Eighth International Conference on ICCFD8-2014-0249
Computational Fluid Dynamics (ICCFDS8),
Chengdu, China, July 14-18, 2014

Acceleration Techniques for Adjoint-Based Error
Estimation and Mesh Adaptation

Kaihua Ding!, Krzysztof J. Fidkowski!, and Philip L. Roe!

University of Michigan, Ann Arbor, MI 48105, USA
Corresponding author: kfid@umich.edu

Abstract: In this paper we introduce two ideas for reducing the cost of output-based error es-
timation and mesh adaptation in steady and unsteady simulations. The first of these is the use
of sub-iterations during adaptations, where a sub-iteration is an adaptation iteration in which the
most expensive solves, the primal and fine-space adjoint, are done only approximately. The sub-
iterations are interspersed with standard full-solve iterations during which accurate error estimates
are available. The use of sub-iterations reduces the computational cost without much effect on
the performance per iteration. The second strategy is the use of coarser spaces in the context
of an adjoint-weighted residual for creating an adaptive indicator. While the resulting error esti-
mate is not accurate, the adaptive indicator still contains useful information, at a much-reduced
computational overhead compared to standard fine-space error estimation. We demonstrate these
methods for steady, compressible Euler simulations discretized with the discontinuous Galerkin
(DG) finite-element method, and for unsteady scalar advection simulations discretized with the
active flux method.

Keywords: Adjoint, Solution Verification, Numerical Error Estimation, Mesh Adaptation

1 Introduction

Solution-adaptive techniques are receiving increasingly more attention in Computational Fluid Dynamics
research and practice as a means of improving solution accuracy and reducing computational cost. They
are particularly important for aerospace engineering applications, where convection phenomena on complex
three-dimensional geometries make a priori mesh design a daunting task. One of the most rigorous solution-
adaptive techniques is output-based error estimation and adaptation, reviewed recently in detail in [1].

Output-based error estimation is a powerful technique for quantifying the impact of numerical discretiza-
tion errors on specific scalar outputs. The resulting estimates reflect the extent to which mesh resolution
and distribution affect an output of interest. Furthermore, the error estimates provide information on areas
of the spatial and temporal domains that are most responsible for the output error.

However, output error estimation in its most rigorous form is not cheap. The error is typically estimated
relative to a finer discretization space, V}, and while no primal solution is usually required on Vj, many
estimates employ a fine-space adjoint solution and/or at least a fine-space residual evaluation. These fine-
space calculations can make the cost of error estimation and adaptation burdensome for practical simulations.

In this paper we introduce and formalize two “shortcuts” for estimating the output error and adapting
the mesh using the adjoint-weighted residual. One shortcut relies on re-using fine-space adjoint iteration for
more than just one adaptation iteration. The other shortcut relies on a coarser instead of finer space for
calculating the error indicator. We show that both strategies have little detrimental effect on the performance
of adaptation with degrees of freedom, but that they reduce the computational time for all cases tested.

The remainder of this paper is organized as follows. In Section 2 we introduce the discretizations used
in this work: discontinuous Galerkin (DG) and active flux. Section 3 presents the adjoint-weighted residual

error estimate, and Section 4 discusses the two proposed strategies for accelerating the adaptation. Section 5
presents results for several test cases, using DG for steady-state flows and the active flux method for unsteady
flows, and Section 6 offers concluding remarks.

2 Discretizations

We demonstrate our acceleration techniques for error estimation and adaptation using two discretizations:
the discontinuous Galerkin method and the active flux method. The target partial differential equation is a
system of first-order conservation laws,

du+V-Fu) = o0, (1)

where u € R? is the state vector, F € R9*¢ is the total flux, and d is the spatial dimension. For DG, we will
focus on steady problems, d;u = 0, whereas for active flux, we will consider unsteady problems.

2.1 Discontinuous Galerkin

DG is a finite element method in which the state u is spatially approximated in functional form, using
linear combinations of basis functions, usually polynomials, on each element. No continuity constraints are
imposed on the approximations on adjacent elements. Denote by T}, = {Q.} the set of N, elements in a
non-overlapping tessellation of the domain Q = (J, Q.. We seek an approximate solution u;, € Vj, = [V}]°,
where

Vh = {u S LQ(Q) : U|Qe e PP VQ, € Th},

and PP denotes polynomials of order p on each element.

We obtain a weak form of Eqn. 1 by multiplying the PDE by test functions v; € V} and integrating
by parts to couple elements via fluxes. The convective fluxes on element faces are handled via a traditional
finite-volume (approximate) Riemann solver. The final semilinear weak form reads

Rin(up,viy) =0, Vv, € Vy, (2)

which, by linearity of the second argument, we can decompose into contributions from each element,

Ne.
Rh(uh,vh) = ZRh(uh,vh QE) =0, Vv, € Vy,. (3)
e=1

Integrating by parts, we find that the semilinear form associated with each element is

Rh(uh, Vh|Qe) = / vf@tuh dQ) — / va . ﬁ dQ)
Qe Qe

+ /8 oo viT (F) ds+ /a - viT (F*) ds, (4)

where (-)7 denotes transpose, and on the element boundary €2, the notations (-)T, (-) respectively denote
quantities taken from the element interior and boundary. In particular, on an interior face o7, the convective
flux F is computed using the Roe approximate Riemann solver [2], while on a boundary face ¢”, the flux
is typically computed directly from the boundary state, u®, which is a function (projection) of the interior
state and the boundary-condition data, u} = uf(u;, BC).

After choosing a basis for V), and using this basis for both the approximation expansion and the test
functions, we obtain a discrete system of equations (i.e. residuals),

R(U) = 0. (5)

Note that both U and R lie in RY, where N is the total number of degrees of freedom including equation

states. When considering different discretization spaces, we will append a subscript h(fine space) or H (coarse
space) to the variables R, U, and N.

2.2 Active Flux

The active flux method is a third order finite volume method developed by Eymann and Roe [3-6], building
on the work of van Leer [7]. We briefly review the method for scalar advection in two dimensions, i.e. Eqn. 1
with s = 1 and F = Vu.

Active flux is an inherently unsteady discretization in which a third-order accurate solution representation
at time level n is propagated to time level n+ 1 through an intermediate level n + % Figure 1 illustrates the
time levels and unknowns for one element of a triangular mesh. Seven unknowns pertain to each triangular

=
n+1 n + 1 trace
.e ——n % trace
-7 \\
- - AY
- Q
P - A
.- A
R bt R ®» n+i
t
Y
=
n —
/
x
(a) Time levels (b) Traces for vertex/edge updates

Figure 1: Illustration of the three time levels and unknown placement for one element in the active flux
method. Shaded circles are vertex unknowns, open circles are edge unknowns, and the squares represent the
cell average unknown.

element: one at each vertex, one at each edge midpoint, and one cell average, u. At each time level, these
unknowns support an augmented quadratic spatial representation of the solution. Specifically, the six vertex
and edge unknowns are used as coefficients in an expansion with quadratic Lagrange basis functions. This
quadratic representation is augmented by a cubic bubble function that vanishes on the element perimeter
and whose magnitude is uniquely defined by the requirement that the cell average is @, the seventh unknown.

With the spatial representation in hand, the update procedure for linear advection is relatively simple.
It consists of three steps:

1. Determine values for the edge and vertex unknowns at time levels n+% and n+1 by “tracing back” the
solution along the velocity direction to the known augmented quadratic representation at time level n.
This is illustrated schematically in Figure 1(b).

2. On each edge of the element, we now have nine solution values: three at each time level, n, n + %, and
n + 1. These nine values define a quadratic state, and hence flux, in space and time. Integrate this
flux to obtain a third-order accurate net flux through the edge over the time step.

3. Using the integrated fluxes from all edges of the element, obtain the cell average at n + 1 from the cell
average at n via a standard finite-volume discrete conservation statement.

The active-flux method is inherently explicit, yet for the purpose of a discrete adjoint (for error estimation)
we can still write the set of vertex, edge, and cell-average updates in the form of a residual system,

Rn+1 (Un’ Un+1) _ 0’

where U" is the set of all of the unknowns at time level n. Alternatively, we could use a more direct
continuous adjoint formulation for our error estimates, and this is a direction we are currently pursuing.

3 The Adjoint-Weighted Residual

Output-based error estimates rely on the concept of an adjoint-weighted residual [1,8-10]. This idea is based
on the definition of an output adjoint, which is a sensitivity of the output to residual perturbations. While
on a particular mesh, residuals are typically driven to negligible size by the solver, when we start varying
mesh resolution, we can uncover nonzero residuals. That is, when a primal solution on a particular mesh,
call it a “coarse” mesh, is transferred/injected/interpolated to a “fine” mesh, i.e. one with more degrees of
freedom, residuals are generally going to be nonzero on the fine mesh. An adjoint solution on the fine space
can then weight these residuals to yield an estimate of the output difference between the coarse and fine
mesh solutions. This calculation is attractive because it does not require a primal solution on the fine mesh.
However, it does require a fine space adjoint solution and a fine-space residual evaluation, and these are not
always cheap.

Denote by Upg, Uj, the primal solutions on coarse, respectively fine, spaces. Also, let Ry and Ry, denote
discrete residual vectors, both functions of their respective primal states. Finally, let Jg and J, be scalar
outputs computed on the coarse and fine spaces. We assume that the output definition does not change
between the coarse and the fine spaces, so that Jy (Ug) = J, (UhH), where UhH is the injection of the coarse
solution, Ug, into the fine space. The standard adjoint-weighted residual error estimate [1,8] reads

Jn (UF) = J, (Uy) = $L6R;, = ¥, Ry, (UF). (6)

6J

The discrete fine-space adjoint, ¥, is vector of the same size as the state and residual vectors that satisfies

Ry \ " aJn \"
— | ¥p+|—) =0. 7
<6Uh> 4 <8Uh @
W, weights the residual perturbation, Ry, to give a linearized estimate of the output difference between
the coarse and fine spaces. Although in this form of the error estimate the primal state is not required, the

computational and storage costs associated with Eqn. 6 are not trivial, as we can see by breaking-down each
of the terms:

5. ~ ;\{l_{/ R (Eﬁl’i) (8)

fine space adjoint H fine space residual operator‘ injected state

First, we need to inject the state into the fine space. One way to construct a finer space is uniform mesh
refinement, which increases the degrees of freedom four-fold in two dimensions and eight-fold in three di-
mensions. Second, along with the increase in degrees of freedom comes computational overhead in the form
of element geometry quantities, basis functions, mappings, etc., which are used in the calculation of the
fine-space residual. Third, Eqn. 8 requires the fine-space adjoint solution, and this involves either a recon-
struction or a system solve on the fine space. In the following section, we introduce a technique for reducing
the cost of this estimate.

The adjoint-weighted residual error estimate is typically paired with mesh adaptation in which the mesh
is successively refined to reduce the error. Often the mesh is refined incrementally, for example when using
hanging-node element subdivision of a fixed-fraction of elements with the highest error. In such cases, many
adaptive iterations may be required to sufficiently reduce the output error, and at each iteration the adjoint-
weighted residual calculation must be repeated. In the next section we thus also introduce an approach to
avoid fully-repeating this calculation at each adaptation iteration.

4 Acceleration Techniques

In this section we introduce and formalize two “shortcuts” for estimating the output error using the adjoint-
weighted residual, and for adapting the computational mesh. These shortcuts are

1. Adaptive “sub-iterations” in which the primal problem is not solved on every adaptive iteration so as
to minimize the cost of multiple nonlinear primal solves, and in which the fine-space adjoint is used
for more than one iteration.

2. Use of coarse-space indicators to drive adaptation, eliminating the need for fine-space adjoint calcula-
tions for the purpose of an adaptive indicator.

4.1 Adaptive Sub-Iterations

Figure 2 illustrates a standard adaptive solution scheme based on the adjoint-weighted residual. Each
adaptive iteration requires the calculation of an error estimate, a critical part of which is the fine-space
adjoint solve. Specifically, after solving the primal problem exactly (to some low residual tolerance) on the
coarse space (H), we solve the coarse-space adjoint problem, inject the primal to a fine space (h), solve the
fine-space adjoint about the injected primal solution, calculate the fine-space residual of the injected primal,
and weight this residual by the fine-space adjoint to obtain the error estimate. A localized form of the error

coarse space fine space
4 B\ 4 I\

1. Solve Uy exactly
. Solve ¥y exactly
3. Inject Uy, Uy > Ul w!
4. Solve \Ilh’ ., exactly
5. Calculate If{‘h(Uf)
6. Compute adjoint-weighted residual:
7. Localize € to - €= (¥, - TR, (UH)

coarse elements

8. Adapt coarse space
N J . J

[\)

Figure 2: Schematic of a “standard” error estimation and adaptation iteration in which the fine space adjoint
is solved exactly at every iteration.

estimate then drives adaptation; in a fixed-fraction setting only the elements with the highest contribution
to the error are targeted for refinement. The process then repeats with another exact primal solve, exact
fine-space adjoint solve etc.

In the standard adaptive scheme we solve the fine-space adjoint exactly in order to get good error
estimates, which we can then use to correct the solution and to often buy ourselves an extra order of accuracy.
To reduce the computational burden of this exact solve, we can approximate the fine-space adjoint, either
through iterative smoothing or reconstruction [11,12]. However, the error estimates often suffer when using
such approximations.

In this work we present a more efficient adaptive solution scheme that is based on two ideas:

1. Adaptive sub-iterations in which the primal problem is not solved on every adaptive iteration so as to
minimize the cost of multiple nonlinear primal solves.

2. Re-use of the fine-space adjoint between adaptive iterations, to avoid the cost of solving a large fine-
space adjoint problem at each iteration.

Figure 3 illustrates this scheme, which consists of two types of iterations: a standard error estimation and
adaptation iteration involving an exact fine-space adjoint solve, followed by one or more adaptive “sub-
iterations” that piggy-back on this fine-space adjoint to further refine the mesh at a lower computational

| Standard adaptive iteration:

! coarse space fine space

:Imtial coarse/fine {(%_E» ho j

1 ; Hy

| space pair:

! < <>

: Up, W,
:First -a/(éapted ‘ { H, j [hy)
veoarse/ine pawr: | -=—— U _________ G ——=

H h
Y] T
1 coarse space, H; fine space, h;]
1 N N,
| |1. Smooth U’ — Up, |
| |2. Solve Wy, exactly :
| . > UH1 |
L3 Inject Ug, h1 1
i 4. Smooth W}° — W, !
: 5. Calculate Ry, (Ufll) !

1
: 6. Compute AWR: 1
' |7. Localize e =1 = (Tn - ¥R, (UM) I
: \8. Adapt mesh — H» :
: Adaptive sub-iteration (can be repeated to get Hs, Hy, etc.) :
/7

Figure 3: Schematic of the proposed error estimation and adaptation iteration in which approximate sub-
iterations piggy-back on a standard adaptive iteration. In particular, the fine-space adjoint solve is reused in
the sub-iterations, where it is only smoothed via an inexpensive iterative solver, thereby saving computational
time compared to the standard approach in which the fine space adjoint is re-solved on every adaptive
iteration.

cost. Note that in these adaptive sub-iterations, neither the coarse-space primal nor the fine-space adjoint
are solved exactly. However, the coarse-space adjoint is solved exactly in order to accurately quantify and
remove from the error estimate the error due to the incomplete coarse-space primal solve. This prevents the
sub-iteration adaptive indicator from becoming distracted by coarse-space primal residuals that are nonzero
solely because of our inexact primal solves on the sub-iterations. Instead, the sub-iteration indicator still
targets errors relative to the fine space.

The effectiveness of the sub-iterations relies in part on the fine-space adjoint retaining accuracy as it
is transferred from one fine space (e.g. hg) to another (e.g. hp). In our work, we use hanging-node mesh
refinements, so that this transfer is injective and results in no information loss. Of course, not losing
information is itself not sufficient, and that is why we smooth the adjoint on the fine space to which it is
transferred. Smoothing of the adjoint and primal solutions incorporates new characteristics of the fine space
into these solutions.

4.2 Coarse-Space Error Estimation

Standard output error estimation relies on a fine-space adjoint solution weighting a fine-space residual. If
the mesh is sufficiently resolved such that error estimates are in an asymptotic regime, then this fine-space
error estimate converges to the true error at a rate that depends on certain choices in the error estimation
procedure [8]. That is, the fine space introduces new information via residuals and adjoints, and hence it
produces a mathematically rigorous error estimate.

However, in practice, for complex aerodynamic simulations, the meshes on which we apply output error
estimation and mesh adaptation are rarely fine enough for such asymptotic results to hold. This then begs
the question: to what extent is the rigorous formalism of output-based error estimation applicable to, or
necessary for, practical simulations? The question is especially relevant when only computing an adaptive
indicator, for which rigorous error estimates may not be necessary.

In this work we focus on one particular shortcut: instead of estimating the error between the current
space, H, and a finer space, h, we propose to estimate the error between a coarser space, denoted by H,
and the current space, H. We apply the adjoint-weighted residual formulas directly to the pair of spaces
H /H, so that none of the error estimation formulas need intrinsic changes. In particular, our proposed error
estimate becomes Eqn. 9,

§J ~ _\II{IRH< vl) (9)
~

injected state

where U is the “coarser” solution injected into the current space. Eqn. 9 estimates the output error between
the current space (H) and the coarser space (H). It does not tell us how much error is present in the current
space relative to a finer space, but conceivably the localized form of Eqn. 9 could still provide useful adaptive
information (albeit with a possible lag in adaptive iterations). Figure 4 illustrates schematically the use of

the coarser space.

(1)error estimation

H CorreCtiV_\{ estimation
N — N——— —
; : !

\/ i Inﬁni{ely fine

(2)adaptation

Figure 4: Ilustration of spaces used for coarser-space error estimation and adaptation.

The question now is how to define the coarser space (ﬁ). We can either coarsen the mesh or decrease
the scheme approximation order. Coarsening an unstructured mesh is doable but challenging. It does
not generally yield a pair of nested spaces, in that solutions on the coarsened space will not always be
representable on the current space. The nested property allows for simple injection operators and reduces

U; 6mode,3)

jaedge,2) 4 U;sedge,1)

U; 3mode.2)

j1mode,1)

° U 9edge.3)

Figure 5: Unknown placement in the active flux method.

additional sources of error. Hence instead, in this work, we choose to coarsen the current space by decreasing
the scheme approximation order.

In DG, reducing the approximation order is simple, since DG discretizations can be defined for an
arbitrary order p. Therefore, here we will target the active flux scheme, for which we have already explored
standard adaptation techniques in previous work [13]. As described in Section 2.2, the active flux method is
third-order in space and time. In order to implement our idea, we need to come up with some strategies to
create a fictional reduced-order space (H). The active flux method uses three independent types of states:
edge states, node states, and cell average states, as illustrated in Figure 5. To create discretization errors

due to the drop of state approximation error, we have many options. Below we outline five strategies.

e Strategy 1

The first strategy is to eliminate three out of seven independent states on each cell: the three edge
states. This strategy is illustrated in Figure 6(a). We then treat the remaining three node states as
basis coefficients in a linear approximation of the state, as in the p = 1 discontinuous Galerkin (DG)
finite element method. New edge states are calculated by interpolation with this linear approximation.
As a result, the new edge states are no longer independent from the node states. We lose degrees of
freedom, and we expect this coarser space to be second-order accurate. We carry out this calculation
on each element separately, but because edge states are uniquely defined in the active flux scheme, we
use the average edge states whenever we have two different edge states at the same location.

e Strategy 2

In this strategy, we only keep the cell average state, as shown in Figure 6(b). Looping over elements
in some lexicographical order, whichever nodes and edges are hit first become the new node and edge
states. As a result, the approximation basis functions are rather ad hoc and we lose accuracy of our
approximation. Specifically, we expect first-order accuracy.

e Strategy 3

In this strategy, we also only keep the cell average state, as shown in Figure 6(c). In contrast to
Strategy 2, though we still loop over elements to see whichever nodes and edges we hit first, we do not
assign the previous node or edge states to be the new node and edge states. Instead, we assign the
new node and edge states using the cell average states.

e Strategy 4

In this strategy we drop the order of the numerical approximation via a least-squares projection to
a linear basis in each element, as shown in Figure 6(d). Hence, seven degrees of freedom on space
H become three degrees of freedom on space H. Edge and cell average states on H are interpolated
from this linear approximation. These interpolated states are no longer independent from the node
states, and thus the scheme approximation order drops. Because interface unknowns are shared among

Uje

Ujn

(node,3)

(node,1)

O

U; 3mode,2)

(a) Strategy 1 (b) Strategy 2

j.6(mode,3)

U; 3(mode.2)

(c) Strategy 3 (d) Strategy 4

(e) Strategy 5

Figure 6: Ilustration of proposed five strategies.

neighboring elements in the active flux method, whenever we have two unknowns at the same location,
we use their average values.

e Strategy 5

We reduced the approximation order by one to create strategy 4, but we can also go further, e.g.
a reduction by two, as illustrated in Figure 6(e). For the case of the active flux method, which is
third order, we then reduce to first order — i.e. one degree of freedom per cell. The coarser space
H discretization then becomes a standard first-order finite volume method. We still use least-squares
projection to solve for the single unknown per element. On each element, edge and node states are
assigned the same value as the cell average states. These values are then averaged to produce unique
node and edge states whenever we have multiple unknowns at the same location.

5 Results

In this section we present results of our error estimation and adaptation acceleration strategies applied to
the discontinuous Galerkin and the active flux methods.

5.1 Steady-State DG Simulations

We demonstrate the adaptive sub-iteration technique for the discontinuous Galerkin discretization of the
steady-state Euler equations in two spatial dimensions.

5.1.1 Transonic airfoil with a fishtail shock

We first consider a NACA 0012 airfoil in inviscid (Euler) flow at Mach number M = 0.95 and angle of attack
a = 0°. The flow is transonic and we use element-wise artificial viscosity [14], discretized using the second-
form of Bassi and Rebay [15], to stabilize the solution. We consider drag prediction using an approximation
order of p =1 and a fixed fraction of f = 0.1 for adaptive (sub-)iterations. The initial mesh consists of 234
quadrilaterals, curved with a quartic geometry representation.

Figure 7 shows a comparison of several adaptive techniques for this case. These include simple uniform
refinement, a standard method without sub-iterations, and two methods with sub-iterations. As shown in
Figure 7, the adaptation targets a “lambda’”-shaped structure in the transonic flow region and leaves the
trailing edge fishtail shock virtually untouched. Both the standard adaptive approach and ones that use
adaptive sub-iterations yield nearly the same adapted meshes. They also yield nearly the same output
convergence with degrees of freedom, which means that our approximations in the sub-iterations do not have
a strong effect on the adaptive indicator that dictates which elements are chosen for refinement. Furthermore,
the outputs corrected by the error estimates (dashed lines) are also similar for the output-based approaches,
which is not overly surprising because during adaptive sub-iterations we only report the error estimates when
we carry out an exact adjoint solve.

The more interesting plot, however, is the one in Figure 7(d), which shows the convergence of the drag
output against computational time. Both the uncorrected and corrected outputs now converge faster for the
runs with adaptive sub-iterations. This makes sense because each sub-iteration is cheaper than a regular
adaptive iteration due to smoothing of the coarse primal and the fine adjoint. For the later adaptations,
the benefit of sub-iterations is at times as much as an order of magnitude error reduction for a given
computational time.

Figure 8(a) shows normalized histograms of the elemental error indicator (obtained from localizing the
error estimate) for the first and last adaptive iterations of three of the methods. We see that after adapting,
all of the methods yield a normalized error histogram shifted to the left — meaning that elements with high
errors were targeted for refinement. Moreover, the normalized histograms are similar among the methods,
which indicates that they are performing comparably. Figure 8(d) shows, for the standard adjoint-weighted
residual method, how the error equidistributes over the elements with adaptive refinement. While initially,
fewer than 20% of the elements accounted for 99% of the error, by the final adaptive iteration, 99% of the
error is distributed among a much larger 85% of the elements. Figure 9 further illustrates this point: both
the mean and standard deviation of the error indicator drop with each adaptive iteration.

10

W\
\\§
&\,{.\\\\\ R
et W

AW
O
‘\\‘.\‘}i}?ﬁ“\“‘“\\“
et
3
eSgee:

< —
Q““““-\\‘

S

(a) Final drag-adapted mesh

10
107} 1
S 107 :
5]
& 107 :
S
10t :
[&]
& 6
= 10 < 3
© —&—Uniform % A
107l —&— Standard]
—%—One adaptive subiteration
o[—*— Two adaptive subiteration
10 ; ;

04

10° 1
degrees of freedom

(c¢) Drag convergence with DOF

Figure 7: NACA 0012, M = 0.95, a = 0°:

10°

drag coefficient error

Sii
TR

AR
Nt
\\%‘\\\\\‘\“\.

N
SRR
S RR
ISR
S

10
107} 4
107 1
107 3
10} 4
10 1
—&— Uniform
10~’l{ =&— Standard]
—%— One adaptive subiteration
_[L—*—Two adaptive subiterations
10 0 ‘ 1 ‘ 2 3
10 1 10 10

0
CPU time (s)
(d) Drag convergence with CPU time

effect of sub-iterations on drag convergence. In both of the cases
employing sub-iterations, the fine-space adjoint was reused on the sub-iterations with only one element block-
Jacobi smoothing iteration as the extra solve. The current-space primal was also only block-Jacobi smoothed
on the current space, but the linear coarse-space adjoint problem was solved exactly for all iterations. Dashed
lines indicate the remaining error after correction with the estimate.

11

6 \ \ — [IFirst adaptation 7
Lot adaptation

[IFirst adaptation
67 B Lot adaptation

5¢ 4

Percentage (%)
Percentage (%)

-30 -25 30 .15 -10 -5 -30 -25 %0 15 -10 -5
n|cell-wise error| n|cell-wise error|
(a) Standard AWR adaptation (b) One sub-iteration
6 ; w w 100
[IFirst adaptation
sk Bl Last adaptation
801
QP & %
& —<—99% error count
e o 605 . 1
o = 60% error count
g 3 c —4—30% error count
o})
o o 40 1
S,)
o 2 o
201

1+

0 . 0 i i i i

30 25 0 15 10 5 0 2 4 6 8 10 12

n|cell-wise error| Number of adaptation cycle
(c) Two sub-iterations (d) % of elements holding the top 30/60/90% of the error

Figure 8: NACA 0012, M = 0.95, o = 0°: comparison of error indicator distributions.

10 —<— Average element-wise error
Standard deviation of element-wise error
107
> 107
107%
107 : : : : :
0 2 4 6 8 10 12

Number of adaptation cycle

Figure 9: NACA 0012, M = 0.95, « = 0°: convergence of the mean and standard deviation of the error
indicator with adaptive mesh refinement for the standard adjoint-weighted residual method.

12

Figure 10 shows the CPU time breakdown for the different adaptation strategies. Figure 10(a) shows the
CPU time percentage breakdown and Figure 10(b) shows the actual CPU time breakdown!.

Primal solve -
B Adioint solve 100+ Primal solve
Il Error estimation and adaptation 90 : I Adjoint s.olve. .
Il Error estimation and adaptation
80
701
601
I 50+
401 |
|

30+ ‘
20(I []
| ¥

Percentage (%)

_
|
| |

: . —

I |
]

; ; —

I
__

; e
*
|

CPU time (s)

10r 10F S | !!! Bl | ii
ol AW NAW WAW NAW NAW WHW NOW NAW NEN HAN WO oIl = =% | 1 _T= = == LI ‘I ‘
1 2 3 4 5 6 7 8 9 10 11 12 1 2 6 9 10 11 12
Number of adaptation Number of adaptatlon
(a) Percentage CPU time breakdown (b) Raw CPU time breakdown

Figure 10: NACA 0012, M = 0.95, « = 0°: CPU time breakdown results. At each of the 12 adaptive
iterations, we show three bar plots, which are, from left to right: standard adaptation, adaptation with one
sub-iteration, and adaptation with two sub-iterations. Each of these bars is divided vertically into three
parts, which indicate the CPU time contribution of the primal solve (yellow), the adjoint solve (blue), and
the error estimation and adaptation (red). Note that the latter includes the fine-space solves.

Figure 10(b) reveals the benefits of sub-iterations. We take the first bar in each group of three as the
benchmark, since this represents the standard adaptive mesh refinement. Looking at the second bar, we see
that the total height of this bar is similar to the first bar for every even iteration, and noticeably lower for
every odd iteration. This is due to the one sub-iteration, which occurs at every even total iteration number:
on these iterations, the primal and fine-space adjoints are only smoothed (yellow and red lines are much
shorter). Note that the coarse-space adjoint is still solved exactly, so that the blue lines are always of similar
size. Looking at the third bar in each group, the case of two sub-iterations, we see a similar trend but now
with the bar height similar to the standard one only every three iterations (since the other two are the quick
sub-iterations). Figure 10(a) confirms this trend, showing that during sub-iterations, the adjoint solve time,
which is similar for all methods, eventually consumes the largest percentage of the CPU time. Since we saw
in Figure 7 that the standard, one sub-iteration, and two sub-iteration methods perform similarly in degrees
of freedom, the methods with sub-iterations have a CPU time advantage for a given level of accuracy.

The transonic fishtail case demonstrates the strength of sub-iterations. To further test the capability of
the proposed technique, we next present test cases for a subsonic airfoil and a three dimensional wing.

5.1.2 An airfoil in subsonic flow

The second test case is a NACA 0012 airfoil at a free-stream Mach number of 0.5 and angle of attack of
2°. As in the previous case, the initial mesh consists of 234 quadrilaterals, curved with a quartic geometry
representation. The fixed fraction for adaptation is also the same, f = 0.1, and the approximation order is
p=2.

Figure 11 shows a comparison of the various adaptive strategies for this case. Figure 11(c) shows that
the methods with sub-iterations exhibit a similar output error convergence behavior with degrees of freedom

ITimings were performed on the University of Michigan Flux cluster, on nodes that each had two six-core 2.67 GHz Intel
Xeon X5650 processors and 48GB RAM.

13

KRR A
\\\\\:\\:\:\}\‘:s}“\\\‘“\m
RIS

%

punie

wSSwest i

R
\

RN AW Wit

%
//¢///

%

5//;;////

////ﬁ
D55
U0

58
K

i

)

7

i

[l
""‘IIII'
II[,
i}
i

WL
Tl

o
X

%Z%%%Z%Zm’ i ““l

9% ""l'lllzl Witiryggy "l’lllli i

///;,'z,"‘,,,‘l'un,,’,',',lﬂﬂlnn
7% ,,,:,,,,"'mnnmm
7 I

il

%
g it

(a) Final drag-adapted mesh (b) Mach contours (0 to 0.72)

—&— Uniform

—A— Standard

—%— One adaptive subiteration
—#— Two adaptive subiterationg 4

output error
S

output error
=

—&— Uniform ‘\ZA A
10] 1078 || —&— Standard Yo vy
—%— One adaptive subiteration *}9‘1,3
—#— Two adaptive subiterations
10° 10* 10° 10° 10’ 10° 10°
degrees of freedom CPU time
(c) Drag convergence with DOF (d) Drag convergence with CPU time

Figure 11: NACA 0012, M = 0.5, a = 2°: effect of sub-iterations on drag convergence. In both of the cases
employing sub-iterations, the fine-space adjoint was reused on the sub-iterations with only one element block-
Jacobi smoothing iteration as the extra solve. The current-space primal was also only block-Jacobi smoothed
on the current space, but the linear coarse-space adjoint problem was solved exactly for all iterations. Dashed
lines indicate the remaining error after correction with the estimate.

14

compared to standard adaptation. However, as shown in Figure 11(d), sub-iterations show an advantage in
CPU time over standard adaptation. The bottoming-out of the corrected output in this case is likely due to
a relatively loose residual convergence tolerance of 10~ used in the calculations.

Figure 12 shows normalized histograms of the error indicator distribution for the different adaptation
strategies. Again, we see a similar trend for all three methods: the error distribution tightens and shifts to
the left from the first to the last adaptive iteration. There are some differences in the normalized histogram
for the lowest errors, but these are least important to adaptation: at the larger error values, the normalized
histograms appear very similar. Figure 12(d) shows, for the standard adjoint-weighted residual method,
another look at how the error equidistributes over the elements with adaptive refinement. While initially,
only about 15% of the elements accounted for 99% of the error, by the final adaptive iteration, 99% of
the error is distributed among a much larger 80% of the elements. We see an interesting trend in the
30% and 60% curves, which dip in the later adaptation interations. This indicates that eventually, there is
small number of “troublesome” elements that contribute a big fraction to the error — likely near the trailing
edge. Hanging-node (bisection) refinement does not decrease the size of these elements fast enough at each
fixed-fraction adaptive iteration, so that their lower convergence rate eventually shows through.

T T — 8- : :
[|First adaptation [IFirst adaptation
B L st adaptation |- B | 2t adaptation ||

-~
h

Percentage (%)

Percentage (%)

-10 -5 -40 -35

-35 -30 7 =20 -15 25 20 -5 -0 5
In[cell-wise error| Injcell-wise error|
(a) Standard AWR adaptation (b) One sub-iteration
8r ; : : 80 ——st
[IFirst adaptation
s Bl Last adaptation || 701
6- 1 _.60r
o
X 5 i & 50t —<4—99% error count
o % 60% error count
g4 1 £ 40} —a— 30% error count
3 8
E 3- 7 CIL.) 30r
a
2- . 201
1- . 107 .
A A__A—A-—H—‘—‘P‘—Hﬂ—k‘\l
0 0
40 3 25 20 15 -0 -5 0 5 10 15
In|cell-wise error| Number of adaptation cycle
(c) Two sub-iterations (d) % of elements holding the top 30/60/90% of the error

Figure 12: NACA 0012, M = 0.5, a = 2°: comparison of error indicator distributions.

Figure 13 shows the mean and standard deviation of the localized error for the standard adaptation
method. Both of these drop monotonically with each adaptation iteration. The methods employing sub-
iterations show a nearly identical trend.

15

107 —<— Average element-wise error
Standard deviation of element-wise error

0 5 10 15
Number of adaptation cycle

Figure 13: NACA 0012, M = 0.5, a = 2°: convergence of the mean and standard deviation of the error
indicator with adaptive mesh refinement for the standard adjoint-weighted residual method.

Figure 14 shows the CPU-time breakdown comparison among standard adaptation and versions with sub-
iterations. The results are similar to the fishtail case in the previous section. During the sub-iterations, the
CPU time spent on the primal solve and the error estimation decreases relative to the standard adaptation,
but the CPU time spent on the current-space adjoint solves are similar. As result, whenever the adaptation
mechanics enters a sub-iteration cycle, the total time drops (Figure 14(b)) while the percent of the time
taken by the adjoint solve increases (Figure 14(a)).

Primal solve
100 Il Adjoint solve 12001
Il Error estimation and adaptation
90
1000 Primal solve
80 I Adjoint solve
I Error estimation and adaptation
70
. 800}
o
& 60 II =
[0 I)
(o))
| L £
£ %0 II I = 600}
g . 2
& © |
a0l 4001 ; I
20 | i
200} I II ! -
10f I| 1]
i 1 !! 1 - il
ol i i i i i i i i i i i i i i ol =i = == =2 e TR R I | L
1234567891(_.)1112131415 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Number of adaptation Number of adaptation
(a) Percentage CPU time breakdown (b) Raw CPU time breakdown

Figure 14: NACA 0012, M = 0.5, a = 2°: CPU time breakdown results. At each of the 15 adaptive
iterations, we show three bar plots, which are, from left to right: standard adaptation, adaptation with one
sub-iteration, and adaptation with two sub-iterations. Each of these bars is divided vertically into three
parts, which indicate the CPU time contribution of the primal solve (yellow), the adjoint solve (blue), and
the error estimation and adaptation (red). Note that the latter includes the fine-space solves.

16

5.1.3 3D Wing case

In this section we demonstrate the performance of sub-iteration adaptation for a three-dimensional wing.
This wing is untapered, untwisted, of aspect ratio 10, and with a NACA 0012 airfoil cross-section, rounded
via a 180° revolution at the wing tip. The wing is flying at M = 0.4 and « = 3°. Artificial viscosity shock
capturing is used in this case to enable convergence in the presence of the singular trailing vortex cores. The
initial mesh for this case contains 4608 hexahedral elements curved to cubic geometry representation. Drag
is again the output of interest, the approximation order is p = 1, and the fixed fraction is f = 0.1.

Figure 15 shows the final mesh obtained from adaptation using the standard adjoint-weighted residual.
We see that the leading edge, trailing edge, and parts of the wake are targeted for refinement. Figure 16 shows

% 7"'&“&.;
G

(c) Wing surface mesh (d) Mach number plot with cutplane showing the
contour of Mach number plot, Mach number from
0 to 1.33

Figure 15: NACA 0012 wing, M = 0.4, @ = 3°: adapted mesh and surface Mach contours.

the output error convergence for the various methods versus degrees of freedom and CPU time. As expected,
the standard and sub-iteration methods have similar performance with degrees of freedom, and the methods
with sub-iterations perform better with CPU time. Figure 17 shows the normalized error histograms for the
various methods. These again appear similar among the methods, each showing a decreasing-error trend from
the first to the last adaptation iteration. Figure 17(d) shows that the number of elements responsible for 99%
of the error rises from 40% to just over 80% in the course of adaptation. The number of elements responsible
for 30% and 60% of the error also increases but then stagnates, likely due to large error contributions from
elements in singular areas of the flow, as observed in the previous section.

The CPU time breakdown is shown in Figure 18. We again observe a sharp drop in computational time

17

10 : 10 T
—&— Uniform —&— Uniform
—A— Standard —A— Standard
—¥— One adaptive subiteration —¥— One adaptive subiteration
2 -2
10 Two adaptive subiterations 107 \ Two adaptive subiterations?
5107 * {1 B10° V. < J
e N = ~ S
5] A ot Ss TA
- \ - . ..
-E' a§ -oa' \V‘ A ~
3107 a 1 310" s A 1
° R A © AATURE A
1§ 8 ® N
N S A
Ad . . ~A
10° v] 107 v -
A A
-6 -6
10 L L 10 . .
10* 10° 10° 10’ 10’ 10° 10° 10*
degrees of freedom CPU time
(a) Convergence with degrees of freedom (b) Convergence with CPU time

Figure 16: NACA 0012 wing, M = 0.4, o = 3°: effect of sub-iterations on drag convergence. In both of
the cases employing sub-iterations, the fine-space adjoint was reused on the sub-iterations with only one
element block-Jacobi smoothing iteration as the extra solve. The current-space primal was also only block-
Jacobi smoothed on the current space, but the linear coarse-space adjoint problem was solved exactly for all
iterations. Dashed lines indicate the remaining error after correction with the estimate.

during the sub-iterations in Figure 18(b), and an enlargement of the blue section of the columns, the relative
adjoint solve time, in Figure 18(a). We note that in this three-dimensional case, the fine-space adjoint solve
at p = 2 is significantly more expensive than a solve at p = 1, which accounts for the large contribution of
the error estimation and adaptation (red portion) to the total CPU time.

In summary, at least for the cases tested, the use of sub-iterations has a minimal effect on the performance
of error estimation and adaptation when measured with degrees of freedom. However, when measuring CPU
time, sub-iterations offer a noticeable savings because during sub-iterations, the primal problem and fine-
space adjoint problems are only smoothed, not solved exactly.

5.2 Unsteady Active-Flux Simulations

In this section, we present results showing how the use of a coarser space fares in driving mesh adaptation in
the active-flux method. The current mesh adaptation mechanics is static, meaning that the mesh does not
change in time. According to the discussion in Section 4.2, from an implementation point of view, there is
essentially no difference between conventional error estimation and coarse-space error estimation, aside from
the choice of spaces. We expect the error estimates themselves to be less useful compared to those obtained
from fine-space error estimation, although they may not be completely without value — this is something we
are currently investigating. At present, we test the coarse-space selection strategies outlined in the previous
section in their abilities to drive adaptation; that is, in identifying elements that need to be adapted.

In two dimensions, we consider the test case of an advecting Gaussian wave as shown in Figure 19.
Figure 19(a) shows the initial unstructured mesh, and Figure 19(b) shows the primal solution. Here, an
inflow boundary condition is enforced on the left and lower boundaries of the square domain. A Gaussian
pulse originally centered at coordinate, £ = (—0.4, —0.4) advects diagonally, until it arrives at the point
Z=1(0.4, 0.4).

The output is defined as a point value at the end of simulation at coordinate & = (0.4, 0.4). For such a
localized output, the whole mesh does not need refinement, since the output only depends on the information
from a small part of the computational domain. Hence this is a reasonable test case for adaptation.

Figure 20 compares the absolute error convergence performance of conventional mesh adaptation, all five
of our “adaptation acceleration” strategies, and uniform refinement. In our implementation, conventional

18

Percentage (%)

Percentage (%)

o

[IFirst adaptation
T Bl | 55t adaptation |
A)
s]
at]
ol]
I

18 -6 14 -2 -0 8
In|cell-wise error|

(a) Standard AWR adaptation

: | | | | |:| Firs‘t adap‘tation

5r B Last adaptation
at i
3r i
2r i

18 6 14 12 10 8
In|cell-wise error|

(c) Two sub-iterations

Percentage (%)

Percentage (%)

w

100

80

60

40

20

[IFirst adaptation||
Bl st adaptation

-24 22 -20

8 -6 14 12
In|cell-wise error|

(b) One sub-iteration

—4—99% error count
60% error count
—4—30% error count

2 4 6 8 10
Number of adaptation cycle

(d) % of elements holding the top 30/60/90% of the error

Figure 17: NACA 0012 wing, M = 0.4, o = 3°: comparison of error indicator distributions.

19

Primal solve Primal solve

Il Adjoint solve Il Adjoint solve
Il Error estimation and adaptation

2000L Il Error estimation and adaptation

<
g @
[0}

[0}
o)
o] S
z =
[0} =)
& 5
o

2 3 4 5 6 7 8 9 4 6
Number of adaptation Number of adaptation
(a) Percentage CPU time breakdown (b) Raw CPU time breakdown

Figure 18: NACA 0012 wing, M = 0.4, o = 3°: CPU time breakdown results. At each of the 9 adaptive
iterations, we show three bar plots, which are, from left to right: standard adaptation, adaptation with one
sub-iteration, and adaptation with two sub-iterations. Each of these bars is divided vertically into three
parts, which indicate the CPU time contribution of the primal solve (yellow), the adjoint solve (blue), and
the error estimation and adaptation (red). Note that the latter includes the fine-space solves.

0.8

0.6

0.4

0.2

(a) Initial mesh (b) Primal solution

Figure 19: Initial mesh and primal solution for a scalar advection problem. The advection velocity is up and
to the right.

20

0 —»— Uniform refinement o

10 : 10 : :
Adaptive refinement f h(i.\?,\ :
- | —A— Strategy 1 e,
Strategy 2 \\‘

—o— Strategy 3
.| —8— Strategy 4
Strategy 5

—p— Uniform refinement
Adaptive refinement |
—&— Strategy 1 :
Strategy 2
,| | —e—Strategy 3
| | —a—Strategy 4
Strategy 5

Absolute Output Error
Absolute Output Error

10 10 12 10 ;0” 15“ 1;)’_ 1(‘)2 1<‘>3 10
DOF CPU time(second)

(a) Error convergence comparison in terms of spatial de- (b) Error convergence comparison in terms of computa-
grees of freedom tional time

Figure 20: Scalar advection with active flux: error convergence comparison.

output-based adaptation is only able to outperform uniform mesh refinement when using spatial degrees
of freedom to measure cost. With this measurement, we found all five curves of “adaptation acceleration”
strategies in Figure 20(a) have very similar behaviours to the conventional fine-space output based mesh
adaptation strategy. However, using CPU time as the cost measurement, conventional output-based mesh
adaptation lags behind all of our strategies and behind uniform mesh refinement due to the simplicity of the
problem, as illustrated in Figure 20(b). On the other hand, the adaptive strategies that employ coarse-space
error estimates do perform better than uniform mesh refinement in CPU time. This means that we can
expect much more benefit out of the adaptation mechanics developed from coarse space error estimation.
Taking a look at Figure 20(a), the “adaptation acceleration” strategies almost follow the same path as the
conventional output based adaptation. However, they are much cheaper to evaluate, and this could be a
significant savings for complex three-dimensional problems.

Although the adaptive indicators from our “adaptation acceleration” strategies show good performance
(for one problem), a natural objection to the use of a coarse space is that associated error estimates do not
give us a useful measure of the actual error on the current mesh. The idea of using a fine space is that this
space is closer to the infinite-dimensional space on which the exact solution typically lives. In this sense, the
use of a coarse space is akin to a “retrospective” strategy, where all we see is the history of how the error
evolved with adaptation and which areas were refined. While we have no direct foresight into how much
error is left and exactly where to go next, we are currently looking at how to make use of the information in
the error history to predict the remaining error on the current mesh. Specifically, we are considering a priori
error estimates and extrapolation techniques, both of which we expect to be valid in the asymptotic regime
when these error estimates would be necessary.

6 Conclusions

In this paper we have presented two general techniques for accelerating output-based error estimation and
mesh adaptation. The first of these is the idea of sub-iterations during adaptation, where at each sub-iteration
the primal and fine-space adjoint solves are done only approximately. These are usually the most expensive
parts of every adaptive iteration and hence the cheaper approximate solves (block-Jacobi smoothing) yield
noticeable cost savings. Performance of the adaptations relative to the standard method does not suffer as
long as the current-space adjoint is still solved exactly to remove errors arising from the approximate primal
solves. We demonstrated examples of using sub-iterations with the discontinuous Galerkin finite-element
method for steady-state Euler simulations.

The second acceleration technique is the use of coarse spaces for creating the adaptive indicator. This
retrospective error estimation strategy does not directly yield accurate error estimates for the current-space

21

solution, but it does provide useful information for adaptation. Using degrees of freedom as a metric, the
coarse-space strategies perform similarly to the standard adjoint-weighted residual method. However, when
using CPU time as the metric, the coarse-space strategies show a significant benefit. In particular, for
the unsteady scalar advection case tested with the active flux method, standard adaptation could not beat
uniform refinement in CPU time, whereas the coarse-space methods did.

Acknowledgments

The authors acknowledge support from the University of Michigan and the the National Aeronautics and
Space Administration under grant number NNX12AJ70A.

References

[1] Krzysztof J. Fidkowski and David L. Darmofal. Review of output-based error estimation and mesh adap-
tation in computational fluid dynamics. American Institute of Aeronautics and Astronautics Journal,
49(4):673-694, 2011.

[2] P. L. Roe. Approximate Riemann solvers, parameter vectors, and difference schemes. Journal of
Computational Physics, 43:357-372, 1981.

[3] Timothy A. Eymann and Philip L. Roe. Active flux schemes. 49th ATAA Aerospace Sciences Meeting
including the New Horizons Forum and Aerospace Exposition 2011-382, 2011.

[4] Timothy A. Eymann and Philip L. Roe. Active flux schemes for systems. 20th ATAA Computational
Fluid Dynamics Conference 2011-3840, 2011.

[5] Timothy A. Eymann. Active Flux Schemes. PhD thesis, The University of Michigan, Ann Arbor, 2013.

[6] Timothy A. Eymann and Philip L. Roe. Multidimensional active flux schemes. 21st ATAA Computa-
tional Fluid Dynamics Conference 2011-3840, 2013-2940.

[7] Bram Van Leer. Towards the ultimate conservative difference scheme IV. a new approach to numerical
convection. Journal of Computational Physics, 23:276-299, 1977.

[8] R. Becker and R. Rannacher. An optimal control approach to a posteriori error estimation in finite
element methods. In A. Iserles, editor, Acta Numerica, pages 1-102. Cambridge University Press, 2001.

[9] Ralf Hartmann and Paul Houston. Adaptive discontinuous Galerkin finite element methods for the
compressible Euler equations. Journal of Computational Physics, 183(2):508-532, 2002.

[10] D. A. Venditti and D. L. Darmofal. Anisotropic grid adaptation for functional outputs: application to
two-dimensional viscous flows. Journal of Computational Physics, 187(1):22-46, 2003.

[11] Krzysztof J. Fidkowski. Output error estimation strategies for discontinuous Galerkin discretizations
of unsteady convection-dominated flows. International Journal for Numerical Methods in Engineering,
88(12):1297-1322, 2011.

[12] Steven M. Kast and Krzysztof J. Fidkowski. Output-based mesh adaptation for high order Navier-Stokes
simulations on deformable domains. Journal of Computational Physics, 252(1):468-494, 2013.

[13] Kaihua Ding, Krzysztof J. Fidkowski, and Philip L. Roe. Adjoint-based error estimation and mesh
adaptation for the active flux method. ATAA Paper 2013-2942, 2013.

[14] P.-O. Persson and J. Peraire. Sub-cell shock capturing for discontinuous Galerkin methods. ATAA Paper
2006-112, 2006.

[15] F. Bassi and S. Rebay. GMRES discontinuous Galerkin solution of the compressible Navier-Stokes
equations. In Karniadakis Cockburn and Shu, editors, Discontinuous Galerkin Methods: Theory, Com-
putation and Applications, pages 197-208. Springer, Berlin, 2000.

22

