the sub-iteration algorithm in more detail. The sub-iteration algo-

rithm does not require changes in the primal or adjoint solvers, and it operates both on the
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coarse space fine space

Standard adaptive iteration:

fine space, h1coarse space, H1

H0

UH0
Ψh0

H1

UH0

H1
Ψh0

h1

h1

h0

First adapted
coarse/fine pair :

Initial coarse/fine
space pair :

3. Inject UH1

2. Solve ΨH1
exactly

1. Smooth UH0

H1
→ UH1

4. Smooth Ψh0

h1
→ Ψh1

UH1

h1

5. Calculate Rh1
(UH1

h1
)

6. Compute AWR:

ε = (Ψh1
−ΨH1

h1
)TRh1

(UH1

h1
)7. Localize ε

8. Adapt mesh → H2

Adaptive sub-iteration (can be repeated to get H3, H4, etc.)

Figure 2: Schematic of the proposed error estimation and adaptation iteration in which approximate sub-iterations
piggy-back on a standard adaptive iteration. The fine-space adjoint solve is reused in the sub-iterations, where it is
only smoothed via an inexpensive iterative solver, 2 element block Jacobi iterations, thereby saving computational
time compared to the standard approach, in which the fine-space adjoint is re-solved at every adaptive iteration.
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primal solver and the adjoint solver as black-boxes / closed modules.
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Algorithm 1: Sub-iteration algorithm: eestimate is the error estimate, edesired is the de-

sired error, Cyclesub-iterations is a boolean flag indicating whether or not to perform sub-

iterations, β denotes the frequency of sub-iterations, Hi denotes the discretization

space resulting from the ith adaptation, Hi−1 denotes the discretization space resulted

from the (i− 1)th adaptation, hi denotes the corresponding fine space of Hi, and hi−1

denotes the corresponding fine space of Hi−1.

initialization, Cyclesub-iterations = False;

while eestimate > edesired do

if Cyclesub-iterations then

smooth U
Hi−1

Hi
−→ UHi

;

solve ΨHi exactly;

inject UHi −→ UHi
hi

;

smooth Ψ
hi−1

hi
−→ Ψhi calculate Rhi

(
UHi
hi

)
;

compute AWR, ε =
(
Ψhi −ΨHi

hi

)T
Rhi

(
UHi
hi

)
;

else

solve UHi
exactly;

solve ΨHi
exactly;

inject (UHi
,ΨHi

) −→
(
ΨHi
hi
,UHi

hi

)
;

solve Ψ|
U

Hi
hi

exactly;

calculate Rhi

(
UHi
hi

)
;

compute AWR, ε =
(
Ψhi −ΨHi

hi

)T
Rhi

(
UHi
hi

)
;

eestimate = ε;

end

localize ε to coarse elements;

adapt coarse space;

if ( mod [Cyclei, β] = 0) then
Cyclesub-iterations = True

else
Cyclesub-iterations = False

end

end

post-processing;
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4. Results

In this section, we present results of our error estimation and adaptation acceleration al-

gorithm. We demonstrate the adaptive sub-iteration algorithm for the discontinuous Galerkin

discretization of the steady-state Euler and Navier-Stokes simulations. We choose a p enriched

fine spaces when constructing adjoint based error estimate formulation, which is more compu-

tationally economic than using a h enriched space.

4.1. Transonic airfoil with a fishtail shock

We first consider a NACA 0012 airfoil in inviscid M = 0.95 flow at α = 0. The flow is

transonic and we use element-wise artificial viscosity, discretized using BR2 [18], to stabilize

the solution. We consider drag coefficient prediction using an approximation order of p = 1

and an adaptive fixed fraction of f = 0.1 for adaptive (sub-)iterations. The initial mesh consists

of 234 quadrilaterals, curved with a quartic geometry representation.

Figure 3 shows a comparison of several adaptive techniques for this case. These include

simple uniform refinement, a standard method without sub-iterations, and five methods with

sub-iterations. As shown in Figure 3, the adaptation targets a “lambda”-shaped structure in

the transonic flow region and leaves the trailing edge fishtail shock virtually untouched. Both

the standard adaptive approach and ones that use adaptive sub-iterations yield nearly the same

adapted meshes. They also yield nearly the same output convergence with respect to DOF

(the solid color lines in Figure 3(c)), meaning our approximations in the sub-iterations do not

have a strong effect on the adaptive indicator that dictates the elements chosen for refinement.

Furthermore, the outputs corrected by the error estimates (dashed line) are also similar to the

output-based approaches, which is not overly surprising because during adaptive sub-iterations

we only report the error estimates when we carry out an exact adjoint solve.

The more interesting plot, however, is the one in Figure 3(d), which shows the convergence

of the drag output against computational time. Both the uncorrected and corrected outputs now

converge faster for the runs with adaptive sub-iterations. It follows that convergence is faster

because each sub-iteration is cheaper than a regular adaptive iteration due to smoothing of the

coarse primal and the fine adjoint. The bottoming-out of the corrected output in this case is
12



(a) Final drag-adapted mesh (b) Mach contours (0 to 1.5)
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(c) Drag convergence with DOF
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(d) Drag convergence with CPU time

Figure 3: NACA 0012, M = 0.95, α = 0◦: effect of sub-iterations on drag convergence. Output of interest
is drag coefficient. In all 5 cases employing sub-iterations, the fine-space adjoint is reused on the sub-iterations
with only one element block-Jacobi smoothing iteration as the extra solve. The current-space primal is also only
block-Jacobi smoothed on the current space, but the linear coarse-space adjoint problem is solved exactly for all
iterations. Dashed lines indicate the remaining error after correction with the estimate. Note, for the output-based
method, the error estimate corrects the convergence curve, and the result is shown by the dashed line.
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likely due to a relatively loose residual convergence tolerance of 10−8 used in the calculations.

The fastest convergence curve seems to be the dashed green star line, 2 sub-iterations adap-

tive refinement. Noted, from 3 sub-iterations to 5 sub-iterations, corrected outputs converge

progressively slower as the number of sub-iterations increase as shown in Figure 3(d).

Figure 4 shows histograms of the elemental error indicator (obtained from localizing the

error estimate) for the first and last adaptive iterations of all adaptive methods. We see that,

after adaptations, all of the methods yield an error histogram shifted to the left – meaning that

elements with high errors were targeted for refinement. Moreover, the histograms are similar

among the methods, which indicates that they are performing comparably. Figure 5(a) shows,

for the standard adjoint-weighted residual method, how the error equi-distributes over the ele-

ments with adaptive refinement. While, initially fewer than 20% of the elements accounted for

99% of the error, by the final adaptive iteration, 99% of the error is distributed among a much

larger portion of the elements, totalling 85%. Figure 5(b) further illustrates this point: both the

mean and standard deviation of the error indicator drop with each adaptive iteration.

Figure 6 shows the CPU time breakdown for the different adaptation strategies. Figure 6(a)

shows the CPU time percentage breakdown and Figure 6(b) shows the actual CPU time break-

down1. Figure 6(b) reveals the benefits of sub-iterations. In both Figure 6(a) and Figure 6(b),

each number of adaptation (depicted as a grouped bar) comprises six adaptation strategies. We

take the first bar in each group of six as the benchmark, since this represents the standard adap-

tive mesh refinement. Looking at the second bar, we see that the total height of this bar is similar

to the first bar for every even iteration, and noticeably lower for every odd iteration. This is due

to the 1 sub-iteration, which occurs at every even total iteration number: on these iterations, the

primal and fine-space adjoints are only smoothed (green and red lines are much shorter). Note

that the coarse-space adjoint is still solved exactly, so that the blue lines are always of similar

size. Looking at the third bar in each group, the case of 2 sub-iterations, we see a similar trend

but now with the bar height similar to the standard one only every three iterations (since the

other two are the quick sub-iterations). Switching attention to the fourth bar, 3 sub-iterations,

1Timings were performed on a workstation with dual socket Intel Xeon 2.1 GHz 8-core processors and 96GB
total RAM.
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(a) Standard AWR adaptation (b) One sub-iteration

(c) Two sub-iterations (d) Three sub-iterations

(e) Four sub-iterations (f) Five sub-iterations

Figure 4: NACA 0012, M = 0.95, α = 0◦: comparison of error indicator distributions.
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Figure 5: NACA 0012, M = 0.95, α = 0◦: sample statics of the standard adjoint-weighted residual adaptive
refinement, element wise error indicator mean, standard deviation and error count.
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Figure 6: NACA 0012, M = 0.95, α = 0◦: CPU time breakdown results. For the first 6 adaptive iterations, we
show 2 group-bar plots. One group-bar plot illustrates the percentage CPU time expenditure and the other one
illustrates absolute CPU time expenditure. In each group-bar plot, a group column consists of 6 bars: standard
adaptation, and adaptation with 1-5 sub-iterations. Each individual bar is divided vertically into three parts, which
indicate the CPU time contribution of the primal solve, performed inH space (green), the adjoint solve, performed
inH space (blue), and the error estimation and adaptation, performed in h space (red). Note that the latter includes
any fine-space solves.
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every fourth iteration is around the similar height (the other 3 are quick sub-iterations) with the

standard adaptation. For the the fifth bar, 4 sub-iterations, every fifth iteration is around the sim-

ilar height with the standard adaptation (the other 4 are quick sub-iterations). Lastly, when we

observe the sixth bar of each group, 5 sub-iteration, every sixth iteration is of similar height as

the standard adaptation (the other 5 are quick sub-iterations). Figure 6(a) confirms this trend,

showing that during sub-iterations, the adjoint solve time, which is similar for all methods,

eventually consumes the largest percentage of the CPU time. Since we saw in Figure 3 that the

standard and sub-iteration methods perform similarly in terms of DOF, sub-iteration method

have a CPU time advantage for a given level of accuracy.

The transonic fishtail case demonstrates the benefit of sub-iterations in reducing compu-

tational time while achieving a similar level of accuracy compared to standard output-based

methods with given DOF. To further test the capability of sub-iterations, we next present test

cases for a subsonic airfoil in viscous flow and a three-dimensional wing in invisid flow.

4.2. An airfoil in viscous subsonic flow

The second test case is a NACA 0012 airfoil at a free-stream Mach number of 0.5, angle of

attack of 2◦, Prandtl number of 0.71, and Reynolds number of 5000. Our output of interest for

this case is drag coefficient. As in the previous case, the initial mesh consists of 234 quadrilat-

erals, curved with a quartic geometry representation. The fixed fraction for adaptation is also

the same, f = 0.1, and the approximation order is p = 2.

Figure 7 shows a comparison of the various adaptive strategies for this case. Figure 7(c)

shows that the methods with sub-iterations exhibit a similar output error convergence behavior

with DOF compared to standard adaptation. However, as shown in Figure 7(d), sub-iterations

show an advantage in CPU time over standard adaptation. The runs with two and three sub-

iterations converge the fastest. As the number of sub-iteration increase, from 3 to 5, the error-

estimate-corrected curves converge progressively slower. This progressively slower conver-

gence behavior as sub-iteration frequency increases is consistent with our observation in Sec-

tion 4.1, Figure 3(d). As the number of sub-iterations rises, the accuracy of adaptive indicators

gradually deteriorates and sub-iteration based adaptations becomes less effective. Nevertheless,
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(a) Final drag-adapted mesh (b) Mach contours (0 to 0.58)
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Figure 7: NACA 0012, M = 0.5, α = 2◦ and Re = 5000 : effect of sub-iterations on drag convergence. In
all 5 cases employing sub-iterations, the fine-space adjoint is reused on the sub-iterations with only one element
block-Jacobi smoothing iteration as the extra solve. The current space primal is also only block-Jacobi smoothed
on the current space, but the linear coarse-space adjoint problem is solved exactly for all iterations. Dashed
lines indicate the remaining error after correction with the estimate. Note, for the output-based method, the error
estimate corrected convergence curves, the dashed lines, are the final post-processed convergence curves.
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in Figure 7(d), the higher frequency sub-iteration methods still outperform standard adaptation.

Figure 8 shows histograms of the error indicator distribution for the different adaptation

strategies. Again, we see a similar trend for all six methods: the error distribution tightens

and shifts to the left from the first to the last adaptive iteration. Figure 9(a) shows, for the

standard adjoint-weighted residual method, another look at how the error equidistributes over

the elements with adaptive refinement. While, initially, only about 8% of the elements account

for 99% of the error, by the final adaptive iteration, 99% of the error is distributed among a

much larger portion of the elements, totalling 80%. The same error equidistribution trend is

observed for the 30% error count and 60% error count curves.

Figure 9(b) shows the mean and standard deviation of the localized error for the standard

adaptation method. The spikes at the 2nd adaptation for both the mean and standard deviation

curves, is likely due to the coarser mesh in the early stage of the simulation, on which neither

primal solution nor error indicator are particularly well resolved. After the 2nd adaptation, both

curves drop monotonically with each adaptation iteration. After the first couple of adaptation

iterations, the methods employing sub-iterations show a similar trend.

Figure 10 shows the CPU-time breakdown comparison among standard and sub-iterative

adaptation. The first 3 iterations of the CPU-time breakdown data contain noise – this is the

spike of absolute CPU time for the first bar (standard adaptation) in the 2nd iteration and the

spike of the second bar in the third iteration (1 sub-iteration). These two CPU time spikes

corresponds exactly to the 2 spike points in Figure 7(c) and 7(d). These zig-zag spikes likely

indicate lack of resolution on the coarser mesh in the earlier stage of simulation. Thus, it is not

meaningful to look at the first 3 iterations to study the behavior of the 1 sub-iteration method,

whose error estimate is likely not yet accurate. For the remaining sub-iteration methods, the

CPU time breakdown results are similar to the fishtail case in the previous section. During

the sub-iterations, the CPU time spent on the primal solve and the error estimation decreases

relative to the standard adaptation, but the CPU time spent on the current-space adjoint solves

remains similar. As a result, whenever the adaptation mechanics enters a sub-iteration cycle,

the total time drops (Figure 10(b)) while the percentage of the time taken by the adjoint solve

19



(a) Standard AWR adaptation (b) One sub-iteration

(c) Two sub-iterations (d) Three sub-iterations

(e) Four sub-iterations (f) Five sub-iterations

Figure 8: NACA 0012, M = 0.5, α = 2◦ and Re = 5000: comparison of error indicator distributions.
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Figure 9: NACA 0012,M = 0.5, α = 2◦ and Re = 5000: sample statics of the standard adjoint-weighted residual
adaptive refinement, element wise error indicator mean, standard deviation and error count.

increases (Figure 10(a)).
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Figure 10: NACA 0012, M = 0.5, α = 2◦ and Re = 5000: CPU time breakdown results. For the first 6 adaptive
iterations, we show 2 group-bar plots. One group-bar plot illustrates percentage CPU time expenditure and the
other one illustrates absolute CPU time expenditure. In each group-bar plot, a group column consists of 6 bars:
standard adaptation, and adaptation with 1-5 sub-iterations. Each of these bars is divided vertically into three
parts, which indicate the CPU time contribution of the primal solve, performed on H space (green), the adjoint
solve, performed on H space (blue), and the error estimation and adaptation, performed on h space (red). Note
that the latter includes any and all fine-space solves.

4.3. A three-dimensional wing

In this section, we demonstrate the performance of sub-iterations for adaptive simulations

of a three-dimensional wing. This wing is untapered, untwisted, of aspect ratio 10, and with a
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NACA 0012 airfoil cross-section, rounded via a 180◦ revolution at the wing tip. The wing is

flying in inviscid flow at M = 0.4 and α = 3◦. Artificial viscosity shock capturing is used in

this case to enable convergence in the presence of the singular trailing vortex cores. The initial

mesh for this case contains 4608 hexahedral elements curved to cubic geometry representation.

Drag is again the output of interest, the approximation order is p = 1, and the fixed fraction for

adaptation is f = 0.04.

Figure 11 shows the final mesh obtained from adaptation using the standard adjoint-weighted

residual. We see that the leading edge, trailing edge, and parts of the wake are targeted for re-

finement. Figure 12 shows the output error convergence for the various methods versus DOF

(a) Mesh overview (b) Symmetry BC and wing surface BC mesh

(c) Wing surface mesh (d) Mach number plot with cutplane showing
the contour of Mach number plot, Mach num-
ber from 0 to 1.33

Figure 11: NACA 0012 wing, M = 0.4, α = 3◦: adapted mesh and surface Mach contours.

and CPU time. As expected, the standard and sub-iteration methods have similar performance

with DOF, and the methods with sub-iterations perform better with CPU time. For the latter
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adaptations in 12(b), the benefit of sub-iterations is at times as much as an order of magni-

tude error reduction for a given computational time. In Figure 12(b), among all sub-iterations

methods, it appears that the greater the number of sub-iterations, the faster the error estimate

corrected output converges. The 4 sub-iteration and 5 sub-iteration runs only contain two data

points, as the greater the number of sub-iterations, the longer the error estimate reporting inter-

vals. As the number of sub-iterations increases, we expect deterioration of error estimates and

adaptive indicators, which would lead to less effective adaptation. For this reason, the number

of sub-iterations should not be too large – 2 or 3 appears to be a reasonable general choice.

In the present case, as shown in Figure 12(b), all sub-iteration methods converge faster than

standard adaptation in CPU time measurement.
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Figure 12: NACA 0012 wing, M = 0.4, α = 3◦: effect of sub-iterations on drag convergence. Output of interest
is drag coefficient. In all 5 cases employing sub-iterations, the fine-space adjoint is reused on the sub-iterations
with only one element block-Jacobi smoothing iteration as the extra solve. The current-space primal is also only
block-Jacobi smoothed on the current space, but the linear coarse-space adjoint problem is solved exactly for all
iterations. Dashed lines indicate the remaining error after correction with the estimate. Note, for the output-based
method, the error estimate corrected convergence curve, the dashed lines, are the final post-processed convergence
curves.

Figure 13 shows the error histograms for all adaptive methods. These error histogram

distributions again appear similar among all methods, each showing a decreasing-error trend

from the first to the last adaptation iteration. Figure 14(a) shows that the number of elements

responsible for 99% of the error rises from 40% to just over 80% in the course of adaptation.

The number of elements responsible for 30% and 60% of the error also increases but then
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stagnates, likely due to large error contributions from elements in singular areas of the flow, as

observed in the previous section.

(a) Standard AWR adaptation (b) One sub-iteration

(c) Two sub-iterations (d) Three sub-iterations

(e) Four sub-iterations (f) Five sub-iterations

Figure 13: NACA 0012 wing, M = 0.4, α = 3◦: comparison of error indicator distributions.

Figure 14(b) shows the mean and standard deviation of the localized error for the standard
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adaptation method. Both of these drop monotonically with each adaptation iteration. The

methods employing sub-iterations show a nearly identical trend.
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Figure 14: NACA 0012 wing,M = 0.4, α = 3◦: sample statics of the standard adjoint-weighted residual adaptive
refinement, element wise error indicator mean, standard deviation and error count.

The CPU time breakdown is shown in Figure 15. We again observe a sharp drop in compu-

tational time during the sub-iterations in Figure 15(b), and an enlargement of the blue section

of the columns, the relative adjoint solve time, in Figure 15(a). We note that in this three-

dimensional case, the fine-space adjoint solve at p = 2 is significantly more expensive than a

solve at p = 1, which accounts for the large contribution of the error estimation and adapta-

tion (red portion) to the total CPU time. The fine space CPU time cost is significantly reduced

among all methods employing sub-iterations (shortened red portion, Figure 15(b)), which, in

turn, reduced overall CPU time cost for all sub-iteration methods (shortened overall bar height,

Figure 15(b)).

5. Summary

We summarize the results of the sub-iteration algorithm from Section 4 with the following

observations:

• When measuring CPU time, sub-iterations offer noticeable savings, as shown in Fig-

ures 3(d), 7(d) and 12(b), because during sub-iterations, the primal and fine-space adjoint

are only smoothed, not solved exactly.
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Figure 15: NACA 0012 wing, M = 0.4, α = 3◦: CPU time breakdown results. For the first 6 adaptive iterations,
we show 2 group-bar plots. One group-bar plot illustrates percentage CPU time expenditure and the other one
illustrates absolute CPU time expenditure. In each group-bar plot, a group column consists of 6 bars: standard
adaptation, and adaptation with 1-5 sub-iterations. Each of these bars is divided vertically into three parts, which
indicate the CPU time contribution of the primal solve, performed onH space (green), the adjoint solve, performed
onH space (blue), and the error estimation and adaptation,performed on h space (red). Note that the latter includes
any fine-space solves.

• In terms of DOF, the use of sub-iterations maintains the performance of error estimation

and adaptation, as shown in DOF convergence curves in Figures 3(c), 7(c) and 12(a).

• The sub-iteration algorithm achieves output error reduction (i.e., element-wise error equi-

distribution) in the same fashion as standard adaptation, shown in the error equi-distribution

analysis histogram in Figures 4, 8 and 13.

• The sub-iteration algorithm achieves CPU time reduction because it reduces the Vh ad-

joint solve cost —the Vh adjoint solve makes up a large fraction of the total CPU cost in

output-based adaptive simulations. As shown in Figures 6, 10 and 15, the sub-iteration

algorithm reduces the red columns’ length where such columns represent the CPU time

expenditure on Vh.

• For all tested cases, the optimal sub-iteration frequency was found to be around two.
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6. Conclusions

In this paper, we have presented a general algorithm for accelerating output-based error es-

timation and mesh adaptation by minimizing the fine space, h, operations in output-based meth-

ods. The algorithm consists of sub-iterations during adaptation, where at each sub-iteration the

primal and fine-space adjoint solves are performed only approximately. These are usually the

most expensive solves of every adaptive iteration and hence the cheaper approximate solves

(block-Jacobi smoothing) yield noticeable computational time savings. DOF performance of

the sub-iterations adaptations is on a par with the standard method, as long as the current-space

adjoint is solved exactly to remove errors arising from the approximate primal solves. We

demonstrated examples of using sub-iterations for the DG finite-element method for steady-

state Euler and Navier-Stokes simulations.
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