
Acceleration of Adjoint-Based Adaptation through
Sub-Iterations for Unsteady Simulations

Kaihua Ding∗ and Krzysztof J. Fidkowski.†
Department of Aerospace Engineering, University of Michigan, Ann Arbor, MI48105

Sub-iterations in adjoint-based adaptation refer to reusing primal states and fine-space
adjoints, in multiple adaptive iterations. This technique has been demonstrated for steady
compressible Navier-Stokes simulations, for which it achieved significant CPU time savings as
compared to standard adjoint-based adaptation. In this paper, we extend the sub-iterations
idea of formulating approximated and relatively accurate adaptive indicators by reusing solver
information, to unsteady problems. The steady sub-iteration only needs to reconstruct in space
in order to reuse the previous adaptation iteration’s primal states and fine-space adjoints, while
unsteady sub-iterations require both spatial and temporal reconstruction due to mismatched
adapted time histories. In this paper, we present our results for simulations of the unsteady
Navier-Stokes equations, with ? adaptation.

I. Introduction: The Sub-Iteration Method for Steady Problems

A. Cost of Adjoint-Based Adaptation
Adjoint-based adaptation algorithms have been used in a wide range of CFD applications to achieve a faster and

more accurate solution, with added benefits of obtaining tailored meshes (in the case of ℎ or A adaptation) [1]. However,
adjoint-based adaptation is computationally expensive in its most rigorous form [2].

Denote by U� and Uℎ the primal solutions on the coarse and fine space, respectively. Also, let R� and Rℎ denote
the discrete residual vectors, both of which are functions of their respective primal states. Finally, let �� and �ℎ be
scalar outputs computed on the coarse and fine spaces. We assume that the output definition does not change between
the coarse and fine spaces, so that �� (U�) = �ℎ

(
U�
ℎ

)
, where U�

ℎ
is the injection of the coarse solution, U� , into the

fine space. The standard adjoint-weighted residual error estimate of the output difference between the coarse and fine
spaces reads [3–5]

�ℎ

(
U�ℎ

)
− �ℎ (Uℎ)︸ ︷︷ ︸
X�

=)ℎ XRℎ = −	
)
ℎRℎ

(
U�ℎ

)
, (1)

where XRℎ is the residual perturbation due to the difference between U�
ℎ
and Uℎ . The discrete fine-space adjoint, 	ℎ ,

weights the residual perturbation, XRℎ , to give a linearized estimate of the output difference between solutions on the
coarse and fine spaces. 	ℎ is a vector of the same size as the state and residual vectors, and it satisfies the following
adjoint equation: (

mRℎ
mUℎ

))
	ℎ +

(
m�ℎ

mUℎ

))
= 0. (2)

Although the fine-space primal state is not required in output-based error estimation, the computational and storage
costs associated with Eq.(1) are not trivial, as indicated below:

X� ≈ −)ℎ︸︷︷︸
fine space adjoint

Rℎ︸︷︷︸
fine space residual operator

(
U�ℎ︸︷︷︸

injected state

)
. (3)

∗R&D Engineer, ANSYS Inc.
†Associate Professor, University of Michigan, AIAA Senior Member.

1

D
ow

nl
oa

de
d

by
 6

8.
56

.1
71

.2
1

on
 J

an
ua

ry
 5

, 2
02

1
| h

ttp
://

ar
c.

ai
aa

.o
rg

 |
D

O
I:

 1
0.

25
14

/6
.2

02
1-

01
55

 AIAA Scitech 2021 Forum

 11–15 & 19–21 January 2021, VIRTUAL EVENT

 10.2514/6.2021-0155

 Copyright © 2021 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved.

 AIAA SciTech Forum

http://crossmark.crossref.org/dialog/?doi=10.2514%2F6.2021-0155&domain=pdf&date_stamp=2021-01-04

For error estimation, we need to inject the state into the fine space [6–15]. A common way to construct a finer space
is uniform mesh refinement, which, for steady problems, increases the spatial DOF four-fold in two dimensions and
eight-fold in three dimensions. For unsteady problems, uniform refinement increases DOF eight-fold in two dimension
and sixteen-fold in three dimensions. Along with the increase in DOF, computational overhead arises in the form of
element geometry quantities, basis functions, mappings, etc., some or all of which are used in the calculation of the
fine-space residual. Eq.(3) requires the fine-space adjoint solution, and this involves either a reconstruction or a system
solve on the fine space [16–21].

The adjoint-weighted residual error estimate is typically paired with mesh adaptation, and the mesh is successively
refined to reduce the error. Often, the mesh is refined incrementally; for example, using hanging-node element
subdivision of a fixed-fraction of elements with the highest error. In such cases, many adaptive iterations may be
required to sufficiently reduce the output error, and at each iteration, the adjoint-weighted residual calculation must be
repeated in order to obtain adaptive indicators to drive the adaptation process.

B. Sub-iteration Algorithm for Steady Problems
To address the cost of solving the adjoint on a finer discretization, the sub-iteration algorithm is formulated. For

steady simulations with sub-iterations, we reuse primal states U�:−1 solution through a smoothing process [16–21] to
obtain U�: and solve the adjoint 	�: exactly to secure an accurate error estimate. : is the index for the : th adaptation
iteration. Because of the lack of a convergence requirement for U�: (obtained by smoothing U�:−1), the accuracy of
error estimates tends to deteriorate for prolonged sub-iteration adaptation cycles. Thus, standard adaptation cycles
are interspersed with sub-iteration adaptation cycles, so that the sub-iteration algorithm still produces reasonable
adaptive indicators with the added benefit of accurate error estimates produced by the standard adaptation cycles. The
sub-iteration algorithm scheme can be expressed as shown in Fig. 1(b). For comparison, the standard adjoint-based
adaptation algorithm is shown in Fig. 1(a). The comparison between Fig. 1(a) and Fig. 1(b), shows that the sub-iteration
and standard algorithm’s difference lies in their respective treatments of the current space primal, U� , and the fine-space
adjoint, 	ℎ . The sub-iteration algorithm approximates both U�: and 	ℎ: , while the standard adjoint-based adaptation
algorithm solves for these 2 quantities exactly.

Fig. 1(a) and Fig. 1(b), show what a single adaptation iteration looks like for the standard and sub-iteration algorithms.
In practice, error estimation and adaptation consists of multiple adaptation iterations, i.e., many Fig. 1(a) and Fig. 1(b)
connected in tandem, depicted in Fig 2. Here, we address a single standard adaptation iteration (Fig. 1(a)) as a standard
block and a single sub-iteration adaptation iteration (Fig. 1(b)) as a sub-iteration block. In Fig 2, standard algorithm
only consists of standard adaptation blocks. On the other hand, for sub-iteration algorithms, standard adaptation blocks
are interspersed with sub-iteration adaptation blocks. The designation “sub-iteration 1” signifies that we intersperse 1
sub-iteration block per standard adaptation block; “sub-iteration 2” means that we intersperse 2 sub-iteration blocks per
standard adaptation block; “sub-iteration 3” means that we intersperse 3 sub-iteration blocks per standard adaptation
block; and, “sub-iteration B” means B sub-iteration blocks per standard adaptation block. Per our parametric studies on B
([2]), we do not recommend using a large number for B as adaptive indicator accuracy deteriorates with large B. For
all steady problems tested, sub-iteration 1 and sub-iteration 2, have proven to be optimal. The details of sub-iteration
algorithm for steady simulation can be found in [2].

In addition, we show one of the test cases, which we presented in [2] for the steady sub-iteration algorithm. This test
case is a NACA 0012 airfoil at a free-stream Mach number of 0.5, angle of attack of 2◦, Prandtl number of 0.71, and
Reynolds number of 5000. Our output of interest is the drag coefficient. The initial mesh consists of 234 quadrilaterals,
curved with a quartic geometry representation. The fixed adaptation fraction for all adaptation strategies is the same,
5 = 0.1, and the approximation order is ? = 2.

Figure 3 shows a comparison of the various adaptive strategies for this case. Figure 3(c) shows that the methods
with sub-iterations exhibit a similar output error convergence behavior with “degrees of freedom” (DOF) compared to
standard adaptation. However, as shown in Fig. 3(d)∗, sub-iterations show an advantage in CPU time over standard
adaptation. The runs with two and three sub-iterations converge the fastest. As the number of sub-iteration increases,
from 3 to 5, the error-estimate-corrected curves converge progressively slower. As the number of sub-iterations rises,
the accuracy of adaptive indicators gradually deteriorates and sub-iteration based adaptations becomes less effective.

∗Timings were performed on a workstation with dual socket Intel Xeon 2.1 GHz 8-core processors and 96GB total RAM.

2

D
ow

nl
oa

de
d

by
 6

8.
56

.1
71

.2
1

on
 J

an
ua

ry
 5

, 2
02

1
| h

ttp
://

ar
c.

ai
aa

.o
rg

 |
D

O
I:

 1
0.

25
14

/6
.2

02
1-

01
55

(a) Standard adaptation block

(b) Sub-iteration adaptation block

Fig. 1 Schematic of the error estimation and adaptation iteration, for both adjoint-based standard and
sub-iteration algorithms, for steady simulations. The primal states and fine-space adjoints are reused in the
sub-iterations, where they are only smoothed via an inexpensive iterative solver, e.g., 5 element block Jacobi
iterations, thereby saving computational time compared to the standard approach, in which both primal states
and fine-space adjoints are re-solved at every adaptive iteration.

3

D
ow

nl
oa

de
d

by
 6

8.
56

.1
71

.2
1

on
 J

an
ua

ry
 5

, 2
02

1
| h

ttp
://

ar
c.

ai
aa

.o
rg

 |
D

O
I:

 1
0.

25
14

/6
.2

02
1-

01
55

Start

Standard

Standard

Standard

Standard

Standard

Standard

Standard

Standard

Standard

End

Standard

Start

Standard

Sub-Iteration

Standard

Sub-Iteration

Standard

Sub-Iteration

Standard

Sub-Iteration

Standard

End

Standard

Start

Standard

Sub-Iteration

Sub-Iteration

Standard

Sub-Iteration

Sub-Iteration

Standard

Sub-Iteration

Sub-Iteration

End

Standard

Start

Standard

Sub-Iteration

Sub-Iteration

Sub-Iteration

Standard

Sub-Iteration

Sub-Iteration

Sub-Iteration

Standard

End

Standard

Standard Sub-Iteration 1 Sub-Iteration 2 Sub-Iteration 3

Fig. 2 Illustration of the successive adjoint based error estimation and adaptation process, for standard,
sub-iteration 1, sub-iteration 2, and sub-iteration 3 algorithms.

4

D
ow

nl
oa

de
d

by
 6

8.
56

.1
71

.2
1

on
 J

an
ua

ry
 5

, 2
02

1
| h

ttp
://

ar
c.

ai
aa

.o
rg

 |
D

O
I:

 1
0.

25
14

/6
.2

02
1-

01
55

(a) Final drag-adapted mesh (b) Mach contours (0 to 0.58)

10
4

Degrees of freedom

10
-10

10
-5

10
0

O
u
tp

u
t
e
rr

o
r

Uniform

Standard

1 adaptive sub-iteration

2 adaptive sub-iterations

3 adaptive sub-iterations

4 adaptive sub-iterations

5 adaptive sub-iterations

(c) Drag convergence with DOF

10
0

10
2

10
4

CPU time (s)

10
-10

10
-5

10
0

O
u

tp
u

t
e

rr
o

r

Uniform

Standard

1 adaptive sub-iteration

2 adaptive sub-iterations

3 adaptive sub-iterations

4 adaptive sub-iterations

5 adaptive sub-iterations

(d) Drag convergence with CPU time

Fig. 3 NACA 0012, " = 0.5, U = 2◦ and Re = 5000 : effect of sub-iterations on drag convergence. In all
5 cases employing sub-iterations, the fine-space adjoint is reused on the sub-iterations with only one element
block-Jacobi smoothing iteration as the extra solve. The current space primal is only block-Jacobi smoothed on
the current space, but the linear coarse-space adjoint problem is solved exactly for all iterations. Dashed lines
indicate the remaining error after correction with the estimate. Note, for the output-based method, the error
estimate corrected convergence curves, the dashed lines, are the final post-processed convergence curves.

5

D
ow

nl
oa

de
d

by
 6

8.
56

.1
71

.2
1

on
 J

an
ua

ry
 5

, 2
02

1
| h

ttp
://

ar
c.

ai
aa

.o
rg

 |
D

O
I:

 1
0.

25
14

/6
.2

02
1-

01
55

Nevertheless, in Fig. 3(d), the higher frequency sub-iteration methods still outperform the standard adaptation.
Figure 4 shows the CPU-time breakdown comparison among standard and sub-iterative adaptations. The first 3

iterations of the CPU-time breakdown data contain noise – this is the spike of absolute CPU time for the first bar
(standard adaptation) in the 2nd iteration and the spike of the second bar in the third iteration (1 sub-iteration). Both
CPU time spikes correspond exactly to each spike point in Figure 3(c) and 3(d). The zig-zag spikes likely indicate
a lack of resolution on the coarser mesh in the earlier stage of simulation. Thus, it is not meaningful to look at the
first 3 iterations to study the behavior of the 1 sub-iteration method, whose error estimate is likely not yet accurate.
During the sub-iterations, the CPU time spent on the primal solve and the error estimation decreases relative to the
standard adaptation, but the CPU time spent on the current-space adjoint solves remains similar. As a result, whenever
the adaptation mechanics enters a sub-iteration cycle, the total time drops (Figure 4(b)) while the percentage of the time
taken by the adjoint solve increases (Figure 4(a)).

1 2 3 4 5 6

Number of adaptation

0

10

20

30

40

50

60

70

80

90

100

P
e
rc

e
n
ta

g
e
 (

%
)

Primal solve

Adjoint solve

Error estimation and adaptation

(a) Percentage CPU time breakdown

1 2 3 4 5 6

Number of adaptation

0

5

10

15

20

25

30

35

C
P

U
 t
im

e
 (

s
)

Primal solve

Adjoint solve

Error estimation and adaptation

(b) Raw CPU time breakdown

Fig. 4 NACA 0012, " = 0.5, U = 2◦ and Re = 5000: CPU time breakdown results. For the first 6 adaptive
iterations, we show 2 group-bar plots. One group-bar plot illustrates percentage CPU time expenditure and
the other one illustrates absolute CPU time expenditure. In each group-bar plot, a grouped column consists of
6 bars: standard adaptation, and adaptation with 1-5 sub-iterations. Each of these bars is divided vertically
into three parts, which indicate the CPU time contribution of the primal solve, performed on � space (green),
the adjoint solve, performed on � space (blue), and the error estimation and adaptation, performed on ℎ space
(red). Note that the latter includes any and all fine-space solves.

II. Sub-Iteration Algorithm for Unsteady Problems
The sub-iteration idea of reusing primal states and fine-space adjoints information extends naturally to unsteady

problems. However, because of the extra dimension in time. Both space and time reconstruction are required for
unsteady sub-iterations. That is, we reconstruct U 9′

�:−1
from spatial discretization �:−1 at 9 ′th time index, to obtain

U 9 �:−1
�:

, where 9 ∈
[
1, . . . , # : th sub-iterations

C

]
and 9 ′ ∈

[
1, . . . , # (:−1) th sub-iterations

C

]
, in Fig. 5(b). Nevertheless, the idea

of saving computational cost by reusing primal and fine-space adjoints still holds.
The unsteady adjoint equation reads,

#C∑
8=1

(
mR8

ℎ

mU 9

ℎ

))
	8ℎ +

(
m�ℎ

mU 9

ℎ

))
= 0, (4)

6

D
ow

nl
oa

de
d

by
 6

8.
56

.1
71

.2
1

on
 J

an
ua

ry
 5

, 2
02

1
| h

ttp
://

ar
c.

ai
aa

.o
rg

 |
D

O
I:

 1
0.

25
14

/6
.2

02
1-

01
55

where 8, 9 ∈ [1 . . . #C] are time indices in the unsteady discretization (explicit or implicit). Unsteady adjoint-based error
estimation involves adjoints and primal state residuals from the entire simulation history. The unsteady adjoint error
estimate formula reads,

X� = −
#C∑
8=1

	8
)

ℎR8ℎ
(
U 9 �

ℎ

)
. (5)

The unsteady adjoint-based error estimation and adaptation process can be described schematically, as in Fig. 5(a),
which is different from the steady version in Fig. 1(a).

Unsteady adjoint-based adaptation has more adaptation strategy choices compared to steady simulations. Steady
simulations can only support static adaptation, i.e., adapting the spatial mesh in between adaptive iterations. However,
unsteady simulation can use both static adaptation, i.e., adapting the spatial and temporal meshes at the end of the primal
solve with temporally and spatially marginalized error indicators; and dynamic adaptation, i.e., adapting the mesh before
the end of primal solve, 1 ≤ 8 < #C , both temporally and spatially. For this paper, we only focus on static adaptation
for unsteady simulations. Namely, we adapt the temporal and spatial resolution in between adaptive iterations, using
marginalized error indicators. Regardless, the schematic that we show, Fig. 5(a), can be used for all kinds of adaptation
strategies.

The sub-iteration algorithm schematic for unsteady simulation follows the same idea as the sub-iteration algorithm
for steady simulation, Fig. 1(b). The proposed schematic of an unsteady sub-iteration algorithm is given in Fig 5(b).
In contrast to standard method (Fig. 5(a)), the primal state U 9

�:
in sub-iteration algorithm (Fig. 5(b)) is not acquired

thorough an exact solve. For the : th sub-iteration adaptation cycle, solution from the (: − 1)th adaptation (U 9′

�:−1
), is

injected into �: , a spatially and temporally adapted discretization space, then smoothed to acquire U 9

�:
. Noted that we

used 9 ′ and 9 , two different temporal indices. Because unsteady adaptations allow for temporal adaptation, the adaptated
time history from the (: − 1)th adaptation is different from the : th adaptation. For example, the 9 ′th time node from the
(: − 1)th adaptation may not exist in the : th adaptation. Fig. 6 plots the standard adaptation’s time history of the first
and the second adaptations of the Section III.A case. Fig. 6 shows that the second adaptation contains more time nodes
(9) than the first adaptation (9 ′). What’s more, 9 time nodes and 9 ′ time nodes appear to be mismatched.

To obtain all the time nodes from the : th adaptation (9 instead of 9 ′), other than spatial injections, we also need to
reconstruct U 9′

�:−1
in time to compute U 9

�:
[22]. We adopt the polynomial-based temporal reconstruction mentioned in

[22]. For the linear case, the combination of spatial and polynomial-based temporal reconstruction [22] is sufficient to
produce a relatively accurate U 9

�:
. However, polynomial-based temporal reconstruction [22] cannot accurately capture

highly non-linear features, for instance, vortex shedding phenomena. As a result, for highly non-linear physical features,
the simulation often runs into non-physical errors. Thus, we post-process the reconstructed primal states by solving the
reconstructed primal states to a low residual tolerance, e.g., to 10−2 to avoid the non-physicality. The effect of this low
tolerance primal post-processing on overall adaptation CPU time cost is small. Unlike steady adjoint-based adaptation,
in which the primal solve often accounts for 30% to 50% of the overall CPU time (the first and the second case of [2]),
the primal solve in unsteady adjoint-based adaptation simulations often accounts for less than 20% of the overall CPU
time (Section III). Consequently, the cost introduced by post-processing temporally reconstructed primal states is small.

This phenomenon of reduced unsteady primal CPU time percentage is due to the increased fine-space computation
costs in unsteady simulations. In 2D, a steady simulation’s fine-space cost in DOF is a factor of 4, whereas an unsteady
simulation’s fine-space cost rises to a factor of 8 in DOF. In 3D, these factors become 8 and 16, respectively. A similar
percentage reduction of primal CPU time cost, due to difference in fine-space computations, was also observed in steady
simulation [2], 2D versus 3D, i.e., for 2D cases, the primal CPU time often accounts for more than 50% of the overall
CPU cost (the first and second case in [2]), while, for 3D, the primal CPU time often accounts for less than 20% of the
overall CPU cost (the third case in [2]).

The standard unsteady sub-iteration adjoint solve does not usually compute the coarse space, �, adjoint. Unlike the
steady case, unsteady adjoints take the form of a series of time-dependent quantities. For steady simulations, computing
coarse-space �, adjoints first, then injecting the coarse-space adjoints into a fine space, ℎ, and applying a smoothing
process not only provides a coarse-space adjoint correction but also carries a similar cost compared to solving adjoints
on the fine space directly. For unsteady adjoints, repeatedly injecting the entire unsteady adjoint series into the fine
space, then time stepping or smoothing adjoints is more expensive than constructing the fine-space terminal adjoint
condition once and performing a fine-space linear solve. Consequently, we generally do not store coarse � space

7

D
ow

nl
oa

de
d

by
 6

8.
56

.1
71

.2
1

on
 J

an
ua

ry
 5

, 2
02

1
| h

ttp
://

ar
c.

ai
aa

.o
rg

 |
D

O
I:

 1
0.

25
14

/6
.2

02
1-

01
55

(a) Standard adaptation

(b) Unsteady sub-iteration adaptation

Fig. 5 Schematic of an unsteady adjoint-based error estimation and adaptation iteration, in which the fine-
space adjoint is solved exactly at every iteration.

8

D
ow

nl
oa

de
d

by
 6

8.
56

.1
71

.2
1

on
 J

an
ua

ry
 5

, 2
02

1
| h

ttp
://

ar
c.

ai
aa

.o
rg

 |
D

O
I:

 1
0.

25
14

/6
.2

02
1-

01
55

0 0.5 1 1.5 2

Time (s)

Time history, 1st adaptation

Time history, 2nd adaptation

Fig. 6 Time history difference between 2 adaptation iterations.

adjoints in unsteady simulations. Therefore, we cannot copy the steady sub-iteration algorithm’s adjoint approximation
strategy (Fig. 1(b)) directly. Inspired by [22], we choose to reconstruct adjoints using polynomial-based reconstruction,
by reusing fine-space adjoints information, without any post-processing. Through this approach, the unsteady adjoints
computation time is greatly reduced. Owing to the fact that the unsteady adjoint solution accounts for the majority of
the CPU time expenditure in unsteady simulations (higher space-time dimension than steady problems), the overall
CPU time costs are also reduced.

In summary, for the steady sub-iteration algorithm, spatially injected primal states and adjoints can achieve decent
accuracy after a small number of smoothing iterations, [2]. However, for unsteady sub-iterations, both spatial injections
and temporal reconstruction are needed. For unsteady simulations, a few smoothing iterations are often not sufficient to
obtain a physically sound solution, as spatial injections are limited by the discritization scheme’s order, and temporal
reconstruction is limited by the power of reconstruction polynomials. As a result, non-physical states are likely to appear
without post-processing the reconstructed primal states. To overcome this issue, we choose to solve our primal state to a
low tolerance, n , to avoid non-physical states. The value of n does not strongly affect the overall CPU time expenditure,
as the primal state computational time cost is much smaller than the adjoint time for unsteady simulations (Fig. 8(c) and
Fig. 11(c)). The adjoint represents sensitivity information and does not suffer from the same physicality constraint as
the primal states.

Steady sub-iteration (Fig 1(b)) and unsteady sub-iteration (Fig 5(b)), share the same overall sub-iteration formulations
(Fig 2). Following the same naming convention that we used for steady sub-iterations (Section I.B), for the remaining
of the paper, we address a single unsteady standard adaptation (Fig. 1(a)) as a standard block and a single unsteady
sub-iteration adaptation (Fig. 5(b)) as a sub-iteration block.

9

D
ow

nl
oa

de
d

by
 6

8.
56

.1
71

.2
1

on
 J

an
ua

ry
 5

, 2
02

1
| h

ttp
://

ar
c.

ai
aa

.o
rg

 |
D

O
I:

 1
0.

25
14

/6
.2

02
1-

01
55

We describe the unsteady sub-iteration algorithm in more details in Algorithm 1.
Algorithm 1: Unsteady sub-iteration algorithm: 4estimate is the error estimate, 4desired is the desired error,
Cyclesub-iterations is a Boolean flag indicating whether or not to perform sub-iterations, V denotes the frequency
of sub-iterations, �: denotes the discretization space resulting from the : th adaptation, �:−1 denotes the
discretization space resulting from the (: −1)th adaptation, ℎ: denotes the corresponding fine space of �: , and
ℎ:−1 denotes the corresponding fine space of �:−1. The symbols � and ℎ refer to both spatial and temporal
discretization. : indexes adaptation iteration. 8, 8′, 9 , 9 ′ = time indices in the unsteady discretization (explicit
or implicit).
initialization, Cyclesub-iterations = False;
while 4estimate > 4desired do

if Cyclesub-iterations then
reconstruct and smooth U 9′

�:−1 −→ U 9
�: ;

inject U 9

�:
−→ U 9 �:

ℎ:
;

reconstruct 	8′ℎ:−1 −→ 	8 ℎ: calculate R8
ℎ:

(
U 9 �:

ℎ:

)
;

compute AWR, n = −∑#C
8=1 	

8)

ℎR8
ℎ

(
U 9 �

ℎ

)
;

else
solve U 9

�:
exactly;

inject U 9

�:
−→ U 9 �:

ℎ:
;

solve 	8
ℎ:

���
U 9 �:
ℎ:

exactly;

calculate R8
ℎ:

(
U 9 �:

ℎ:

)
;

compute AWR, n = −∑#C
8=1 	

8)

ℎR8
ℎ

(
U 9 �

ℎ

)
;

4estimate = n ;
end
localize n to coarse elements;
adapt coarse space;
: + + ;
if (mod [:, V] = 0) then

Cyclesub-iterations = True
else

Cyclesub-iterations = False
end

end
post-processing;
Our research work is based on xflow, a high-order finite element CFD in-house library ([23]). We present our results

in Section III.

III. Results
In this section, we demonstrate the unsteady sub-iteration algorithm – Algorithm 1, with a linear case and a non-linear

case. To have a readily available benchmark, we opt for the same physical setups used in [22]. Unlike [22], instead
of applying the MOESS method to these setups, we apply unsteady sub-iteration algorithms. Adjoints used for both
Section III.A and Section III.B results are continuous in time.

10

D
ow

nl
oa

de
d

by
 6

8.
56

.1
71

.2
1

on
 J

an
ua

ry
 5

, 2
02

1
| h

ttp
://

ar
c.

ai
aa

.o
rg

 |
D

O
I:

 1
0.

25
14

/6
.2

02
1-

01
55

A. Linear Case – Scalar Advection and Diffusion
We present a 2D advection-diffusion case. The advection-diffusion governing equation is

mD

mC
+ ∇ ·

(
®+D

)
− ∇ · (a∇D) = 0, (6)

where D is the primal state, ®+ is the advection velocity and a = 0.01 is the viscosity. The initial condition is a Gaussian
distribution centered at (2.1, 0.9), with an amplitude of 1 and variance of 0.02, depicted in Fig. 7(a). The velocity field
is induced by an irrotational counterclockwise vortex flow centered at (−1,−1), with a vortex strength of Γ = 3. The
Péclét number based on the vortex strength is %4 ≡ Γ/a = 300. We study this linear case on a square mesh of 3 by 3,
? = 1, with 576 quadrilateral elements, as shown in Fig. 9(a).

Our output of interest is a space time weighted integral of D,

�̄ =

∫)

0

∫
Ω

FC (C) FΩ (C) D (G, C) 3Ω3C, (7)

where the spatial weight function is FΩ = exp
[
−10(G − 1)2 − 10(H − 2)2

]
, and the temporal weight is FC =

exp
[
−30(C − 1)2

]
. Including the spatial and temporal weight functions in our output of interest, ensures that

the adjoint is a smooth function in space and time.
We apply, standard adaptation, uniform ℎ refinement, uniform ? refinement, sub-iteration 1 adaptation, sub-iteration

2 adaptation and sub-iteration 3 adaptation strategies, to the primal problem described in Fig 7. For uniform ℎ and
uniform ? refinement, time-step subdivision is employed. For standard adaptation, sub-iteration 1, sub-iteration 2, and
sub-iteration 3, both spatial (?) and temporal (number of time-steps) degrees of freedom are adapted. In Fig. 8(a),
“Degrees of freedom” (DOF) = “spatial degrees of freedom” × “temporal degrees of freeedom”. Using the DOF cost
measurement, all of the sub-iteration curves, sub-iteration 1, sub-iteration 2 and sub-iteration 3 (green stars, cyan
diamonds, and black circles), coincide with the standard adaptation convergence curve (blue triangles), which means
that the sub-iteration and standard adaptation converge at a similar rate. As shown in Fig. 8(a), all sub-iteration and
standard adaptation strategies are below the uniform ? and uniform ℎ curves (red squares and blue crosses), which
shows that all sub-iteration and standard adaptation strategies converge faster than uniform refinement, ℎ and ?.

In the CPU plot in Fig. 8(b), all sub-iteration curves are below standard uniform ℎ and uniform ? convergence
curves, which means that the sub-iterations converge faster, with sub-iteration 3 being the fastest. The accelerated
convergence rate of sub-iterations can be best explained thorough Fig. 8(c) and Fig. 8(d). In Fig. 8(c) and Fig. 8(d), we
present 5 bar-groups corresponding to 5 adaptation iterations (horizontal axis). Each bar-group contains 4 bars. From
left to right, they are: standard, sub-iteration 1, sub-iteration 2 and sub-iteration 3. First, we focus on Fig. 8(c). During
the first adaptation, all adaptation strategies perform similarly. During the second adaptation, the 1st bar in the 2nd bar
are taller than the rest. Recalling from Fig. 2, at the second adaptation, sub-iteration 1, sub-iteration 2, and sub-iteration
3 all enter the sub-iteration block (Fig. 5(b)), while the leftmost bar – the standard method, is the only method that
enters a standard block (Fig. 5(a)). Hence, the leftmost bar (standard) at the second adaptation (Fig 8(c) and Fig. 8(d)) is
the tallest. For the same reason, during the third adaptation, the 1st (standard) bar and the 2nd (sub-iteration 1) bar are
the tallest because they enter the standard block (Fig. 5(a)), while the 3rd (sub-iteration 2) bar and 4th (sub-iteration 3)
bar enter the sub-iteration block (Fig. 5(b)). The height difference in the fourth and the fifth bar-groups can be explained
the same way, by referring to Fig. 2.

All sub-iteration methods and standard method have similar performances in terms of DOF (Fig. 8(a)), which means
that their adaptation choices are similar. However, as Fig. 8(c) shows, because sub-iteration 1, sub-iteration 2 and
sub-iteration 3 have a smaller CPU time costs during their sub-iteration block, compared to the standard method, the
overall cumulative CPU time costs of sub-iteration 1, sub-iteration 2, and sub-iteration 3 end up being faster than the
standard method. Fig. 8(d) shows that when a method enters a sub-iteration, it has a smaller percentage of the blue bar,
which indicate a less-expensive adjoint solve.

In Fig. 8(a) and Fig. 8(b), the dashed lines are error estimate corrected output error convergence curves. The initial
and the last ? adapted domain are plotted side-by-side in Fig. 9. All order-adapted domain plots look similar, (standard,
sub-iteration 1, sub-iteration 2 and sub-iteration 3). We choose to only plot sub-iteration 3’s order adapted solution
domain, shown in Fig. 9.

11

D
ow

nl
oa

de
d

by
 6

8.
56

.1
71

.2
1

on
 J

an
ua

ry
 5

, 2
02

1
| h

ttp
://

ar
c.

ai
aa

.o
rg

 |
D

O
I:

 1
0.

25
14

/6
.2

02
1-

01
55

(a) Initial condition, C = 0, vortex center = (2.1, 0.9) ,
amplitude = 1 and variance = 0.02

(b) Primal state at C = 1.99

(c) Adjoint at C = 0 (d) Adjoint at C = 1.24

Fig. 7 The primal problem setup for the scalar advection-diffusion problem, where advection is induced by
an irrotational counter-clockwise vortex. The diffusivity is a = 0.01. The irrotational counter-clockwise vortex
is located at (−1,−1), vortex strength Γ = 3. The Péclét number is %4 = 300. The adjoint solution plotted in
Fig. 7(c) and 7(d) corresponds to the output in Eqn. 7.

12

D
ow

nl
oa

de
d

by
 6

8.
56

.1
71

.2
1

on
 J

an
ua

ry
 5

, 2
02

1
| h

ttp
://

ar
c.

ai
aa

.o
rg

 |
D

O
I:

 1
0.

25
14

/6
.2

02
1-

01
55

10
4

10
6

10
8

Degrees of freedom

10
-8

10
-6

10
-4

10
-2

O
u
tp

u
t
e
rr

o
r

Uniform p

Uniform h

Standard

Sub-iterations 1

Sub-iterations 2

Sub-iterations 3

(a) Output error versus DOF convergence study

10
0

10
2

10
4

CPU time (s)

10
-8

10
-6

10
-4

10
-2

O
u

tp
u

t
e

rr
o

r

Uniform p

Uniform h

Standard

Sub-iterations 1

Sub-iterations 2

Sub-iterations 3

(b) Output error versus CPU time convergence study

1 2 3 4 5

Number of adaptation

0

5

10

15

20

25

30

35

40

45

C
P

U
 t

im
e

 (
s
)

Primal solve

Adjoint solve

Error estimation and adaptation

(c) CPU time breakdown

1 2 3 4 5

Number of adaptation

0

10

20

30

40

50

60

70

80

90

100

P
e
rc

e
n
ta

g
e
 (

%
)

Primal solve

Adjoint solve

Error estimation and adaptation

(d) Percentage CPU time breakdown

Fig. 8 Convergence studies for unsteady sub-iteration algorithm (Fig. 8(a) and Fig. 8(a)) and adaptation
CPU time cost analysis (Fig. 8(c) and Fig. 8(d)). In Fig. 8(a) and Fig. 8(b), the dashed lines are error estimate
corrected convergence curves. In Fig. 8(c) and Fig. 8(d), we present 5 bar-groups corresponding to 5 adaptation
iterations (horizontal axis), each bar-group contains 4 bars, from left to right, they are standard, sub-iteration
1, sub-iteration 2 and sub-iteration 3.

13

D
ow

nl
oa

de
d

by
 6

8.
56

.1
71

.2
1

on
 J

an
ua

ry
 5

, 2
02

1
| h

ttp
://

ar
c.

ai
aa

.o
rg

 |
D

O
I:

 1
0.

25
14

/6
.2

02
1-

01
55

(a) Initial condition, ? = 1 (b) Last adaptation iteration ? ∈ (1, 3)

Fig. 9 The order approximations used by solver. Initially, the approximation order for the entire computational
domain is, ? = 1, Fig. 9(a). Fig. 9(b) shows the order approximations of the last adaptation iteration, for sub-
iteration 3.

As Fig. 9(b) shows, the area swept by the Gaussian vortex, near the center of the domain, is important to resolve the
vortex advection and diffusion problem. Qualitatively, standard and sub-iteration algorithm produce similar adapted
meshes.

B. Non-linear Case – Airfoil Gust Encounter
This case describes a NACA 0012 airfoil in a vertical gust encounter. In the beginning of the simulation, shown in

Fig. 10(a), a vertical gust is placed in front of the airfoil.
To describe such physical phenomena, the initial condition for the airfoil is computed by converging a steady state,

with '4 = 1000, "∞ = 0.4, U = 2° and with adiabatic wall boundaries. We assume constant viscosity, and %A = 0.72.
After converging the described steady-state flow, we superimpose a vertical gust by perturbing the vertical velocity
(perpendicular to free-stream) with an amplitude of*∞ and width of 1 chord length, centered 5 chords upstream of the
leading edge. We offset the perturbation to reach zero 1 chord length upstream of the leading edge, so that the nearby
region of the airfoil stays unperturbed. Fig. 10(a) shows the relative position of the vertical gust and the airfoil, at C = 0.
We run the simulation from C = 0 to C = 15. In addition, the chord length 2 = 1, d∞ = 1, and |*∞ | = 0. As a result, the
free-stream conservative state vector becomes

[d, dD, dE, d�] =
[
1, 1, 0, 0.5 + 1/

[
"2
∞W(W − 1)

]]
. (8)

Here, 1 time unit is the chord length divided by the free-stream speed. Fig. 10(c) shows the solution midway
thorough the simulation at C = 7.64. Fig. 10(c) shows that the gust encounter induces flow separation and vortex
shedding. Fig. 10(b) illustrates the contour of H-momentum at C = 7.92, in which the vortex shedding is clearly visible
behind the airfoil. The computational domain is a square that extends 100 chord lengths away from the airfoil.

Our scalar output of interest is an integral in time,

�̄ =

∫)

0
F (C) ! (C) 3C. (9)

Here, F (C) = exp
(
−0.5 (C − 7.5)2

)
is a temporal weight function and ! (C) is the instantaneous lift force on the airfoil.

We use a temporally continuous adjoint, and a time-weighted output of interest to ensure, that the adjoint is smooth in

14

D
ow

nl
oa

de
d

by
 6

8.
56

.1
71

.2
1

on
 J

an
ua

ry
 5

, 2
02

1
| h

ttp
://

ar
c.

ai
aa

.o
rg

 |
D

O
I:

 1
0.

25
14

/6
.2

02
1-

01
55

(a) H momentum, C = 0 (b) H momentum, C = 7.92

(c) Mach number at C = 7.64 (0 to 0.5) (d) H-momentum adjoint, at C = 3.26

Fig. 10 NACA 0012 gust encounter simulation.

15

D
ow

nl
oa

de
d

by
 6

8.
56

.1
71

.2
1

on
 J

an
ua

ry
 5

, 2
02

1
| h

ttp
://

ar
c.

ai
aa

.o
rg

 |
D

O
I:

 1
0.

25
14

/6
.2

02
1-

01
55

time. We show a snapshot of the corresponding adjoint at C = 3.26 in Fig. 10(d). In Fig. 10(d), adjoint contours show
our output of interest is sensitive to both acoustic waves (the rings), as well as to the upstream incoming gust (the blue
circles in front of the airfoil).

We adopt static ? adaptation, which means that both the mesh and the time steps are adapted once at the end of
the primal solution. “Total degrees of freedom” (DOF) = “spatial degrees of freedom” × “number of time-steps”.
Adaptation growth factor for all adaptation strategies is 1.05. Fig. 11(a) shows the convergence of output errors versus
DOF, for 4 adaptation strategies: standard, sub-iteration 1, sub-iteration 2, and sub-iteration 3, and uniform ? refinement.
Uniform ? refinement is performed in order to provide a benchmark output error convergence curve for our convergence
studies. In terms of space-time DOF measurement, all adaptation strategies (blue crosses, magenta triangles, green stars,
and cyan diamonds), converge faster than the uniform ? refinement (red squares). Because this airfoil gust encounter
simulation is highly non-linear, the output error versus DOF convergence curve tends to be oscillatory. All adaptation
curves oscillate while trending downward. The more interesting plot is perhaps Fig. 11(b). Unlike in Fig. 11(a), the
uniform ? refinement curve in Fig, 11(b), is not far above all adaptation convergence curves any more. For simulations
that do not contain any singularities, e.g., shock waves, uniform ? adaptation converges relatively fast. Let’s focus on the
dashed lines in Fig. 11(b) – estimate-corrected output error. All of the estimate-corrected adaptation curves are below
uniform ? refinement. This means that all adaptation strategies converge faster than uniform ? refinement, in both CPU
time and DOF. Moreover, among all of the “zig-zag” dashed lines, the dashed magenta triangles (sub-iteration 1), the
dashed green stars (sub-iteration 2), and the dashed cyan diamonds (sub-iteration 3) are all below the dashed blue crosses
(the standard adaptation), which means all sub-iteration strategies converge faster than the standard strategy as well.

The reason for the sub-iteration methods converging faster than the standard adaptation can be explained by Fig. 11(c)
and Fig. 11(d). In Fig. 11(c), for the first adaptation iteration, all adaptation strategy have roughly the same heights. For
the second adaptation iteration, the 1st bar (standard) is significantly taller than all of the rest, because all sub-iteration
methods (1, 2 and 3) enter the sub-iteration block during the second adaptation iteration (Fig. 2). For the third adaptation
iteration, the 1st bar (standard) and the 2nd bar (sub-iteration 1) enter the standard block, while the 3rd and 4th bar enter
sub-iteration block. The fourth and fifth bar-groups’ individual bar height differences can be explained in like manner.
Within a bar-group (4 individual stacked bars), the taller bars (higher CPU time cost) are associated with a standard
block (Fig. 5(a)) and the shorter bars (lower CPU time cost) are associated with a sub-iteration block (Fig. 5(b)). What’s
more, comparing Fig. 11(d) and Fig. 11(c) side by side, it is clear that during a sub-iteration block, the fine-space
adjoint solution time is greatly reduced, during which the solver spends most of the computational time on primal state
reconstruction instead to ensure physicality (Fig. 11(d)).

Qualitatively, all adaptation strategies – standard, sub-iteration 1, sub-iteration 2, and sub-iteration 3, produce similar
adapted meshes. We choose to only plot the ?-adapted domain by sub-iteration 3 at its last adaptation iteration (the
25th), shown in Fig. 12(b). All adaptation strategies start out with ? = 1, shown in Fig. 12(a), and end with an adapted
domain similar to Fig. 12(b).

IV. Summary
In this paper, we formulated the unsteady sub-iteration algorithm and presented results using ? adaptation. The

unsteady sub-iteration algorithm’s computational steps are similar to steady sub-iterations [2]. Due to the added
temporal dimension, the computational cost of unsteady adjoint-based adaption is considerably higher than its steady
counterpart. Because of this increased CPU time in unsteady simulations, unsteady simulations can particularly benefit
from the CPU time cost reduction.

As we presented in Section III, with DOF measurements, the sub-iteration algorithm’s performance is similar to the
standard algorithm. With CPU time cost measurement, the sub-iteration algorithm tends to outperform the standard
method. We summarize our findings regarding the unsteady sub-iteration algorithm as the following,

• Reconstruction instead of solving the fine-space adjoint on each adaptive iteration, is the main contributor to
unsteady sub-iteration CPU time saving.

• For linear problems, reconstructing primal states suffices for the unsteady sub-iteration algorithm. However, for
non-linear problems, reconstructing primal sates without post-processing can yield non-physical states.

• We recommend the unsteady sub-iteration approach of reconstructing the fine-space adjoints and reconstructing &
post-processing the primal states, of the previous iterations. This approach tends to be widely applicable for both
linear and non-linear cases studied.

16

D
ow

nl
oa

de
d

by
 6

8.
56

.1
71

.2
1

on
 J

an
ua

ry
 5

, 2
02

1
| h

ttp
://

ar
c.

ai
aa

.o
rg

 |
D

O
I:

 1
0.

25
14

/6
.2

02
1-

01
55

10
5

10
6

10
7

Degrees of freedom

10
-3

10
-2

10
-1

10
0

O
u

tp
u

t
e

rr
o

r

Uniform p

Standard

Sub-iterations 1

Sub-iterations 2

Sub-iterations 3

(a) Percentage CPU time breakdown

10
1

10
2

10
3

10
4

CPU time (s)

10
-3

10
-2

10
-1

10
0

O
u

tp
u

t
e

rr
o

r

Uniform p

Standard

Sub-iterations 1

Sub-iterations 2

Sub-iterations 3

(b) Percentage CPU time breakdown

1 2 3 4 5

Number of adaptation

0

20

40

60

80

100

120

140

160

180

C
P

U
 t

im
e

 (
s
)

Primal solve

Adjoint solve

Error estimation and adaptation

(c) Percentage CPU time breakdown

1 2 3 4 5

Number of adaptation

0

10

20

30

40

50

60

70

80

90

100

P
e

rc
e

n
ta

g
e

 (
%

)

Primal solve

Adjoint solve

Error estimation and adaptation

(d) Percentage CPU time breakdown

Fig. 11 Convergence studies for unsteady sub-iteration algorithm (Fig. 11(a) and Fig. 11(b)) and adaptation
CPU time cost analysis (Fig. 11(c) and Fig. 11(d)). In Fig. 11(a) and Fig. 11(b), the dashed lines are error
estimate corrected convergence curves. In Fig. 11(c) and Fig. 11(d), we present 5 bar-groups corresponding to 5
adaptation iterations (horizontal axis). Each bar-group contains 4 bars. From left to right, they are: standard,
sub-iteration 1, sub-iteration 2 and sub-iteration 3.

17

D
ow

nl
oa

de
d

by
 6

8.
56

.1
71

.2
1

on
 J

an
ua

ry
 5

, 2
02

1
| h

ttp
://

ar
c.

ai
aa

.o
rg

 |
D

O
I:

 1
0.

25
14

/6
.2

02
1-

01
55

(a) Initial condition, ? = 1 (b) Last adaptation iteration ? ∈ (1, 6)

Fig. 12 The order approximations used by the solver. Initially, the approximation order for the entire
computational domain is, ? = 1, Fig. 12(a). Fig. 12(b) shows the order approximations of the last adaptation
iteration, for sub-iteration 3.

• It is necessary to intersperse standard blocks with sub-iteration blocks, in order to obtain accurate error estimates.
Without error estimate corrections, adapted solutions may be even slower than uniform ? refinement (Fig. 11(b)).

• If we view time as an extra dimension in simulations, 1D simulations include 1D steady simulations; 2D simulations
include 2D steady simulation and 1D unsteady simulations; 3D simulations include 3D steady simulation and 2D
unsteady simulation; lastly, 4D simulation include 3D unsteady simulations. The higher the dimension, the more
sensitive the “CPU versus error” convergence curves are to adjoint CPU time expenditure (the third case in the
result section of [2], the case of Section III.B, and the case of Section III.A), which makes adjoint computation
time acceleration the main contributor to overall simulation time acceleration. The lower the dimension, the more
sensitive the “CPU versus error” convergence curves are to primal CPU time expenditure (the first and the second
case in the result section of [2]), which makes primal computation time acceleration the main contributor to
overall simulation time acceleration. The overall CPU time expenditure is not sensitive to error estimation and
adaptation time expenditure: i.e., for ℎ-adaptation, the adaptation time accounts for a small percentage of the
overall CPU time expenditure [2], and for ?-adaptation, adaptation time accounts for less than 1% of the overall
CPU time expenditure (Section III).

References
[1] Fidkowski, K. J., and Darmofal, D. L., “Output-Based Error Estimation and Mesh Adaptation: Overview and Recent Results,”

AIAA Paper 2009-1303, 2009.

[2] Ding, K., and Fidkowski, K. J., “Acceleration of adjoint-based adaptation through sub-iterations,” Computers and Fluids, Vol.
202, 2020. https://doi.org/10.1016/j.compfluid.2020.104491.

[3] Becker, R., and Rannacher, R., “An optimal control approach to a posteriori error estimation in finite element methods,” Acta
Numerica, edited by A. Iserles, Cambridge University Press, 2001, pp. 1–102.

[4] Venditti, D. A., and Darmofal, D. L., “Anisotropic grid adaptation for functional outputs: application to two-dimensional
viscous flows,” Journal of Computational Physics, Vol. 187, No. 1, 2003, pp. 22–46.

18

D
ow

nl
oa

de
d

by
 6

8.
56

.1
71

.2
1

on
 J

an
ua

ry
 5

, 2
02

1
| h

ttp
://

ar
c.

ai
aa

.o
rg

 |
D

O
I:

 1
0.

25
14

/6
.2

02
1-

01
55

https://doi.org/10.1016/j.compfluid.2020.104491

[5] Fidkowski, K. J., and Darmofal, D. L., “Review of Output-Based Error Estimation and Mesh Adaptation in Computational
Fluid Dynamics,” American Institute of Aeronautics and Astronautics Journal, Vol. 49, No. 4, 2011, pp. 673–694.

[6] Ding, K., Fidkowski, K. J., and Roe, P. L., “Adjoint-Based Error Estimation and Mesh Adaptation for the Active Flux Method,”
AIAA Paper 2013–2942, 2013.

[7] Ding, K., Fidkowski, K. J., and Roe, P. L., “Acceleration Techniques for Adjoint-Based Error Estimation and Mesh Adaptation,”
Eighth International Conference on Computational Fluid Dynamics ICCFD8-0249, 2014.

[8] Ding, K., Fidkowski, K. J., and Roe, P. L., “Continuous Adjoint Based Error Estimation and r-Refinement for the Active Flux
Method,” AIAA Paper 2016-0832, 2016.

[9] Ding, K., and Fidkowski, K. J., “Output Error Control Using r-Adaptation,” AIAA Paper 2017-0832, 2017.

[10] Peraire, J., Peiró, J., and Morgan, K., “Adaptive Remeshing for Three-Dimensional Compressible Flow Computations,” Journal
of Computational Physics, Vol. 103, 1992, pp. 269–285.

[11] Nguyen, N., and Peraire, J., “An Interpolation Method for the Reconstruction and Recognition of Face Images,” The 2nd
International Conference on Computer Vision Theory and Applications (VISAPP), Barcelona Spain, 2007.

[12] Nguyen, N. C., Patera, A. T., and Peraire, J., “A ’Best Points’ Interpolation Method for Efficient Approximation of Parmetrized
Functions,” International Journal for Numerical Methods in Engineering, Vol. DOI: 10.1002/nme.2086, 2007.

[13] Kraaĳpoel, D., “Seismic Ray Fields and Ray Field Maps: Theory and Algorithms,” Ph.D. thesis, Utrecht University, The
Netherlands, 2003.

[14] Castro-Diaz, M. J., Hecht, F., Mohammadi, B., and Pironneau, O., “Anisotropic unstructured mesh adaptation for flow
simulations,” International Journal for Numerical Methods in Fluids, Vol. 25, 1997, pp. 475–491.

[15] Rachowicz, W., Pardo, D., and Demkowicz, L., “Fully Automatic hp-Adaptivity in Three Dimensions,” Tech. Rep. 04-22, ICES,
2004.

[16] Naterer, G. F., and Rinn, D., “Towards entropy detection of anomalous mass and momentum exchange in incompressible fluid
flow,” International Journal for Numerical Methods in Fluids, Vol. 39, No. 11, 2002, pp. 1013–1036.

[17] Jameson, A., “Aerodynamic Design via Control Theory,” Journal of Scientific Computing, Vol. 3, 1988, pp. 233–260.

[18] Beux, F., and Dervieux, A., “Exact-gradient shape optimization of a 2-D Euler flow,” Finite Elements in Analysis and Design,
Vol. 12, 1992, pp. 281–302.

[19] Anderson, W. K., and Venkatakrishnan, V., “Aerodynamic Design Optimization on Unstructured Grids with a Continuous
Adjoint Formulation,” Tech. Rep. Report 97-9, ICASE, 1997.

[20] Elliott, J., and Peraire, J., “Practical Three-Dimensional Aerodynamic Design and Optimization Using Unstructured Meshes,”
AIAA Journal, Vol. 35, No. 9, 1997, pp. 1479–1485.

[21] Nielsen, E., and Anderson, W., “Aerodynamic Design Optimization on Unstructured Meshes Using the Navier-Stokes Equations,”
AIAA Journal, Vol. 37, No. 11, 1999, pp. 1411–1419.

[22] Fidkowski, K. J., “Output-based space-time mesh optimization for unsteady flows using continuous-in-time adjoints,” Journal
of Computational Physics, Vol. 341(15):258–277, 2017. https://doi.org/https://doi.org/10.1016/j.jcp.2017.04.005.

[23] Ceze, M. A., and Fidkowski, K. J., “Drag Prediction Using Adaptive Discontinuous Finite Elements,” AIAA Paper 2013-0051,
2013.

19

D
ow

nl
oa

de
d

by
 6

8.
56

.1
71

.2
1

on
 J

an
ua

ry
 5

, 2
02

1
| h

ttp
://

ar
c.

ai
aa

.o
rg

 |
D

O
I:

 1
0.

25
14

/6
.2

02
1-

01
55

https://doi.org/https://doi.org/10.1016/j.jcp.2017.04.005

	Introduction: The Sub-Iteration Method for Steady Problems
	Cost of Adjoint-Based Adaptation
	Sub-iteration Algorithm for Steady Problems

	Sub-Iteration Algorithm for Unsteady Problems
	Results
	Linear Case – Scalar Advection and Diffusion
	Non-linear Case – Airfoil Gust Encounter

	Summary

