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This paper presents a strategy for mesh refinement driven by an indicator that
combines two previously-investigated indicators: one based on a user-specified en-
gineering output, and the other based on entropy variables. Using the entropy-
variable indicator to adapt a mesh is computationally advantageous since it does
not require the solution of an auxiliary adjoint equation. However, the entropy-
variable indicator targets any region of the domain where spurious entropy is gen-
erated, regardless of whether or not this region affects an engineering output of
interest. On the other hand, an indicator computed from an engineering output
generally targets only those regions important for the chosen output, though it
is more computationally taxing because of the required adjoint solution. Approx-
imations in the adjoint calculation reduce this cost, at the expense of indicator
accuracy. In combining these indicators, our objective is to maintain the low cost
of approximate adjoint solutions while achieving improved indicator accuracy from
the entropy adjoint. We demonstrate the potential for this method through several
simulations governed by the compressible Navier-Stokes equations.

I. Introduction

A popular approach in Computational Fluid Dynamics (CFD) to obtain accurate solutions for
problems that exhibit a wide range of spatial length scales, whose distributions are generally not
a known ahead of time, is the practice of solution-based adaptive methods.1–7 These methods use
an indicator computed a posteriori from the solution to drive the adaptation of the computational
mesh. In the literature, extensive work has been done studying various indicators with regard to
their accuracy, robustness, and expense. Two previously-studied indicators relevant to our present
work are indicators based on a user-specified engineering scalar output4,8, 9 and indicators based on
entropy variables.10,11 Both indicators have their strengths and weaknesses depending on the nature
of a given problem. In this work, a new indicator is investigated that combines both the output
and entropy-adjoint indicators. The main approach investigated in this paper is a combination that
consists of a simple product of the two indicators, though various modifications to this approach
are also considered.

Output-based adaptive methods are advantageous since they specifically target areas of the
mesh that are critical to the prediction of the output of interest.3,4, 12,13 They are effective in
accounting for propagation effects intrinsic to hyperbolic problems,14 through the use of output-
specific adjoint solutions, which function as the sensitivity of the output to local residuals. However,
in certain cases, it is not always clear which scalar output should be chosen for adaptation, prior
to obtaining solutions. Running cases with several output choices is an option, but that is often
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computationally expensive. In fact, often just running one output-based adjoint solution is not
cheap due to the need to solve the adjoint problem on a refined-space computational domain.

The entropy-adjoint approach alleviates both of the aforementioned issues with output-based
adaptive methods. Unlike the engineering-output approach, entropy-variable refinement does not
require the choice of a single output, which relieves the user of making this choice when an all-
around good solution is sought. Additionally, the entropy variables are far less expensive to obtain,
as they are computed from a direct variable transformation of the conservative state. Unfortunately,
because entropy-variable indicators target all regions of the domain where there is production of
spurious entropy, this strategy is not as globally discriminating as the output-based approach. How-
ever, combining both approaches together yields a new approach that encompasses the strengths
of both methods, while limiting the downsides each method bears.

The outline of this paper is as follows. Section II reviews the concepts of using output-based
adjoints for mesh refinement and error estimation. Section III reviews how the the entropy variables
are defined and how they can be interpreted as adjoints for both inviscid and viscous conservation
equations. Section IV compares the two mesh adaptation strategies used in this work, as well as
a sequential breakdown of the various steps for each adaptive iteration. Section V reviews various
modifications to obtaining the adaptation indicators that were investigated in this research. Section
VI discusses the numerical implementation behind these adaptive strategies. Finally, Section VII
outlines the results generated using these methods.

II. Adaptation Using Output Adjoints

Given a particular engineering output, output-based error estimation methods refine areas of
the mesh important for an accurate prediction of the output. They account for error propagation
effects that are inherent to convection-dominated flow simulations by targeting residuals to which
the output is most sensitive. The resulting error estimates provide confidence levels to the output
calculations and can be localized to elements to drive adaptation. These error estimations rely
on the solution of an adjoint problem, which yields, in continuous form, the adjoint ψ(~x). The
adjoint is a Green’s function that relates residual source perturbations to the output of interest,
J(u), where u denotes the state vector.

Consider a partial differential equation r(u) = 0, where r(·) is a differential operator. The goal
is to determine u ∈ V such that

R(u,w) = 0, ∀w ∈ V, (1)

where V is the trial and test function space and R(·, ·) : V ×V → R is the semilinear operator that
represents the weak form of the differential equation. The adjoint ψ ∈ V is the sensitivity of J to
an infinitesimal source term, δr, added to the governing equation,

δJ = (δr,ψ), (2)

where (·, ·) is an inner product over the computational domain, Ω. The adjoint satisfies the following
weak statement:8 determine ψ ∈ V such that

R′[u](w,ψ) + J ′[u](w) = 0, ∀w ∈ V, (3)

where the primes denote Fréchét linearization. Using the solution of the adjoint equation, the
output error can be estimated by the adjoint-weighted residual method, which is based on the
following two observations:
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• In general the approximate solution uH in a finite-dimensional approximation space VH will
not satisfy the governing PDE. However, it will satisfy a PDE will a small perturbation, whose
weak form reads: find u′ ∈ V such that:

R(u′,w) + (δr,w) = 0, ∀w ∈ V where (δr,w) = −R(uH ,w).

• The adjoint translates the residual perturbation to an output perturbation via Eqn. 2:

δJ = (δr,ψ) = −R(uH ,ψ). (4)

Using a weighted residual approximation of the solution, the above expression quantifies the
output’s numerical error. For non-infinitesimal perturbations and nonlinear outputs or PDEs,
the numerical error calculation is not exact.

Eqn. 4 is only computable if the continuous adjoint is approximated. This is achieved by solving
the adjoint equation on a finer finite-dimensional space, Vh ⊃ VH , either directly or iteratively.15–17

Depending on the scope of the problem, this step can be computationally expensive. Solving the
adjoint equation yields a fine-space adjoint ψh that can be used to obtain an adaptive indicator
whose purpose is to relate the relative contribution of each element to the total output error. Eqn. 4
can be approximated as

δJ ≈ −
∑

κH∈TH

Rh (uH ,ψh|κH ) , (5)

where |κH denotes the restriction of an interpolated function to element κH of the triangulation TH .
For the sake of simplicity, Vh is obtained from VH by increasing the approximation order, while
keeping the triangulation between the fine space and the coarse space the same. The adaptive
indicator is obtained by taking the absolute value of the elemental contributions in Eqn. 5,3,12,18,19

ηκH = |R (uH ,ψh|κh)| . (6)

This indicator is computed separately, with absolute values, for each equation in a system of
equations and then summed together, possibly yielding a magnitude greater than the actual output
error estimate. However, such an indicator is still not a bound for the actual error estimate due to
previously made approximations.

III. Adaptation Using Entropy Variables

The previous section presented output-based error estimation, in which a user prescribes an
engineering scalar output to drive mesh adaptation. This sections reviews the entropy-based adjoint
indicator, which instead uses entropy variables to drive the adaptation. Regions in the mesh that
exhibit high net production of spurious entropy are targeted for refinement. The subsequent review
of the formulation of the entropy-adjoint approach follows our previous work,11 to which we refer
the reader for more details.

A. Inviscid Conservation Laws

Consider a steady-state set of conservation laws in quasi-linear form combined with a scalar entropy
conservation law,

Ai∂iu = 0, ∂iFi = 0,
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where i is the spatial index, Ai is the inviscid flux Jacobian, u is the state vector, and Fi(u) is
the entropy flux associated with an entropy function U(u). The entropy function and flux satisfy
the compatibility relation UuAi = (Fi)u. The entropy variables are defined as v = UTu , and they
symmetrize the conservation laws in the sense that:20,21 the transformation Jacobian matrix, uv, is
symmetric, positive definite; and Aiuv is symmetric. Using these properties the quasi-linear form
of the conservation law can be manipulated via:

0 = Ai∂iu = Aiuv∂iv = uvAT
i ∂iv ⇒ AT

i ∂iv = 0. (7)

The above equation, with the transpose of the inviscid flux Jacobian, represents the continuous
adjoint equation, which indicates that the entropy variables are adjoint solutions. The output
associated with this adjoint equation is a measure of the net entropy transport through the domain
boundary,11

J =

∫
∂Ω

Finids. (8)

Therefore the entropy variables serve as the adjoint solution to an output that corresponds to the
net entropy flow out of the domain. This adjoint can be used in Eqn. 6 with entropy variables to
yield an indicator driven by areas of the mesh with spurious entropy generation, i.e. those that are
important for the prediction of the net entropy outflow.

B. Viscous Conservation Laws

For a set of viscous conservation laws written in quasi-linear form,

Ai∂iu− ∂i (Kij∂ju) = 0, (9)

with Kij the diffusivity tensor, the entropy variables must also symmetrize Kij , in the sense that

K̃ij = K̃
T

ji, where K̃ij = Kijuv.21 Substituting ∂iu = uv∂iv into Eqn. 9 and taking the transpose
yields the following equation for the entropy variables,

∂iv
TAiuv − ∂i

(
∂jv

T K̃ji

)
= 0. (10)

The entropy variables still represent the sensitivity to residual perturbations of a specific output,
and in the viscous case, this output is11

J =

∫
∂Ω

Finids+

∫
Ω

∂iv
T K̃ij∂jvdΩ−

∫
∂Ω

vT K̃ij∂jvnids. (11)

Each of the terms in Eqn. 11 has its own physical meaning outlined in previous works.10,11 Adapting
on J using the entropy variables defined in the next section as adjoints is the driver for the entropy-
adjoint based approach to mesh refinement. Without the need for a separate system solve to obtain
the entropy adjoint, this approach is computationally cheaper than the output-based approach.
However, this indicator does not disregard areas of spurious entropy generation that have no effect
on a particular engineering output and hence may lead to over-refinement.

C. Entropy Function

The entropy function that yields entropy variables that symmetrize both the inviscid and viscous
term in the compressible Navier-Stokes equations, with heat-conduction included, is unique up to
additive and multiplicative constants,21

U = −ρS/ (γ − 1) , S = ln p− γ ln ρ, (12)
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where p is the pressure, ρ is the density, γ is the ratio of specific heats, and S is the physical entropy.
Differentiating with respect to the conservative state u yields the entropy variables,

v = UTu =

[
γ − S
γ − 1

− 1

2

ρV 2

p
,
ρui
p
, −ρ

p

]T
, (13)

where V 2 = uiui is the square of the velocity magnitude, and p = (γ − 1)(ρE − ρV 2/2), where E
is the total energy per unit mass. It is worth noting that the entropy variables are obtained via a
nonlinear transformation of the conservative variables. The corresponding entropy flux function is
Fi = uiU .

IV. Adaptive Mechanics

For this research two different strategies are used to drive the mesh adaptation for each adaptive
iteration. The first is a fixed-fraction hanging-node adaptation strategy. The driver of this approach
is the elemental adaptive indicator, ηκH , which is calculated using ψh if the adaptation depends
on an engineering output or vh if the adaptation depends on entropy variables. However, in the
combined approach, the output-based and entropy-based indicators are sequentially obtained and
then combined to yield a new indicator to drive the adaptation. The term fixed-fraction means a
certain fraction, fadapt, of the elements with the largest adaptive indicators is marked for refinement.
Marked elements are adapted uniformly, creating a series of hanging nodes. If two neighboring
elements vary by more than one level of refinement, additional elements are flagged for refinement.
Note that there is no element coarsening performed while using hanging-node adaptation in this
research.

The second mesh adaptation approach is a variation of mesh optimization via error sampling
and synthesis (MOESS).22,23 The distinguishing feature of MOESS is an error sampling approach
for determining the convergence rate tensor of the error on a single element. This local sampling
approach determines the optimal local refinement for that element by computing an error indicator
∆Eei for a finite number of refinement options i of the element. These indicators estimate the
error between the coarse-space solution and that on a given refinement option i. Calculating ∆Eei
requires projecting the fine-space adjoint, ψp+1

hi |Ωe or vp+1
hi |Ωe depending on whether the adjoint is

output-based or entropy-based, down to the space of the refinement option i and order p, and then
back up to order p + 1 on the original element. Adjoint-weighted residuals are then evaluated on
the original element. For the output-based adjoint, mathematically this can be expressed as

∆Eei ≡
∣∣∣Rp+1

h

(
uph, ψ̃

p
hi|Ωe

)∣∣∣ , (14)

where ψ̃phi is the fine-space adjoint ψp+1
h projected from p + 1 to order p on refinement option i,

and then back to order p+ 1 on the original element. The form of Eqn. 14 that corresponds to the
entropy adjoint is identical except that v replaces ψ. The refinement of each element based on local
sampling creates anisotropy and leads to better mesh resolution, and thus better error estimation.

The following is a sequential breakdown of the various steps implemented for each adaptive
iteration:

1. Solve the primal problem on the current mesh at order p to obtain uH . If the adaptation
depends on an engineering output, solve the adjoint problem to obtain ψH .

2. Inject uH into a fine space of order p+ 1.

3. If the adaptation depends on an engineering output, solve or iterate the fine-space adjoint
problem to obtain ψh. If the adaptation depends on entropy variables, compute vh (uh) using
Eqn. 13 by either solving the fine-space problem exactly or iteratively smoothing νfine times
to obtain uh.
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4. On each element calculate the adaptive indicator, ηκH , using Eqn. 6 with ψh if the adaptation
depends on an engineering output or vh if the adaptation depends on entropy variables. For
the combined approach, compute indicators based on both the output-based adjoint and the
entropy-based adjoint, and then combine them, e.g. via an element-wise multiplication, to
obtain a new indicator.

5. Refine the mesh on the elements with the largest indicator using either fixed-fraction hanging
node adaptation or MOESS. If MOESS is driving the mesh adaptation, then calculate local
sampling errors for each element using Eqn. 14.

6. Initialize the solution on the adapted mesh with the solution from the previous mesh and
return to step 1.

V. Adaptive Indicator

The previous sections have illustrated the standard way for obtaining the mesh refinement
indicator using the output-based adjoint, the entropy-based adjoint, and the combined approach
in which both the output-based and entropy-based indicators are obtained separately and then
combined through direct, elemental multiplication. However, various modification were tested for
obtaining both the output-based and entropy-based indicators, as well their combination. These
modifications were made in the interest of improving adaptive efficacy and reducing the computa-
tional cost.

A. Combined Indicator using a Coarse-Space Adjoint

In Section II, Eqn. 4 requires the continuous adjoint on a finer finite-dimensional space. This is
an expensive step, especially for large or unsteady problems. To minimize the cost of this step, a
new approach to combining the indicators was implemented in which no fine-space output-based
adjoint is computed. Instead, both the adjoint and state at the current approximation order
are projected down one order prior to obtaining the output-based indicator. Therefore, no new
fine-space adjoint needs to be obtained since the fine-space is now at the original approximation
order, where an output-based adjoint already exists. The coarse-space output-based adjoint is then
subtracted from this adjoint to eliminate pollution from p-dependence of the weak form and non-
converged residuals. Since the output-based indicator should still target similar general regions of
the domain where more refinement is necessary, this less expensive approach should ideally not lead
to significant deterioration of the adaptive performance.

B. Combined Indicator with a Mask

Building off of the previous approach, a subsequent approach was implemented with the addition of
a mask on the entropy-based adjoint. The purpose of the mask is to limit the weight of the entropy
indicator on the mesh adaptation so that the output-based indicator carries more weight. This is
accomplished by creating an element-based refinement indicator, i.e. a mask, based on the output-
based adaptation indicator. This mask is an array made up of zeros and ones that indicate which
elements are selected for refinement. The percentage of elements selected for the mask is based
on a user input. This mask is then multiplied by the entropy-based indicator in an element-wise
fashion to obtain the final indicator that ultimately governs the mesh adaptation. The reason for
this approach is that the mask should completely eliminate elements targeted by the entropy-based
indicator that have no influence on the desired engineering output, regardless of the magnitude of
the entropy-based indicator for these elements.
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C. Combined Indicator with Output-based Local Sampling in MOESS

The next modification is specific to cases using MOESS as the mesh adaptation strategy. As
mentioned in Section IV, in MOESS the adjoint weighted residual is used not only in computing
the elemental errors, but also in determining the refinement error samples within each element.
Since the sampling of elements within the boundary layer is especially important for correctly
assessing the need for anisotropy, an alternative combined approach was implemented in which the
combined output-based and entropy-based indicator still yields the total elemental error, but in
which just the output-based indicator governs the local sampling of each element. This in theory
should lead to more output-tailored anisotropy, especially in elements in the boundary layer.

D. Modified Entropy-Based Adjoint for RANS

The final modification is applicable for cases using RANS. Previous work24 indicates that for RANS
cases, the optimal drag coefficient error estimate using an entropy adjoint requires two inviscid
residual evaluations, one with the approximate solution and one with the exact solution. This
is motivated by relating the output J from Eqn. 8 directly to one output of interest, the drag
coefficient, through Oswatitsch’s formula25 via

δcd,osw ≈ KδJ i = K
(
J i (uH)− J i (u)

)
= K

∫
Ω

vT
(
ri (uH)− ri (u)

)
dΩ, (15)

where the superscript i denotes inviscid residuals or fluxes. For RANS cases, the term ri (u) needs
to be approximated. When using entropy variables, the discrete analogue of Eqn. 15 is

δcd,osw ≈ KVT
h

[
Ri
h

(
UH
h

)
−Ri

h (Uh)
]
, (16)

where UH
h is the discrete coarse-space state vector injected into the fine space, and Uh is the

discrete fine-space state. The residual operators R in Eqn. 16 include only the convective terms of
the RANS equations.

VI. Numerical Implementation

A discontinous Galerkin (DG) finite-element code was used to drive both mesh adaptation
strategies. The DG discretization of the compressible Navier-Stokes equations uses the Roe ap-
proximate Riemann solver26 for the inviscid fluxes and the second form of Bassi and Rebay for
the viscous flux.27 A Newton-GMRES implicit solver with element-line-Jacobi preconditioning is
used to obtain the steady-state solution. While a DG finite element method was used in this work,
the practice of using output-based and entropy-variable adjoints to refine and adapt meshes is
applicable to general finite element and finite volume methods.

When the adjoint solution depends on an output of interest, a discrete adjoint solution is
obtained with the same element-line-Jacobi preconditioned GMRES solver used for the primal
solve. Adjoint consistency is achieved by paying close attention to various discretization and output
calculation terms.28–30 The fine approximation space, Vh, required for the adjoint solution ψh, is
obtained by reusing the same mesh while increasing the interpolation order from p to p+1. The fine
space is then used for solving both the primal and adjoint problems to minimize error. However,
when using the first modification to the combined approach in Section V, the output-based adjoint
is only solved on the order p space. This reduces the computational burden for the combined
approach. Additionally, for some cases, such as those in three dimensions, where computations are
quite expensive, an iterative method was chosen for the fine-space primal and adjoint problems in
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lieu of a an exact solve due to the excessive expense and previous experimental work illustrating
that several smoothing iterations on Vh yield similar results to an exact solve. For this work
νfine = 5 element-block-Jacobi iterations were used for both the primal and the adjoint problems.
Finally, the error indicator based on an engineering output is found using Eqn. 6, which in a discrete
setting reduces to an inner product between the discrete adjoint and residual vectors on the fine
space, with absolute values around the contribution from each equation in the system. Whereas
the solution to the adjoint equation requires a potentially expensive solve, the entropy variables
can be calculated directly from the (approximate) fine-space solution uh on each element using a
least-squares projection onto Vh.

VII. Results

The results in this section compare adaptation using output-based adjoints, the entropy vari-
ables, and various applications of the combined approach for both two-dimensional and three-
dimensional cases using various geometries. Some of the geometries, initial meshes, and solution
parameters are similar to those used in previous works,10,11,23 while other cases were designed
specially for this research.

A. NACA 0012 in Two-dimensional Inviscid Flow: M∞ = 0.95, α = 0°

The first case is two-dimensional, inviscid flow over the NACA 0012 airfoil with a closed trailing
edge and a farfield approximately 40 chord lengths away. The freestream flow is transonic, which
produces a substantial fishtail shock at the trailing edge, as shown in Figure 1. This strong fishtail
shock makes it necessary to add artificial viscosity to stabilize the flow in the shock’s immediate
vicinity.

Figure 1. NACA 0012 M∞ = 0.95, α = 0°: Mach number contours (range: 0.4-1.6).

The initial mesh of 572 elements is shown in Figure 2. It is an unstructured (initially structured
but not after adaptation), quadrilateral mesh with quartic, q = 4, curved elements representing the
airfoil geometry. The quadratic solution interpolation order for all of the cases is p = 2 and the
adaptation fraction is set to fadapt = 0.1 for each of the seven adaptation iterations. This means
that for each adaptive iteration, only 10% of the elements are refined.

For this case, only one engineering output, the drag coefficient, was analyzed. Integrals of the
inviscid momentum flux, i.e. the pressure on the airfoil surface, were used to obtain the aforemen-
tioned output. Adaptation was driven using adjoints associated with the drag coefficient, as well
as the entropy adjoint. In addition, a combined output-based and entropy-based adjoint solution
was generated.

The presence of shocks in inviscid flows leads to the creation of entropy in the regions where
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Figure 2. Initial NACA 0012 airfoil mesh.

shocks are present. This creates a problem for the entropy adjoint indicator since it will target
regions of the mesh where spurious entropy is generated. The shocks may cause the entropy
indicator to continue to refine regions of the mesh to which an engineering output function J(u)
may be insensitive. This not only leads to unnecessary mesh refinement in these regions, but also
prevents regions of the mesh near the geometry to which J(u) is sensitive from being refined, since
only a certain percentage of cells are refined in each adaptive iteration. By combining the output-
based adjoint indicator with the entropy adjoint indicator through direct, elemental multiplication,
this issue can be alleviated because the output-based adjoint does not unnecessarily target regions
of spurious entropy generation that are independent of J(u).

Figure 3 shows the convergence of the drag coefficient for various adaptive indicators and uni-
form refinement. The truth drag coefficient was obtained from a case at p = 3 on a mesh obtained
by uniformly refining the finest drag coefficient adapted mesh. Clearly, the creation of entropy due
to the fishtail shocks prevents the entropy-based adaptation from properly refining the mesh to
produce a more accurate drag coefficient. However, the combined adjoint does show error conver-
gence, as the mesh is refined, since it is not as susceptible to unnecessary refinement in regions that
do not affect the drag coefficient. In this particular case the combined-approach does not perform
as well as the output-based adjoint approach alone. However, this is not a universal truth for this
case since various adjustments made to the shock capturing approach yield results for both the
output-based and combined indicator approaches that vary from those presented in this paper by
an order of magnitude. Despite the changes to the shock capturing methods, the drag coefficient
error convergence using the entropy-based indicator never improved.

Figure 4 compares the meshes after seven adaptation iterations for the error indicator strategies
in Figure 3. The drag coefficient adaptation does not target the fishtail shock, outside of the region
directly near the trailing edge, whereas the entropy adaptation focuses solely on the fishtail shock
and does not refine the mesh anywhere else. This explains why in Figure 3 there is no change in drag
coefficient error with each adapted mesh for the entropy-based indicator case. Since the mesh is
barely refined near the airfoil surface, the drag coefficient error never improves. The combined drag
and entropy adjoint approach yields a much improved mesh compared to just the entropy adjoint
alone. However, there is still some unnecessary refinement due to the fishtail shock, because of how
strong the entropy-based indicator is in that region. This is likely the reason why the combined
approach does not perform as well as the output-based alone approach. One option to remedy this
issue is to use the combined approach that masks the entropy indicator so that its effect is not as
pronounced. This option will be investigated for a later result.
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Figure 3. NACA 0012 M∞ = 0.95, α = 0°: Comparison of drag coefficient convergence histories for
various adaptation methods.

(a) Drag Adaptation (b) Entropy Adaptation

(c) Drag-Entropy Adaptation

Figure 4. NACA 0012 M∞ = 0.95, α = 0°: Meshes after seven adaptation iterations for various error
indicators.
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B. NACA 0012 Wing in Inviscid Flow: M∞ = 0.4, α = 3°

The next case is a NACA 0012, untapered, untwisted wing with a closed trailing edge and a
rounded wing tip. The wing has an aspect ratio of 10 and is inside a domain with a farfield 40
chord lengths away. The unstructured mesh is composed of cubic, q = 3, hexahedral elements
that curve to match the wing geometry. Quadratic solution interpolation, p = 2, was used in
the discretization, but for these runs the adaptation fixed fraction was lowered to fadapt = 0.05.
Artificial viscosity stabilization was added to the solution to provide stability in the vicinity of the
trailing-edge vortices.

The two engineering outputs that are considered for this case are drag and lift coefficient.
Adjoint solutions associated with these two outputs were used to drive separate adaptation runs.
Additionally, the entropy adjoint indicator, as well as the combined entropy and output-based
adjoint indicator runs were tested. Figure 5 shows the results of these adaptation runs, along with a
uniform refinement run for comparison. No truth solutions were obtained due to the computational
expense of such runs. Consequently, what is shown in these figures is not error but the actual lift
and drag coefficients. For the drag coefficient, the drag adjoint and combined drag and entropy
adjoint behave comparably and converge to a very similar value, assuming this value is close to the
exact solution. The entropy adjoint by itself does not converge to the same degree and particularly
underperforms for the coarser meshes. Similarly to what was observed for the drag coefficient, the
lift adjoint and combined lift and entropy adjoint perform comparably regarding their ability to
predict the lift coefficient output. The entropy adjoint indicator by itself is much more erratic and
does not perform nearly as well.

(a) Drag Output (b) Lift Output

Figure 5. NACA 0012 Wing M∞ = 0.4, α = 3°: Comparison of output convergence histories for various
adaptation methods.

An explanation for why the entropy adjoint indicator does not perform as well is its propensity
to refine the mesh in areas consumed by the wing tip vortex. From experimental work31 it is
known that wakes form behind the trailing edge. This occurs due to the natural extension of
the boundary layer from the wing surface, as well as streamwise vorticity that is shed due to lift
distribution variation. This case is inviscid so there is no boundary layer. However, there still is
shedding of streamwise vorticity, particularly at the wing tip. The numerical results presented in
this paper show a very concentrated vortex emanating from the wing tip. Since the under-resolved
wing tip vortex leads to spurious entropy generation, the entropy adjoint indicator targets areas of
the mesh through which the vortex travels.
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Figure 6 shows the initial mesh, as well as the final meshes, after five adaptive iterations for the
various adaptive strategies. The cut plane in these images is not far behind the wing trailing edge.
The output-based indicators refine the mesh near the wing surface and do not significantly refine
the mesh downstream of the wing trailing edge. However, the entropy adjoint indicator refines the
regions of the mesh engulfed by the wake, especially where the wing tip vortex is. While areas of
the mesh, particularly those near the leading edge, are also refined, the entropy adjoint indicator
sacrifices refinement on the upper surface of the wing due to the excessive refinement in regions
of the mesh where the wing tip vortex is. The combined output-based and entropy-based adjoint
indicators have some refinement due to the wing tip vortex, but it is not nearly excessive enough
to lead to poor adaptation performance, as illustrated by the results in Figure 5.

The impact of the wing tip vortex can be further examined via the results in Figure 7, which
show cuts of the mesh at the wing tip. Again, the output-based adjoint indicators focus all of
the refinement near the wing tip surface, while the entropy adjoint indicator focuses refinement
downstream of the wing trailing edge due to the wing tip vortex. The combined drag and entropy
adjoint indicator refines the region of the mesh consumed by the wing tip vortex near the wing
tip surface, but does not excessively refine the mesh further downstream. It is reasonable to
surmise that some refinement due to the wing tip vortex is necessary to accurately predict the drag
coefficient, but not nearly to the level the entropy adjoint indicator indicates. The combined drag
and entropy adjoint indicator does a much better job balancing refinement between regions in the
wake and near the airfoil surface. This is even more evident for the combined lift and entropy
adjoint indicator case, where the refinement due to the wing tip vortex is even less pronounced
since the wing tip vortex under-resolution does not contribute to the lift coefficient error to the
same degree as to the drag coefficient error.

C. Diamond Airfoil in Two-Dimensional Inviscid Supersonic Flow: M∞ = 1.5, α = 2°

The next case is two-dimensional, inviscid flow over a thin diamond airfoil with a thickness ratio of
0.05. The grid is a square with a side length of 10 chord lengths. The freestream flow is supersonic,
which produces shocks emanating from both the top and bottom surfaces of the airfoil, as visible in
Figure 8. However, because the airfoil is thin enough to produce weak shocks, no artificial viscosity
was added to the solution. This is ideal since it is desirable to not have artificial viscosity present
in a simulation since it might adversely affect the entropy-based indicator.

The airfoil is situated slightly off from the center of the domain so that the shocks emanating
from the airfoil do not directly impact the corner of the mesh domain. Figure 9 shows the initial,
unstructured, quadrilateral mesh made up of linear, q = 1, elements. As evident from the figure, the
initial mesh is quite coarse. Just as with the inviscid NACA 0012 case, the solution approximation
order for all of the cases is p = 2 and the adaptation fraction was set to fadapt = 0.1 for all of
the adaptation iterations. In addition, for these runs a new parameter, f error = 0.95 was set. This
parameter, called the adaptation fixed error fraction, indicates the fraction of total error (sum of
indicators) that will be targeted for refinement during adaptation. However, the actual fraction of
elements adapted will still be limited by fadapt.

For this case the drag coefficient and the lift coefficient are again used as outputs to govern
the mesh adaptation. Adaptation runs using adjoints based on these two outputs, as well as runs
using both the entropy-based adjoint and the combined entropy and output-based adjoint were
generated. In addition, three modified forms of the combined approach were considered for this
case. The first modified approach, described in Section V, entails not solving for the fine-space
output-based adjoint. Instead, the adjoint and the state are projected down one order, to p = 1
for this case, so that the output-based indicator can be obtained at the p = 2 space. The second
and third modified approaches build off of the first modified approach by adding a mask on the
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(a) Initial Mesh (b) Drag Adaptation

(c) Lift Adaptation (d) Entropy Adaptation

(e) Drag-Entropy Adaptation (f) Lift-Entropy Adaptation

Figure 6. NACA 0012 Wing M∞ = 0.4, α = 3°: Initial mesh and meshes after five adaptation iterations
for various adaptive strategies.
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(a) Initial Mesh

(b) Drag Adaptation

(c) Lift Adaptation

(d) Entropy Adaptation

(e) Drag-Entropy Adaptation

(f) Lift-Entropy Adaptation

Figure 7. NACA 0012 Wing M∞ = 0.4, α = 3°: Cut-plane at wing tip from initial mesh and meshes
after five adaptation iterations for various error indicator strategies.
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Figure 8. Diamond M∞ = 1.5, α = 2°: Mach number contours (range: 1.3-1.7).

Figure 9. Initial diamond airfoil mesh.

entropy-based indicator using different masking percentages, in this case 10% and 25%.
Figure 10 shows the drag and lift coefficient convergence results for all of the various error

indicator strategies. The number of adaptation iterations changes for each strategy because the
adaptation fixed error fraction and the masking alter how many elements get refined in each iter-
ation. The truth outputs for both lift and drag coefficient were obtained from a case at p = 3 on
a mesh obtained by uniformly refining the finest output-adapted mesh. The modified combined
approach, in which no fine space output-based adjoints were solved for and the fine-space primal
problem was approximated with an iterative solver, shows slightly downgraded performance, as
expected. However, the performance of this modified approach improves significantly with the
addition of the mask on the entropy-based indicator. Unfortunately, no one particular masking
percentage yields superior results for both lift and drag error estimation. The 10% mask, which
requires many more adaptation iterations, since few elements get targeted in each adaptation itera-
tion, is superior in terms of measuring drag coefficient. However, for lift coefficient error estimation,
this strategy’s error convergence eventually levels out and the 25% mask overtakes it.

Figure 11 presents the meshes after the final adaptation iteration for the various error indicator
strategies that, outside of the entropy-based adjoint alone case, all include indicators based off
the drag-based adjoint. The entropy-based adjoint indicator mostly focuses on the discontinuities
emanating from the leading edge and trailing edge of the diamond. This refinement extends un-
necessarily all the way to the farfield boundaries. This accounts for why the error convergence
of the entropy-based approach is the worst performer. The drag-based adjoint indicator does not
suffer from this issue, instead producing regions of refinement that when examined as a whole,
resemble the shape of a diamond. The regions of refinement that originate near the airfoil and
then travel downstream are necessary for good error estimation. However, by examining the four
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(a) Drag Output (b) Lift Output

Figure 10. Diamond M∞ = 1.5, α = 2°: Comparison of output convergence histories for various adap-
tation methods.

meshes obtained using a variation of the combined approach, it is reasonable to conclude that the
regions of refinement that travel upstream may not be necessary for accurate error estimation. The
combined approach that uses a 25% mask on the entropy indicator produces significantly poorer
drag coefficient convergence compared to the other three combined indicator approaches. Exam-
ining the mesh clearly shows a lack of refinement in the region of the domain above the leading
tip of the diamond. This is because the entropy-based indicator does not target this region at all.
Subsequently, a logical conclusion is that for this case, having a small masking percentage is ideal.

Figure 12 includes meshes after the final adaptation iteration for the various error indicator
strategies that rely on the lift-based adjoint. While the combined approach using the 10% mask on
the entropy indicator yields the best drag coefficient error convergence, the combined approach using
the 25% masked yields a superior result with regard to estimating the lift coefficient. Inspection
of the final mesh for this case leads to the incorrect conclusion that this case would not perform
well since the mesh is relatively coarse above the diamond. However, the issues with the combined
approaches that do not have the mask is that many of the elements, particularly those in the region
above the airfoil, have high aspect ratios. Since hanging node adaptation requires certain ratios
between cell dimensions, the very small grid cells near the top point and leading tip of the diamond
airfoil lead to the propagation of large aspect ratio cells above the airfoil. These cells do a poor
job of capturing the very thin discontinuity. The high aspect ratio cells are not as prevalent in the
case with the 25% mask, hence its improvement in the estimation of the lift coefficient.

It is important to note that many masking percentages, as well as various values for fadapt

and f error, were studied using this case. Additionally, masking was attempted on the output-
based indicator as opposed to the entropy-based indicator. The authors have chosen to include
combinations of inputs that yielded the best results for this particular case. However, it is clear
that no one particular combination of inputs always yields the best error convergence. Part of
the issue in determining the optimal approach is the inherent limitations of the hanging node
adaptation discussed in the previous paragraph. To eliminate these limitations, the subsequent
results will focus on adaptation using MOESS.
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(a) Drag Adaptation (b) Entropy Adaptation

(c) Drag-Entropy Adaptation (d) Mod. Drag-Entropy Adaptation

(e) Mod. Drag-Entropy Adaptation 10% Mask (f) Mod. Drag-Entropy Adaptation 25% Mask

Figure 11. Diamond M∞ = 1.5, α = 2°: Final mesh after adaptation iterations for various error indicator
strategies, most of which require the drag coefficient adjoint.
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(a) Lift Adaptation (b) Entropy Adaptation

(c) Lift-Entropy Adaptation (d) Mod. Lift-Entropy Adaptation

(e) Mod. Lift-Entropy Adaptation 10% Mask (f) Mod. Lift-Entropy Adaptation 25% Mask

Figure 12. Diamond M∞ = 1.5, α = 2°: Final mesh after adaptation iterations for various error indicator
strategies, most of which require the lift coefficient adjoint.
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D. NACA 0012 in Two-Dimensional Viscous Flow: M∞ = 0.5, α = 5°, Re = 5000

To illustrate how using MOESS adaptation compares to hanging node adaptation, we consider two-
dimensional, viscous flow over the NACA 0012 airfoil with a closed trailing edge. The initial meshes
are shown in Figure 13. The initial mesh used with hanging node adaptation is a quadrilateral
mesh with quartic, q = 4, curved elements representing the geometry. The mesh is made up of
818 elements and the farfield is approximately 40 chord lengths away. The extra refinement near
the surface is necessary to enable a solution on the coarsest mesh. The adaptation fraction was set
to fadapt = 0.1 and the adaptation fixed error fraction was set to f error = 1 for each of the nine
adaptation iterations. Finally, the solution was set to p = 2 for all cases.

The initial mesh used with MOESS is an unstructured, triangular mesh with 356 elements. The
farfield is over 2000 chord-lengths away and the curved elements of geometry order q = 4 are used
to represent the airfoil. The cases are run with a solution interpolation order of p = 2 with the
following six degrees of freedom targets: 2000, 4000, 8000, 16000, 32000, and 64000. At each dof

target, fifteen solution iterations are performed before moving to the next dof target.

(a) Hanging Node (b) MOESS

Figure 13. Initial viscous NACA 0012 airfoil meshes

For both sets of adaptation strategies, the drag coefficient and lift coefficients were used as
outputs to drive the mesh adaptation. Adaptation runs for these outputs, the entropy adjoint
alone, and the combined entropy and output-based adjoint were considered. None of the previously
detailed modifications were made to the combined approach in this case. Figure 14 shows the
convergence results for all of the error indicators using both sets of mesh adaptation strategies.
The solid lines represent solutions using MOESS, while the dashed lines represent solutions using
hanging node adaptation. The output and dof values reported from the cases incorporating MOESS
are averages over the last 5 solution iterations at each target dof. The truth outputs for both the
lift and drag coefficients were obtained by refining the final output-adapted mesh and running at
p = 3.

Unsurprisingly the MOESS adapted cases for the most part perform much better than the
hanging node adapted cases since MOESS has the ability to coarsen regions of the mesh that do
not affect the output error estimation. When implementing hanging node refinement, the three
error indicator strategies’ drag coefficient error convergence does not vary significantly. However, for
MOESS a clear distinction is present. The entropy adjoint based adaptation solution is quite poor,
while the combined approach yields better performance than the drag coefficient based adaptation
solution. For the lift coefficient error convergence, the combined approach using hanging node
adaptation is superior to output-based hanging node adaptation. However, for MOESS there is not
much difference between the combined approach and output-based approach.

Figure 15 presents the meshes at 64000 dof for the cases that used MOESS adaptation. The
individual output-based approaches target regions of the domain near the airfoil, as well as the
portions of the wake near the airfoil and areas near the stagnation streamline. In fact there is
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(a) Drag Output (b) Lift Output

Figure 14. NACA 0012 M∞ = 0.5, α = 5°, Re = 5000: Comparison of output convergence histories for
various adaptation methods using both hanging node and MOESS adaptation.

substantial refinement ahead of the stagnation streamline that is multiple chord lengths long. The
entropy-based adjoint approach does not target regions of the mesh well ahead of the stagnation
point. Instead it targets the entire wake, all the way to the farfield boundary since there is sub-
stantial spurious entropy generation in an under-resolved wake. The entropy indicator also leaves
the aft portion of the upper surface of the airfoil relatively unrefined. The combined approach
achieves a balance between refining ahead of the airfoil and in the wake. The meshes obtained
from these approaches are refined in the wake, but not to the excessive extent present in the mesh
produced from the entropy-based approach. In addition, these meshes have refinement ahead of
the stagnation streamline, but the refinement does not extend well ahead of the airfoil as it does
for the output-based approaches. This balance in refinement for this particular case clearly shows
the benefit of using a combined approach to govern the mesh adaptation.

E. RAE 2822 in two-dimensional RANS flow: M∞ = 0.25, α = 5°, Re = 6.5× 106

The final case is an RAE 2822 airfoil in subsonic, turbulent flow with a modified Spalart-Allmaras
turbulence model.32 A low freestream Mach number of M = 0.25 was chosen so that the Mach
number in the domain never approaches transonic conditions. The rationale for this is the concern
that the present shock capturing techniques, through artificial viscosity stabilization, would affect
the entropy adjoint. Figure 16 shows the initial coarse mesh for this case. It is an unstructured
mesh made up of 1428 triangular elements. Curved elements of geometry order q = 3 were used
to represent the airfoil geometry and the farfield boundary is 2000 chord-lengths away. The cases
were run with a solution approximation order of p = 2 with the following five degrees of freedom
targets: 5000, 10000, 20000, 40000, and 80000. Just as with the previous MOESS simulations, for
each dof target, fifteen solution iterations were performed before moving to the next dof target.

As before, the drag coefficient and lift coefficients were used as outputs to govern the mesh
adaptation. Adaptation runs for these outputs, the entropy adjoint alone, and the combined entropy
and output-based adjoint solution were generated. The last two modifications presented in Section
V were also investigated for this case. The first is a modification to the combined approach in which
only the output-based indicator is used to target which elements get refined while using MOESS.
Therefore the output-based indicator alone governs the local sampling. The second modification
involves using a modified residual made up of only the convective terms to obtain the entropy-based
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(a) Drag Adaptation

(b) Lift Adaptation

(c) Entropy Adaptation

(d) Drag-Entropy Adaptation

(e) Lift-Entropy Adaptation

Figure 15. NACA 0012 M∞ = 0.5, α = 5°, Re = 5000: Meshes after final adaptation iteration (approxi-
mately 64000 dof) for various error indicator strategies.
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Figure 16. Initial RAE 2822 airfoil mesh.

adjoint. Since this is specifically applicable only to the entropy-based adjoint, modified versions of
the entropy-based and combined approach using this modified entropy-adjoint were investigated.

Figure 17 shows the convergence results for all of the error indicator strategies. Again, the
output and dof values reported from these results are averages over the last 5 solution iterations
at each target dof. The truth outputs for both the drag and lift coefficients were obtained by
refining the final output-adapted mesh and running at p = 3. Each strategy that requires the
use of the entropy-based adjoint has a corresponding dashed line that corresponds to the results
that incorporate the modified residual approach to obtain the entropy-based indicator. While the
various approaches yield varying error convergence results for the first few DOF targets, the error
values at the final dof targets are all pretty similar. Since there is no substantial difference in the
output error convergence for the output-based approach versus the entropy-based approach, the
combined adjoint approach does not yield any improvement in the error convergence. In addition,
the alternate combined approach, in which the output-based indicator governs the sampling within
MOESS, does not show a significant improvement, nor does the modified residual approach to
obtaining the entropy-based indicator.

Figure 18 presents the meshes at 80000 dof for output-based adjoint approaches, the entropy-
based approach, and the combined approaches with no modifications. Although the drag and lift
coefficient errors at this dof are not that different among all of the adaptation indicator strategies,
the meshes do show visible differences consistent with those in Figure 15. Clearly the output-based
adjoint approaches focus refinement ahead of the airfoil and less in the wake, while the entropy-
based approach focuses significant refinement in the wake. Yet the output error levels do not vary
significantly among the different strategies. In fact the magnitudes of the drag and lift error are
quite high. This phenomenon is not specific to this case, as other cases with different free-stream
conditions and geometries produce similar conclusions. Future work will look into why using the
various adaptation indicators strategies lead to noticeably different meshes, but not to different
output error levels.

VIII. Conclusions

By combining the output-based adjoint indicator with the entropy variable adjoint indicator,
an appreciable benefit over the entropy variable adjoint approach was found in several examples
of aerodynamic interest. The entropy variable adjoint targets areas of the mesh where spurious
entropy is generated, even though those areas may not significantly affect the engineering output of
interest. This sometimes prevents refinement in more critical regions of the mesh. By combining the
entropy adjoint indicator with the output-based adjoint indicator, this problem is marginalized since
output-based adjoint methods do not target these unnecessary areas of the mesh for refinement. In
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(a) Drag Output (b) Lift Output

Figure 17. RAE 2822 M∞ = 0.25, α = 5°, Re = 6.5 × 106: Comparison of output convergence histories
for various adaptation methods.

addition, the combined indicator approach yields improved performance compared to the standard
output-based indicator approach for some cases. Since the output-based indicator is derived from
approximate adjoint solutions, which may be under-resolved and noisy, these methods may end up
targeting areas of the domain where additional refinement is not necessary. This is particularly the
case with the flow ahead of the body of interest, near the stagnation streamline. Combining the
indicators limits excessive refinement both upstream of and downstream from the body.

When using hanging node mesh adaptation, it was evident that applying a mask on the entropy-
based indicator can yield superior error convergence when just direct, elemental combination of
indicators is not sufficient. However, the optimal mask is not always clear for a specific case, as
changing what percentage of elements are masked can yield varying results.

The benefits to using the combined indicator approach are not exclusive to hanging node adap-
tation, as benefits to the combined approach were shown for cases using MOESS. However, while
the combined approach often shows an appreciable benefit for inviscid and viscous cases, no benefit
was currently found for fully RANS cases. The various adaptation indicator strategies produced
different meshes, but the actual output error levels did not produce any appreciable variance. This
phenomenon will be investigated in future work.

As previously mentioned, obtaining the fine-space output-based adjoint can be quite expensive,
especially for unsteady cases. Future work will focus on applying the combined indicator approach
to unsteady problems. To mitigate the cost associated with obtaining the output-based adjoint
indicator, the indicator will be obtained on a coarser space without an exact solve. When combined
with the entropy-based indicator, this should lead to results that are superior to those obtained using
just entropy-based adaptation and not significantly more computationally expensive. The combined
approach will always be more computationally expensive than using the entropy-based approach
since it requires an output-based indicator, but because of the limitations with the entropy-based
indicator, should often be more accurate. In addition, the combined approach using a coarse space
approximate output-based indicator will be less expensive than an output-based approach using
a fine-space adjoint for unsteady problems. These observations suggest that the benefits of the
combined-approach will be much more pronounced for unsteady problems.
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(a) Drag Adaptation

(b) Lift Adaptation

(c) Entropy Adaptation

(d) Drag-Entropy Adaptation

(e) Lift-Entropy Adaptation

Figure 18. RAE 2822 M∞ = 0.25, α = 5°, Re = 6.5 × 106: Meshes after final adaptation iteration
(approximately 80000 DOF) for various error indicator strategies.
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