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Abstract

Results are presented from the development of a high-order discontinuous Galerkin finite
element solver using p-multigrid with line Jacobi smoothing. The line smoothing algorithm
is presented for unstructured meshes, and p-multigrid is outlined for the nonlinear Euler
equations of gas dynamics. Analysis of 2-D advection shows the improved performance of
line implicit versus block implicit relaxation. Through a mesh refinement study, the accu-
racy of the discretization is determined to be the optimal O(hp+1) for smooth problems in
2-D and 3-D. The multigrid convergence rate is found to be independent of the interpola-
tion order but weakly dependent on the grid size. Timing studies for each problem indicate
that higher order is advantageous over grid refinement when high accuracy is required. Fi-
nally, parallel versions of the 2-D and 3-D solvers demonstrate close to ideal coarse-grain
scalability.
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Chapter 1

Introduction

1.1 Motivation

While Computational Fluid Dynamics (CFD) has matured significantly over the past

decades, computational costs are extremely large for aerodynamic simulations of aerospace

vehicles. In this applied aerodynamics context, the discretization of the Euler and/or

Navier-Stokes equations is almost exclusively performed by finite volume methods. The

pioneering work of Jameson began this evolution to the status quo [21, 18, 20, 19]. During

the 1980’s, upwinding mechanisms were incorporated into these finite volume algorithms

leading to increased robustness for applications with strong shocks, and perhaps more im-

portantly, to better resolution of viscous layers due to decreased numerical dissipation in

these regions [42, 35, 43, 36, 44]. The 1990’s saw major advances in the application of fi-

nite volume methods to Navier-Stokes simulations, in particular to the Reynolds-Averaged

Navier-Stokes (RANS) equations. Significant gains were made in the use of unstructured

meshes and solution techniques for viscous problems [2, 34, 28, 31]. While these algorithmic

developments have resulted in an ability to simulate aerodynamic flows for very complex

problems, the time required to achieve sufficient accuracy in a reliable manner places a

severe constraint on the application of CFD to aerospace design.

The accuracy of many finite-volume methods currently used in aerodynamics is at best

second order, meaning that the error decreases as O(h2), where h is a measure of the grid

spacing. As a practical matter, however, the accuracy of these methods on more realistic

problems appears to be less than this, ranging between first and second order. A question

of interest is whether this accuracy is adequate for engineering purposes. Results from two

AIAA CFD drag prediction workshops [26, 23] suggest that this may not be the case given

current grid sizes and gridding methods. The first Drag Prediction Workshop (DPW I)

compared results of three wind tunnel tests to current state-of-the-art CFD methods for
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Figure 1-1: Results from the first drag prediction workshop: total drag variation. Source:
Levy et al [26]. Reproduced with permission.

force and moment prediction. Figure 1-1 shows the variation in the total drag between

experiment and CFD for the first test case: a DLR-F4 wing-body configuration at M∞ =

0.75, CL = 0.5, and Rec = 3 × 106. The solution index in the figure corresponds to the

different CFD submissions, encompassing variations in grid type (multiblock structured,

unstructured, overset) and turbulence modeling (Spalart-Allmaras, Wilcox k − ω, Menter’s

SST k−ω, k− ǫ, etc.). Even after neglecting the outliers, which deviate by as much as 200

drag counts from the experiment (1 drag count = 1× 10−4 variation in the drag coefficient,

CD), the CFD results still show a spread of about 40 drag counts.

To demonstrate the importance of 1 drag count of error, a simple calculation is presented

showing the effect of a change in CD by 1 drag count for a typical long-range passenger

aircraft. This calculation parallels that of Vassberg [45], who considered the effect of a

1% change in drag on range of long-range jet aircraft and arrived at a similar answer.

The aircraft under consideration is a Boeing 747-400 with the following weight breakdown:

WL = 493, 000 lb, WF = 382, 000 lb, and WP = 99, 000 lb, where WL is the zero-fuel

landing weight, WF is the fuel weight, and WP is the payload weight. Using the Breguet

range equation (V = cruise velocity, SFC = Specific Fuel Consumption),

R =
CL

CD

V

SFC
ln

(
WL + WF

WL

)
, (1.1)

the effect of a 1 drag count change on the allowable payload, WP , is estimated for a constant

14



range, R. Assuming a typical cruise CD of 0.03, 1 drag count represents a 0.33% increase

in drag. To maintain the same range, ln
(

WL+WF

WL

)
has to increase by 0.33%, to first

order. If the configuration is fuel volume limited such that WF is constant, the payload

has to decrease to reduce WL. The reduction in payload turns out to be 2.1% or 2100 lb.

Allotting 250 lb per passenger, the cost of 1 drag count in this case turns out to be over

8 passengers (out of approximately 400 initial capacity). Alternatively, if the lost payload

weight can be replaced by fuel, keeping WL + WF constant, the loss in payload is 930 lb,

or almost 4 passengers, with the additional cost of 930 lb in fuel. Thus, even seemingly

small changes in CD can have a significant impact on the revenue of a long-range aircraft.

In terms of industry profitability, the ability to predict CD accurately in the early design

stages of an aircraft is crucial.

Returning to the results of DPW I, the uncertainty in CD for the case presented is unac-

ceptable for industry drag prediction. Although surprising, these results do not necessarily

indicate the inaccuracies of the CFD discretizations themselves. First, some of the outliers

in the figure have been attributed to either errors in runs by the participants or to the use

of incorrect parameters [26]. Second, the chief complaint by the participants was that the

standard grids provided for the case were not adequate. Although an effort was undertaken

to make the grids indicative of those used in industry, they were also made simple enough

to maximize participation. In the end, one of the conclusions of DPW I was that the grids

provided were not fine enough to resolve the necessary flow features.

A second workshop, DPW II, was carried out in part to address the need for better

grids. In DPW II, the first test case was a similar wing-body configuration, the DLR-F6.

Three sets of standard grids were provided (for each grid type) with the intermediate grids

constructed based on industry standards. The intermediate grids were about 1.5 to 2 times

larger than those used in DPW I and based on size, were more in line with Vassberg’s

gridding recommendations [45]. The drag results on these intermediate grids show a lower

spread of 14 counts in drag prediction [23], which translates into 50-110 passengers for the

747-400 using the above analysis. Although the drag results improved from DPW I, the

grid refinement may not convey the whole story. A follow-up study by Lee-Rausch et al [24]

indicates that the various codes converged to different solutions in terms of shock location

and separation patterns. Furthermore, the DPW II results for a second configuration, which

included a nacelle and pylon, showed an increase in drag increment with grid refinement.

Lee-Rausch et al also revisited the DPW I case and demonstrated that for some of the

unstructured grid codes, grid refinement resulted in an increase in the variation of forces

and moments [24]. One explanation offered by these authors is that the numerical schemes

or other code-to-code differences may have a more significant impact than was previously
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thought. These observations suggest that even at the industry-level standards put forth

by the workshops, the current CFD practices do not reliably yield engineering-required

accuracy.

The development of a practical higher-order solution method could help alleviate this

accuracy problem by significantly decreasing the computational time required to achieve

an acceptable error level. To better demonstrate the potential of higher-order methods, we

make the following assumptions:

• The error, E, in the solution (or an output of the solution) is O(hp).

• The number of elements, Nel, in the grid is related to the cell size by Nel = O(h−d),

where d is the spatial dimension of the problem.

• Higher-order accuracy is achieved by increasing the number of unknowns per element

(in a finite element manner), Ndof , which scales as Ndof = O(pd).

• The number of floating point operations (or the work), W , required to solve the

discrete system is O(NelN
w
dof ) = O(pwd/hd) where w is the complexity of the solution

algorithm.

• The time required to complete a single operation is 1/F , and hence the total time for

solution of the system of equations if T = W/F .

Combining these assumptions, the time to achieve a specified error is given by

T = O

((
pw/E1/p

)d
/F

)
.

Taking the log of this relationship yields

log T = d

(
−

1

p
log E + w log p

)
− log F + constant.

If the accuracy requirements are stringent such that E << 1, and if the solution complexity

is moderate, we expect that the log E term will dominate the log p term. Thus, the time

required will depend exponentially on p and d. This reasoning demonstrates the potentially

significant benefit of improving the order of accuracy. Furthermore, since T scales only

inversely with the computational speed, F , small changes in p or w can be as significant as

increasing computational power.

Numerous reasons exist for why current finite-volume algorithms are not practical at

higher order and have remained second-order. The root cause of many of these difficulties

lies in the extended stencils that these algorithms employ. For finite volume discretizations
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that explicitly add numerical dissipation, the extended stencils arise from the higher-order

stabilization terms. For finite volume algorithms that introduce stabilization through up-

winding, the extended stencils arise through the local interpolants used to increase accuracy.

These extended stencils contribute to difficulties in:

• Stable iterative algorithms. A well-known fact is that the iterative solution of these dis-

cretizations requires multi-stage methods and/or implicitness beyond a locally implicit

scheme. Another common iterative approach employs backward Euler in which the

Jacobian of the higher-order discretization is replaced by a lower-order approximation.

Unfortunately, Mavriplis [29] has shown that the use of lower-order approximations

severely limits the convergence rate attainable for higher-order finite-volume simula-

tions of complex problems even when the lower-order systems are solved exactly.

• Memory requirements. Extended stencils degrade the sparsity of the linearized systems

of equations used in implicit solution methods. This increased fill results in very high

memory requirements and is the reason that lower-order approximations are often

utilized.

• Parallelization. Similar to the increased memory requirements, the large support

of the extended stencils also increases the communication bandwidth required for

parallel computations. However, when the number of cells in each processor is large

(as is common in the coarse-grain parallelism used today), this effect may be minimal.

By contrast, finite element formulations introduce higher-order effects compactly within

the element. Thus, viewed from the element level, the stencils are not extended for higher-

order finite element discretizations. Recently, Venkatakrishnan et al [46] showed that higher-

order finite element schemes have significant advantages for smooth inviscid and viscous

flows; however, they also delineated several remaining challenges that must be addressed

before higher-order methods will be robust and efficient for practical applications containing

shocks or other under-resolved flow features. While Venkatakrishnan et al considered both

continuous and discontinuous Galerkin discretizations, this work focuses solely on discon-

tinuous Galerkin methods. For discontinuous Galerkin (DG) formulations, the element-to-

element coupling exists only through the flux at the shared boundaries between elements.

This limited coupling for DG discretizations is an enabling feature that permits the devel-

opment of an efficient higher-order solver that may lead to significant improvements in the

turn-around time for reliably accurate aerodynamic simulations.

In this thesis, a multigrid solution algorithm is presented for higher-order DG discretiza-

tions. Although the results shown are for inviscid flows, the solution algorithm is designed
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to extend naturally to high Reynolds number viscous problems [33]. First, a description of

the DG discretization for the Euler equations is given in Chapter 2. A p-multigrid algorithm

is then described in which the coarse levels are formed from lower-order discretizations (us-

ing a hierarchical basis) and in which the smoother is line-element block Jacobi. Stability

analysis indicates that the eigenvalues of the iterative algorithm are relatively insensitive

to p but are dependent on h. An important result from this analysis is that element block

Jacobi schemes are stable regardless of the order of approximation without the need for

multi-staging (which is not true for higher-order methods using extended stencils). Nu-

merical results are presented for several 2-D and 3-D problems, demonstrating that high

accuracy solutions are obtained in less computational time using higher-order discretiza-

tions than using highly refined grids. Finally, a parallel implementation of the solver is

presented together with almost ideal scalability results on a coarse-grain cluster.

1.2 Background

1.2.1 Discontinuous Galerkin Methods

Discontinuous Galerkin methods have been developed extensively for hyperbolic con-

servation laws including the Euler equations and, to a lesser extent, for diffusive operators

necessary for the full Navier-Stokes equations. Bassi and Rebay have done numerous studies

of the DG discretization for Euler and Navier-Stokes equations [4, 5, 6]. Their results show

the realizability of higher-order accuracy for the Euler and Navier-Stokes equations using a

DG discretization. In addition, they demonstrate several key points in the implementation

of DG, such as the requirement of higher-order boundary representations in the geometry

[4] and a compact discretization of the viscous terms [6].

Further details on DG methods are given by Cockburn and Shu [10], who review DG

discretizations for convection-dominated problems oriented towards Runge-Kutta solution

methods. Their work outlines the state-of-the-art in this field and provides useful informa-

tion on the discretization, choice of flux function, limiting, and boundary treatment.

1.2.2 Multigrid for the Euler and Navier-Stokes Equations

The use of multigrid for the solution of the Euler equations was pioneered by Jameson in

1983, who demonstrated a significant convergence speedup in the solution of 2-D transonic

flows on structured meshes [18]. In 1988, Mavriplis outlined one method of performing

multigrid on unstructured triangular meshes using a sequence of unrelated coarse and fine

meshes [27]. On various problems, he was able to accelerate the convergence by an order of
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magnitude, which is comparable to structured multigrid algorithms. Although Mavriplis’s

method required re-gridding at each coarsening, it clearly illustrated the realizability of

multigrid on unstructured meshes. Mavriplis and Jameson [30] then extended this work to

the Navier-Stokes equations and achieved similar results.

Allmaras [1] presents a thorough 2-D analysis of various multigrid preconditioners for

the advection/diffusion problem as well as for the linearized Navier-Stokes equations. His

Fourier analysis is similar to that employed for the line-implicit scheme presented in Chap-

ter 4. Allmaras’s goal was to determine the combinations of preconditioners and coarsening

strategies that would result in the effective damping of all error modes on at least one grid

during a multigrid cycle. He found that for conventional multigrid, alternating direction

implicit (ADI) relaxation is necessary to smooth the error components with high frequency

modes in either of the two dimensions since these modes cannot be represented on a fully

coarsened grid. For semi-coarsening, semi-implicit line-Jacobi relaxation can be used to

smooth the high frequency modes in one direction. Alternatively, point-implicit relaxation

can be used if the grid is semi-coarsened in both directions separately, which results in

a sequence of grids from which the prolongated corrections have to be combined. These

requirements for the proper elimination of all modes lead to the expected multigrid con-

vergence improvements but at a sizeable cost. In particular, extending the conventional

multigrid recommendations to three dimensions would require alternating plane-implicit

relaxation in three directions.

Further work in multigrid for the Navier-Stokes equations is provided by Pierce and

Giles [34], who looked into efficient preconditioned multigrid methods for Euler and Navier-

Stokes equations. In contrast to the all-inclusive damping outlined by Allmaras, Pierce and

Giles presented two less expensive methods for the Euler and turbulent Navier Stokes equa-

tions. For the Euler equations, they found that in practice, standard scalar preconditioning

with full coarsening demonstrates relatively good convergence rates despite failing to satisfy

all the damping requirements. For the Navier-Stokes equations, they found that the combi-

nation of block-Jacobi preconditioning and semi-coarsening in the direction normal to the

wall yields computational savings of an order of magnitude over the standard full-coarsening

with scalar preconditioning [34]. Their analysis shows that the effectiveness of this scheme

is due to a balance between streamwise convection and normal diffusion in asymptotically

stretched boundary layer cells, which enables the preconditioner to damp all convective

modes. Coarsening normal to the wall then damps the acoustic modes. In this manner, the

dominant error modes are effectively smoothed, resulting in improved convergence.

In his more recent work, Mavriplis [29] discusses the advantages and disadvantages of

linear versus non-linear multigrid. Although linear multigrid is in many cases cheaper, it
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is also less robust when the initialization is not close to the final solution. In addition,

performing linear multigrid requires storage of the full Jacobian, which becomes prohibitive

for large problems. This observation in part motivated the choice of non-linear multigrid

for this work, as described in Chapter 3.

Finally, regarding the use of multigrid methods in practice, Brandt [8] has outlined nu-

merous barriers to achieving “Textbook Multigrid Efficiency” (TME). According to Brandt,

TME means solving a discrete partial differential equation problem in computational work

that is only a small (less than 10) multiple of the operation count in evaluating the residual

of the discretized system of equations. Brandt notes that current RANS solvers employing

multigrid are far from this optimum, requiring on the order of 1500 residual evaluations to

converge outputs to within one percent of their final values. Achieving TME would mean

a possible two orders of magnitude improvement in convergence. This observation illus-

trates that much work is still needed in the development of an efficient multigrid solver for

aerodynamic applications.
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Chapter 2

Discontinuous Galerkin Method

2.1 Discretization

We now describe the DG discretization of the compressible Euler equations (for addi-

tional details, consult the review by Cockburn and Shu [10] and the references therein). For

generality, we describe the 3-D case. The Euler equations of gas dynamics are given by

ut + ∇ · F(u) = 0, (2.1)

where u is the conservative state vector,

u =




ρ

ρu

ρv

ρw

ρE




,

and F = (Fx,Fy,Fz) is the inviscid flux,

Fx =




ρu

ρu2 + p

ρuv

ρuw

ρuH




, Fy =




ρv

ρuv

ρv2 + p

ρvw

ρvH




, Fz =




ρw

ρuw

ρvw

ρw2 + p

ρwH




. (2.2)
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The total enthalpy is given by H = E + p/ρ, and the equation of state is

p = (γ − 1)

[
ρE −

1

2
ρ

(
u2 + v2 + w2

)]
. (2.3)

The 2-D equations are obtained by setting w = 0 and neglecting the z-component of

the momentum equation.

Let Vp
h be the space of discontinuous vector-valued polynomials of degree p on a subdi-

vision Th of the domain Ω into elements such that Ω =
⋃

κ∈Th
κ. The DG discretization of

the Euler equations is of the following form: find uh ∈ Vp
h such that ∀vh ∈ Vp

h,

B(vh,uh) ≡
∑

κ∈Th

{ ∫

κ
vT

h (uh)t dx−

∫

κ
∇vT

h · F(uh)dx

+

∫

∂κ\∂Ω
v+

h
T
H(u+

h ,u−
h , n̂)ds

+

∫

∂κ∩∂Ω
v+

h
T
Hbd(u+

h ,u−
h , n̂)ds

}
= 0, (2.4)

where H(u+
h ,u−

h , n̂) and Hbd(u
+
h ,u−

h , n̂) are inviscid numerical flux functions for interior and

boundary edges, respectively. The ()+ and ()− notation indicates the trace value taken from

the interior and exterior of the element, respectively, and n̂ is the outward-pointing normal

of the element. The numerical flux function used to evaluate the boundary flux on ∂Ω need

not coincide with that used for the interior edges. For the interior flux, the Roe-averaged

flux function was used [35]. An entropy fix was employed on the flux function as outlined

in Appendix A. The boundary conditions on ∂Ω are imposed weakly by constructing an

exterior boundary state on ∂Ω that is a function of the inner state and of the boundary

condition data, u−
h (u+

h ,BCData). A description of all the boundary conditions used in this

thesis is given in Appendix B.

The final discrete form of the DG discretization is constructed by selecting a basis for

Vp
h. Specifically, a set of element-wise discontinuous functions {φj} is introduced, such that

each φj has local support on only one element. The solution to the DG discretization has

the form,

uh(t, x) =
∑

j

uj(t)φj(x).

Even though our interest lies in the steady-state solution, the presence of the unsteady term

is useful for improving the initial transient behavior of the solver. A simple backward Euler
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discretization in time is used so that the final discrete system is

M
1

∆t

(
un+1 − un

)
+ R(un+1) = 0, (2.5)

where M is the mass matrix and R is the residual vector representing the final three terms

of (2.4). In Chapter 3, we will drop the over-bar notation for the discrete solution vector.

2.2 Element Types, Interpolation, and Geometry Represen-

tation

The primitive elements are triangles in 2D and tetrahedra in 3D. Each element can be

mapped to either the reference triangle or to the reference tetrahedron. Two basis types

were implemented for the interpolation of the state: a Lagrange basis and a hierarchical

basis. The Lagrange basis consists of functions ϕi, whose values on a set of equally-spaced

nodes nj within the reference element are given by δij . In this basis, the sets of functions

for different orders are disjoint. On the other hand, in the hierarchical basis, the set of

basis functions for order p − 1 is a subset of the set for order p. Higher order interpolation

is achieved by adding the appropriate number of new, higher-order, basis functions. The

particular choice of the hierarchical basis functions used is described in Appendix C.

Geometry representation on the domain boundary was achieved via high-order curved

elements. In a high-order element, the position of additional nodes corresponding to the

reference-element nodes used in the Lagrange basis are specified, and the local-to-global

mapping is given by

x =
∑

j

φj(ξ)xj , (2.6)

where ξ is the coordinate vector in the reference element, x is the global coordinate vector,

ϕj is the Lagrange basis function associated with node j, and xj is the specified global

coordinate vector for node j. For curved boundary geometries, the additional non-interior

nodes are placed on the domain boundary.

An adverse effect of using curved elements is that curved elements no longer achieve the

same order of interpolation on the global element as on the reference element. This effect

arises because the mapping in (2.6) introduces higher-order components into the global

interpolation, with the consequence that the basis for interpolating the desired order in x

is no longer complete. However, the effect was not found to degrade the accuracy at an

observable level on the smooth problems considered in the accuracy studies. On highly
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curved elements, one solution is to increase the order of interpolation for those elements to

a level for which the desired order can be achieved.

2.3 Numerical Integration

Integration over the elements or over the element boundaries is performed through

numerical quadrature. That is, an integral over a line segment, triangle, or tetrahedron is

calculated as

∫

A
f(x)dA ≈

∑

g

ωgf(xg), (2.7)

where ωg is the weight and xg is the coordinate associated with Gauss quadrature point

g. Quadrature requirements depend on the order of interpolation and increase on curved

elements to capture the higher-order changes in the Jacobian of the local-to-global mapping.

The sufficiency of the quadrature used was verified through the accuracy studies presented

in Chapter 5 and is summarized in Tables 2.1 and 2.2. The number of quadrature points

necessary for a given order depends on the quadrature rule used. An extensive listing of

2-D and 3-D quadrature rules is given in Soĺın et al [39].

Table 2.1: Quadrature order requirements for the 2-D Euler equations using conservative
state variables: p is the interpolation order, and q is the element geometry order.

Edge (1-D) Interior (2-D)

q=1 q=2 q=3 q=1 q=2 q=3

p = 0 1 3 5 - - -

p = 1 5 5 7 3 3 4

p = 2 5 7 7 4 5 6

p = 3 7 9 9 6 7 8

Table 2.2: Quadrature order requirements for the 3-D Euler equations.

Face (2-D) Interior (3-D)

q=1 q=2 q=3 q=1 q=2 q=3

p = 0 3 4 4 - - -

p = 1 4 5 6 4 5 6

p = 2 6 7 8 5 6 7

p = 3 8 9 10 7 7 8
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Chapter 3

Multigrid Solver

To solve the nonlinear system R(u) = 0, a p-multigrid scheme is used with line-Jacobi

smoothing. A generic iterative scheme can be written as

un+1 = un − P−1R (un) , (3.1)

where the preconditioner, P, is an approximation to ∂R

∂u
. Two preconditioners were con-

sidered: an elemental block-Jacobi smoother in which the unknowns on each element are

solved for simultaneously, and an elemental line block-Jacobi smoother in which the un-

knowns on each line of elements are solved for simultaneously. The line smoother, as well

as the multigrid solver based on it, will be discussed in detail.

3.1 Line-Implicit Smoother

The motivation for using a line smoother is that in strongly convective systems the

transport of information proceeds along characteristic directions. Solving implicitly on lines

of elements connected along these directions alleviates the stiffness associated with strong

convection. Also, for viscous flows, the line solver is an important ingredient in removing

the stiffness associated with regions of high grid anisotropy which are frequently required

in viscous layers [1, 28]. In such cases, the lines are formed between elements with the

strongest coupling, including the effects of both convection and diffusion. In either regime,

the implementation of such a smoother requires the ability to connect elements into lines

and to solve implicitly on each line.

The line creation algorithm is described in detail in Section 3.2. Given a set of Nl lines,

or disjoint sets of adjacent elements, the state updates are obtained by solving Nl block

tridiagonal systems constructed from the linearized flow equations. Let nl, 1 ≤ l ≤ Nl,

25



denote the number of elements in line l, and let Ml denote the linear system for line l. Ml

is a block nl × nl matrix, where the dimension of each block is the number of unknowns

per element. The on-diagonal blocks of Ml consist of the local Jacobians associated with

the elements on the line. The off-diagonal blocks of Ml represent the influence of the states

in the off-line elements on the residuals in the on-line elements. Only the block-tridiagonal

entries are included in Ml although it is possible for a line of elements to “wrap back”

such that the true matrix structure is not tridiagonal. However, ignoring these off-diagonal

blocks was not found to cause a substantial loss in performance.

The final form of the preconditioner based on the elemental line smoother is augmented

by the addition of the unsteady term,

P = M +
1

∆t
M, (3.2)

where M is the entire set of line matrices. The addition of the time term corresponds to

solving for a finite time step, ∆t, in the unsteady problem. Mathematically, this addition

makes the system more diagonally dominant and hence better conditioned for the iterative

method. Physically, instead of steady-state, the equations now represent the evolution of

the system at a time increment of ∆t. The time term is used to help alleviate transients

during the solution process. As the solution begins to converge, ∆t → ∞. A discussion of

how ∆t is set is given in Section 3.3.

Inversion of P uses a block-tridiagonal algorithm in which the block diagonal is LU

decomposed. As the dominant cost of the line solver (especially for higher-order schemes) is

the LU decomposition of the diagonal, the computational cost of the line smoother scales in

the same manner as for the simpler elemental block-Jacobi. It will be shown in Section 5.1.3

that, per iteration, the line smoother is approximately twice as slow as the block smoother.

However, also shown will be the significantly better performance of the line smoother due

to the increased implicitness along strongly-coupled directions.

3.2 Line Creation

The effectiveness of the line smoother depends on the length of the lines and, for inviscid

flows, on their alignment with the convective direction. In general, these criteria are difficult

to achieve on irregular triangular meshes unless the flow pattern is known ahead of time

and the mesh is constructed accordingly.

Much work has been done in the past in the area of line creation on unstructured meshes.

For viscous problems, Mavriplis used a geometry-based algorithm to improve the iterative
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method in boundary layer regions. Specifically, smoothing on highly-stretched was done

using a line-implicit scheme connecting the stretched elements [28, 31]. Okusanya developed

a nodal line creation algorithm in which the lines were made to follow directions of maximum

node-to-node coupling [32]. The coupling was taken directly from the discretization and

represented the connectivity between nodes based on convection and diffusion.

In this work, a line-creation algorithm is presented similar to that developed by Oku-

sanya, but for elements instead of nodes. The algorithm is shown to yield a unique set of

lines on a general irregular mesh for a given flow state, independent of the starting (seed)

element used.

The first step in the line generation is the construction of an element connectivity matrix

C(j, k), which is a sparse, symmetric matrix that contains information on the strength of

the coupling between the elements or, equivalently, between the blocks of the Jacobian

matrix. For the Euler equations, coupling is determined by the direction of convection. As

such, the inter-element connectivity is taken as the integral of the square of the mass flux

over the shared face,

C(j, k) =

∫

e
(ρ~v · n̂)2ds.

In practice, the matrix C(j, k) is formed during residual calculation when the inter-elemental

fluxes are available, resulting in marginal additional cost.

An alternative is to use a p = 0 discretization of the scalar transport equation (e.g.

entropy) and to base the connectivities on the off-diagonal entries of the Jacobian. This

approach is necessary for viscous problems, in which coupling due to diffusive effects must

be considered. Oliver et al present the details of this method for the Navier-Stokes equations

[33].

Given the connectivities in C(j, k), the line creation algorithm is employed. In the

following description of the two-stage process, let N(j; f) denote the element adjacent to

element j, across face f . In addition, let F (j) denote the set of faces enclosing element j.

Stage I: Line Creation

1. Obtain a seed element i

2. Call MakePath(i) - Forward Path

3. Call MakePath(i) - Backward Path

4. Return to (1). The algorithm is finished when no more seed elements exist.
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a b

c d

(a)

a b

c d

(b)

Figure 3-1: Possible line configuration: (a) after Stage I and (b) after Stage II.

MakePath(j)

While path not terminated:

For element j, pick the face f ∈ F (j) with highest connectivity, such that element

k = N(j; f) is not part of the current line. Terminate the path if any of the

following conditions hold:

- face f is a boundary face

- element k is already part of a line

- C(j, k) is not one of the top two connectivities in element k

Otherwise, assign element j to the current line, set j = k, and continue.

Following Stage I, it is possible that endpoints of two lines are adjacent to each other.

Such a configuration is illustrated in Figure 3-1a. In the figure, elements a and b are the

endpoints of two different lines. a and b are not connected because C(a, b) is not in the top

two connectivities in either element (see Lemma 1), where connectivity is denoted by the

thickness of the bar on the shared edge. Also, a is not connected to c because C(a, c) is not

in the top two connectivities in c. Similarly for b and d. Since for best performance it is

desirable to use lines of maximum length, Stage II is employed to extend the length of the

lines created in Stage I.

Stage II: Line Connection

1. Loop through endpoint elements, j, of all lines. Denote by Hj ⊂ F (j) the set of faces

h of j that are boundary faces or that have N(j;h) as a line endpoint.

2. Choose h ∈ Hj of maximum connectivity. If h is not a boundary face, let k = N(j;h).
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3. If k has no other neighboring endpoints of higher connectivity, and no boundary faces

of higher connectivity, then connect the two lines to which j and k belong.

Applying Stage II to the example in Figure 3-1a results in the connection of a and b, as

shown in Figure 3-1b. Both stages of the algorithm result in unique line decompositions of

the domain, independent of the seed elements used. The proof proceeds as follows.

Lemma 1 Following Stage I, a given pair of neighboring elements, j, k, are connected if

and only if C(j, k) is one of the top two connectivities in j and in k.

Proof : Assume j and k are connected after Stage I. Without loss of generality, assume

that j was visited first in the algorithm. C(j, k) must be in the top two connectivities of

j, since only those are considered for the Forward Path or the Backward Path. In addition

C(j, k) must be in the top two connectivities of k, since a connection from j to k will not

be made if k has two or more higher connectivities.

Conversely, assume that C(j, k) is one of the top two connectivities in j and in k. Again,

without loss of generality, assume that j is visited first in the algorithm. Element k will be

considered either in the Forward Path or the Backward Path. Element k cannot be part of

another line because it has not yet been visited in the algorithm. Since C(j, k) is one of the

top two connectivities in k, elements j and k will be connected.

Lemma 2 Two neighboring endpoints, j and k, of distinct lines will be joined in Stage II

to form one line if and only if C(j, k) is maximum over the set of faces in Hj and Hk.

Proof : Follows directly by the Stage II algorithm.

Note, in a situation of equal connectivities and ties in which there exists an element

that does not have a unique set of top two connectivities, the Lemmas are not well-posed,

and the line decomposition may not be unique. However, this situation is not expected to

occur for practical problems except possibly immediately after flow initialization.

Theorem 1 For a given domain and connectivity matrix, the line decompositions after

Stage I and after Stage II are unique, provided that each element has a unique set of

“top two connectivities”.

Proof : The uniqueness of the line decomposition after Stage I follows from Lemma

1, since the Lemma provides a rule for connecting a given pair of neighboring elements

regardless of the seed elements used for the algorithm. Similarly, the uniqueness after Stage

II follows from Lemma 2, since the Lemma dictates whether two line endpoints will be

connected regardless of the order in which the endpoints are visited.
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Figure 3-2: Lines in flow over a Gaussian bump.

The lines for two flow cases are shown in Figures 3-2 and 3-3. Figure 3-2 shows the

lines for a 2-D duct flow with a Gaussian perturbation on the bottom wall, while Figure 3-3

shows the lines for a 2-D Joukowski airfoil case. Details on these cases are given in Chapter

5.

3.3 Robustness and Under-Relaxation

One of the key goals in designing the solver was robustness. Since the smoother uses a

preconditioner based on a linearized form of the governing nonlinear equations, failure can

occur if the initial guess is not close to the final solution. In practice, this failure manifests

itself through the appearance of non-physical states such as negative density or pressure.

To avoid such occurrences, two different strategies are used depending on the degree of

nonlinear behavior.

As a first step, the state update is limited through under-relaxation,

un+1 = un + αdu, (3.3)

where du is the update obtained from (3.1). The under-relaxation factor is calculated as

the greatest α, 0 < α ≤ α0, that keeps the density and pressure changes under a fraction,

ηmax, of the current values over all the elements. Generally, the same α is used for all

elements. In practice, however, a few elements can exist which require a much lower α than

the rest of the domain. Using the same small α globally in this case would unnecessarily

slow the progress to the solution. To resolve this problem, a minimum global α, αmin, is

used on all elements except locally for those elements which violate the ηmax constraint.
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Figure 3-3: Lines in flow over a Joukowski airfoil.

The calculation of α results in a minimal computational overhead relative to the smoother

and prevents failure during the initial solution transients for many problems. α0 = 0.5 is

used for optimal smoothing of certain high-frequency modes, as demonstrated in Chapter

4. In practice, ηmax = 0.1 and αmin = 0.001 are used.

Even with under-relaxation, however, the solver can fail in the initial steps of a difficult

problem through the inability to limit changes in the pressure. Since pressure is a nonlinear

function of the conservative state variables, an iterative method is used to determine the α

required to keep pressure changes below the factor ηmax. Specifically, α is first set to the

largest value, 0 < α ≤ α0, that keeps the density changes below the ηmax factor. If the

requested update results in an unallowable pressure change at any Lagrange node point,

α is multiplied by ηα < 1. This check is repeated up to nα,max times, if necessary. If

no acceptable α is found after nα,max iterations, the second strategy is employed: on each

successive failure of under-relaxation, ∆t is lowered by a user-defined factor, ηt, until under-

relaxation is applied successfully. If the new ∆t does not cause an under-relaxation failure

in the next nlag iterations, it is increased by the factor ηt. The process continues until ∆t

is successively increased back to its original maximum value, ∆tmax. The typical factors

used are ηα = 0.5, nα,max = 10, ηt = 10, nlag = 10, and ∆tmax = 1010tref , where tref is
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a reference time scale of the problem (e.g. tref = lref/V∞, where lref is a reference length

scale).

3.4 p-Multigrid

3.4.1 Motivation

p-multigrid was used in conjunction with the line smoother to increase the performance

of the solver. In standard multigrid techniques, solutions on spatially coarser grids are used

to correct solutions on the fine grid. This method is motivated by the observation that most

smoothers are poor at eliminating low-frequency error modes on the fine grid. However,

these low-frequency error modes can be effectively corrected by smoothing on coarser grids,

in which these modes appear as high frequency. In p-multigrid, the idea is similar, with the

exception that lower-order interpolants serve as the “coarse grids” [37, 17].

p-multigrid fits naturally within the framework of high-order DG discretizations. Addi-

tional coarse grid information is not required since the same spatial grid is used by all levels.

In addition, a hierarchical basis can be used, eliminating the duplication of state storage

at each level. The transfer operators between the grids, prolongation and restriction, are

local and only need to be stored for a reference element. These operators become trivial

in the case of a hierarchical basis, and they reduce computational time by simplifying the

implementation.

3.4.2 FAS and Two-Level Multigrid

To solve the nonlinear system in question, the Full Approximation Scheme (FAS), intro-

duced by Brandt [7], was chosen as the multigrid method. Much of the following description

is adapted from Briggs [9].

Consider the discretized system of equations given by

Rp(up) = fp,

where up is the discrete solution vector for pth order interpolation on a given grid, Rp(up)

is the associated nonlinear system, and fp is a source term (zero for the fine-level problem).

Let vp be an approximation to the solution vector and define the discrete residual, rp(vp),

by

rp(vp) ≡ fp − Rp(vp).
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In a basic two-level multigrid method, the exact solution on a coarse level is used to correct

the solution on the fine level. This correction scheme is given as follows:

• Restrict the state and residual to the coarse level: vp−1
0 = Ĩp−1

p vp, rp−1 = Ip−1
p rp.

• Solve the coarse level problem: Rp−1(vp−1) = Rp−1(vp−1
0 ) + rp−1.

• Prolongate the coarse level error and correct the fine level state: vp = vp+Ip
p−1(v

p−1−

vp−1
0 ).

Ip−1
p is the residual restriction operator, and Ip

p−1 is the state prolongation operator.

Ĩp−1
p is the state restriction operator and is not necessarily the same as residual restriction.

Alternatively, the FAS coarse level equation can be written as

Rp−1(vp−1) = Ip−1
p fp + τp−1

p ,

τp−1
p ≡ Rp−1(Ĩp−1

p vp) − Ip−1
p Rp(vp).

The first equation differs from the original coarse level equation by the presence of the term

τp−1
p , which improves the correction property of the coarse level. In particular, if the fine

level residual is zero, the coarse level correction is zero since vp−1 = vp−1
0 .

The two-level correction scheme resembles defect correction, in which the solution to

a linear or non-linear system is found by iterating with an approximate system that is

simpler to solve. Details on defect correction, including convergence analysis, can be found

in Désidéri et al [14], and the references therein. We present a summary of the method and

its relationship to two-level p-multigrid.

Consider a linear system arising from, for example, a second-order finite difference dis-

cretization:

A2(u) = f , (3.4)

and let A1(u) = f be a first-order discretization. The defect correction method allows one

to obtain successively better solutions to the second-order system by iteratively solving the

first-order system. The iteration can be written as

A1(v
m+1) = f + A1(v

m) − A2(v
m), (3.5)

where vm is an approximation to the solution u at iteration m. At each such iteration, one

solves the simpler system of equations, A1, and only computes the term A2(v
m) for the
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second-order system. By inspection, a fixed point of the iteration is a solution to (3.4). The

similarity with the two-level correction scheme is evident when the latter is written as

Rp−1
(
(vp−1)m+1

)
= Ip−1

p fp + Rp−1
(
Ĩp−1
p (vp)m

)
− Ip−1

p Rp ((vp)m) , (3.6)

(vp)m+1 = (vp)m + Ip
p−1

(
(vp−1)m+1 − Ĩp−1

p (vp)m
)

. (3.7)

A key difference between (3.5) and (3.6) is that while in (3.5) the solution vector is the same

length for A1 and A2, in (3.6) vp−1 and vp are of different sizes. Hence, state and residual

restriction operators are necessary to transform vectors on level p to level p−1. In addition,

an extra prolongation step, (3.7), is required to transform the correction from level p− 1 to

level p. Thus, one can view the two-level p-multigrid scheme as defect correction in which

the approximate system is of smaller dimension.

3.4.3 V-cycles and FMG

To make multigrid practical, the basic two level correction scheme is extended to a V-

cycle and to full multigrid (FMG). In a V-cycle, a sequence of one or more coarse levels

is used to correct the solution on the fine level. Descending from the finest level to the

coarsest, a certain number of pre-smoothing steps, ν1, is performed on each level before the

problem is restricted to the next coarser level. On the coarsest level, the problem is either

solved directly or smoothed a relatively large number of times, νc. Ascending back to the

finest level, ν2 post-smoothing steps are performed on each level after prolongation. Each

such V-cycle constitutes a multigrid iteration.

Using plain V-cycles to obtain a high-order solution requires starting the smoothing

iterations on the highest order approximation. As this level contains the largest number of

degrees of freedom, smoothing on it is the most expensive. An alternative is to first obtain

an approximation to the solution using the coarser levels before smoothing on the finest

level. This is the premise behind FMG in which V-cycles on successively finer levels are used

to approximate the solution on the finest level. By the time the solution is prolongated to

the finest level, it is usually a close approximation to the final solution with the exception

of certain high frequency errors that can be smoothed efficiently on that level. In an

effective multigrid scheme - one in which the smoother, transfer operators, and coarse level

approximation spaces are well matched - FMG should require only a few V-cycles on each

level before prolongating to the next finer level [7]. In practice, this behavior can be tested

by using a known output to track the error at each multigrid iteration.

A decision that has to be made in the FMG algorithm is when to start iterating on
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the next finer level. Converging the solution fully on each level is not practical because the

discretization error on the coarser levels is usually well above machine zero. Although one

can perform a constant number of V-cycles on each level, an alternative is to prolongate

when a residual-based criterion is met. The criterion used is described as follows. At the

end of a V-cycle, the current residual and its L1 norm, |rp|L1
, are known. The solution

vector is prolongated to the p + 1 level and the residual, rp+1, is calculated along with its

L1 norm |rp+1|L1
. Iteration on the next finer level commences when |rp|L1

< ηr|r
p+1|L1

. If

this condition is not met, another V-cycle at level p is carried out. The extra prolongation

and computation of rp+1 at the end of each V-cycle add slightly to the computational cost.

However, the benefit is that low-order approximations are not unnecessarily converged when

a high-order solution is desired. In practice ηr = 0.5 is used.

3.4.4 Operator Definition

The transfer operators used in the multigrid scheme are now defined. Let Ω denote the

entire domain, and let φp
i denote the ith basis function of order p in a global ordering over

all the basis functions in the discretization. Since the approximation spaces are nested,

φp−1
i can be expressed in terms of φp

j ,

φp−1
i =

∑

j

αp−1
ij φp

j . (3.8)

The prolongation operator, Ip
p−1, transfers changes in vp−1 (in V-cycle multigrid) and the

solution itself (in FMG when moving to a higher level) to level p. Thus, a fine-level rep-

resentation is required of a coarse-level approximation. That is, we wish to calculate vp,

whose components are given by

vp
j =

∑

i

(
Ip
p−1

)
ji

vp−1
i , (3.9)

such that, for all points in the domain,

∑

j

vp
j φ

p
j =

∑

i

vp−1
i φp−1

i . (3.10)

In (3.10), (3.9) is used to substitute for vp
j and (3.8) to substitute for φp−1

i :

∑

j

∑

i

(
Ip
p−1

)
ji

vp−1
i φp

j =
∑

j

∑

i

αp−1
ij vp−1

i φp
j .
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Since a state representation is unique in the basis φp
j , it follows that

(
Ip
p−1

)
ji

= αp−1
ij ⇒ Ip

p−1 = (αp−1)T . (3.11)

To form the residual restriction operator, Ip−1
p , the definition of the residual vector is

used,

Rp
j (v

p) = B(φp
j ,v

p).

Given Rp(vp) we wish to determine Rp−1(vp) = Ip−1
p Rp(vp). Using the linearity of B in

the first input and (3.8), the components Rp−1
i (vp) can be written as

Rp−1
i (vp) = B(φp−1

i ,vp)

=
∑

j

αi,jB(φp
j ,v

p)

=
∑

j

αi,jR
p
j .

Thus, the residual restriction operator is

Ip−1
p = αp−1. (3.12)

Finally, the state restriction operator, which is used to transfer vp to vp−1 via vp−1 =

Ĩp−1
p vp, is determined by enforcing state equality between the coarse and fine levels in a

weak form. Specifically, we seek vp−1 ∈ Vp−1
h such that

∫

Ω
wp−1vp−1dΩ =

∫

Ω
wp−1vpdΩ, ∀wp−1 ∈ V p−1

h . (3.13)

Using the basis φp−1 for Vp−1
h and φp for Vp

h, (3.13) is equivalent to

∫

Ω
φp−1

k

∑

i

vp−1
i φp−1

i dΩ =

∫

Ω
φp−1

k

∑

j

vp
jφ

p
jdΩ

∑

i

Mp−1
k,i vp−1

i =
∑

j

N p−1
k,j vp

j

vp−1
i = (Mp−1)−1N p−1vp

j

Ĩp−1
p = (Mp−1)−1N p−1, (3.14)

Mp−1
k,i =

∫

Ω
φp−1

k φp−1
i dΩ, N p−1

k,j =

∫

Ω
φp−1

k φp
jdΩ.
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Although the operators have been defined in a global sense, the local compact support

for the basis functions allows these operators to be calculated on a reference element and to

be applied element-wise throughout the domain. Since the transfer operators are applied

in the reference element, no special consideration is necessary for curved elements.

The operators presented are sparse globally, but take on the form of possibly dense

matrices locally on each element. Using a Lagrange basis, the local operators are dense

matrices. However, using a hierarchical basis, Ip
p−1 is the identity matrix with zero rows

appended, and Ip−1
p is the identity matrix with zero columns appended. The state restriction

operator, Ĩp−1
p , consists of the identity matrix with non-zero columns appended. These

non-zero columns result from the calculation of (Mp−1)−1N p−1 and represent the coupling

between the p and p − 1 order basis functions. If an orthogonal basis were used, these

columns would consist of zeros.

3.5 Storage and Implementation

The greatest storage requirement comes from the line preconditioner, which is essentially

equal in size to the full Jacobian. The benefit of storing the full Jacobian is that doing

so allows multiple linear iterations per one inversion of the diagonal blocks. We have

found that linear iterations benefit overall computational time; however, storage of the full

Jacobian leads to excessive memory requirements for problems in which the element count

and interpolation order are large. Hence, a memory-lean version of the line solver was

written in which the Jacobian is stored only for one line of elements at a time. Table 3.1

lists the memory requirements for the lean and non-lean implementations in 2-D and 3-D.

The elements are assumed to be triangles in 2-D and tetrahedra in 3-D. The storage for

the lean Jacobian depends on the length of the longest line (i.e. grid geometry and flow

direction), and is therefore only approximate.

Table 3.1: Approximate storage requirements per equation in 2-D and 3-D for N elements.

Per-element Solution Non-lean ∂R

∂u
Lean ∂R

∂u

2-D n(p) =
(p + 1)(p + 2)

2 Nn(p) 3N [n(p)]2 ≈ 3N1/2[n(p)]2

3-D n(p) =
(p + 1)(p + 2)(p + 3)

6 Nn(p) 4N [n(p)]2 ≈ 4N1/3[n(p)]2

In addition to the memory savings of the lean line solver, the state updates obtained for

each line can be applied as each line is processed, resulting in a Gauss-Seidel type iterative
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Figure 3-4: Diagram of storage in the multigrid algorithm.

scheme. This method was implemented and showed slightly faster convergence rates for the

cases tested in Chapter 5.

Storage is also one consideration in the implementation of the multigrid scheme. For

each level, state, residual, and source vectors were defined. However, since the residual

data can be overwritten, it is not necessary to allocate three separate vectors for each level.

Figure 3-4 shows the implementation used for a general basis.

As shown, only one source vector of adequate size is allocated. During restriction,

the state vector is transferred directly via vp−1 = Ĩp−1
p vp. Three transfers then take place

involving the residual and source terms. First, Rp is restricted via Rp−1 = Ip−1
p Rp. Second,

the source term used by level p is stored in the level p residual vector. Finally, the coarse

level residual is transferred to the source term: fp−1 = Rp−1. Analogous steps are taken

when transferring to the next coarser level. During prolongation, the state vp is corrected

by interpolating the difference between the coarse level solution and the restriction of the

fine level solution. In addition, the source term is restored from the residual vector. Since

prolongation introduces a correction to the solution, the update goes through the standard

under-relaxation process.
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Chapter 4

Stability Analysis

The objective of this chapter is to determine the stability of block-implicit and line-

implicit relaxation applied to DG for convection-dominated flows. To this end, Fourier

analysis is performed on the advection problem in one and two dimensions on simple domains

with periodic boundary conditions. The footprints of the relaxation operators are calculated

and analyzed for stability.

The advection problem in one and two dimensions is given by

~V · ∇u = f(~x), (4.1)

aux = f(x) (1 − D),

aux + buy = f(x, y) (2 − D).

In this problem, the velocity ~V is constant, u is the unknown concentration variable, and f

is a source function. The problem is defined on the interval [−1, 1] ([−1, 1]× [−1, 1] in 2-D)

with periodic boundary conditions.

4.1 One-dimensional Analysis

In 1-D, the [-1,1] interval is discretized into N elements, κr, r = 1 . . . N , each of size

h = 2/N , where N is an even integer. Within each element, (p + 1) basis functions are

defined, where p is the interpolation order. Since each basis function has local support

on only one element, the total number of unknowns is N(p + 1). For similarity with the

Euler equations, a concentration flux is defined by F(u) ≡ au. Letting Vp
h be the space of

discontinuous polynomials of degree p on the given subdivision, the DG discretization of
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(4.1) reads: find uh ∈ Vp
h such that ∀vh ∈ Vp

h,

B(vh, uh) ≡ H(uh)vh|κR
−H(uh)vh|κL

−

∫

κ
F(uh)vh,xdx =

∫

κ
vhf(x)dx. (4.2)

κR and κL denote the right and left element boundaries, and full-upwinding is used for the

inter-element flux:

H(uh) =
a

2
(uh,L + uh,R) −

|a|

2
(uh,R − uh,L) , (4.3)

where uh,L and uh,R refer to values of uh taken from the left and right elements at an

interface. Periodic boundary conditions are enforced by identifying the left boundary of the

first element with the right boundary of the last element. Using a basis, {φk}, for Vp
h, uh

can be represented as uh(x) =
∑

k ukφk(x). (4.2) can then be written compactly as Au = f ,

where u is the discrete vector of the uk, and f is the discrete source vector with components

fk =
∫
κ φkf(x)dx.

For an elemental block Jacobi smoother, the linear system is separated into A = M−N,

where M is the elemental block diagonal component of A. With reference to the basic

iterative scheme (3.1), M acts as the preconditioner P. Fourier (Von Neumann) analysis is

used to determine the relaxation footprint, which consists of the eigenvalues of −M−1A =

M−1N− I = S− I, where S ≡ M−1N. Let u denote the exact discrete solution vector and

vm an approximation at the mth iteration. Defining em ≡ vm − u, the basic iterative step

can be written as

em+1 = Sem. (4.4)

Because of the periodic boundary conditions, the eigenvectors of S are sinusoidal on the

elements, indexed by r. Thus, the error eigenvectors take on the form

em(θj) =




ēm
1 (θj)

...

ēm
r (θj)

...

ēm
N (θj)




, ēm
r (θj) = v̄m(θj)e

irθj , (4.5)

where θj = jπh is the mode of the eigenvector, with j ∈ {−N/2+1, . . . ,N/2}. ēm
r represents

a vector of size (p + 1) corresponding to the portion of the error eigenvector on element r.
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Figure 4-1: 1-D Lagrange basis functions on the reference element for p = 2.

Substituting (4.5) into (4.4) yields an expression for the relaxation of the θj eigenvector:

ēm
r = S̃m(θj)v̄

0eirθj . (4.6)

S̃(θj) is a (p+1)× (p+1) matrix corresponding to S for error modes that are sinusoidal on

the elements. For stability, the (p + 1) eigenvalues of S̃(θj) must be less than 1 in absolute

value. For this 1-D problem, the eigenvalues and eigenvectors can be computed analytically,

with the result that the elemental block Jacobi scheme is stable independent of order. The

derivation of this result is given for the Lagrange basis, which is depicted in Figure 4-1 for

p = 2.

The analytical result is that for any order p, the only nonzero eigenvalues of S̃ are

λ = e±iθj . The derivation begins by expressing the error equation, Aem = rm ≡ f − Avm,

in stencil form. Specifically, for any element r, the error equation can be written as

ÂLēm
r−1 + Â0ēm

r + ÂRēm
r+1 = r̄m

r , (4.7)

where if r = 1, r − 1 refers to element N , and if r = N , r + 1 refers to element 1. r̄m
r is the

residual vector on element r. The (p + 1)× (p + 1) matrices ÂL, Â0, and ÂR are obtained

from (4.2) and (4.3). They are listed here for p = 2:

ÂL =
1

2




0 0 −(|a| + a)

0 0 0

0 0 0


 , ÂR =

1

2




0 0 0

0 0 0

−(|a| − a) 0 0


 , (4.8)
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Â0 =
1

2




|a| 4
3a −1

3a

−4
3a 0 4

3a

1
3a −4

3a |a|


 .

Substituting the sinusoidal error form, (4.5), into (4.7) yields

ÂLēm
r e−iθj + Â0ēm

r + ÂRēm
r eiθj = r̄m

r

(ÂLe−iθj + Â0 + ÂReiθj )ēm
r = r̄m

r

The off-block-diagonal terms in the original system A are associated with ÂL and ÂR

in the stencil representation. Thus, for block-Jacobi smoothing, the elemental matrices M̃

and Ñ corresponding to M and N in the case of sinusoidal error modes are

M̃ =
1

2




|a| 4
3a −1

3a

−4
3a 0 4

3a

1
3a −4

3a |a|


 , Ñ =

1

2




0 0 (|a| + a)e−iθj

0 0 0

(|a| − a)eiθj 0 0


 .

From the form of Ñ, the product S̃ = M̃−1Ñ results in the following column representation

of S̃:

S̃ = [(|a| − a)s0, 0, . . . , 0, (|a| + a)sp], (4.9)

where s0 and sp are nonzero columns. Thus, the interior and upwind basis functions within

each element are eigenvectors of S̃, with eigenvalue 0. For a given θj, the eigenvector

corresponding to the nonzero eigenvalue turns out to be v̄ = [1, 1, . . . , 1]T . This statement

is verified by substituting this v̄ into the eigenvalue problem:

M̃−1Ñv̄ = λv̄

Ñv̄ = λM̃v̄

Ñv̄ =
1

2




(|a| + a)e−iθj

0
...

0

(|a| − a)eiθj




, M̃v̄ =
1

2




(|a| + a)

0
...

0

(|a| − a)




.

By inspection, the eigenvalues are λ = e−iθj for a > 0, and λ = eiθj for a < 0. Hence,

for each θj, the only nonzero eigenvalue of S̃ lies on the complex unit circle independent
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Figure 4-2: Smoothing footprint for (a) p = 0 and (b) p > 0.

of p. The footprint of the relaxation operator is readily obtained from the eigenvalues of

S̃ by λ(−M̃−1Ã) = λ(S̃) − 1. Figure 4-2 shows the footprints of the p = 0 and p > 0

preconditioned operators.

For p = 0, the eigenvalues are identical to those obtained from the traditional upwind

finite-difference scheme, as the schemes are identical. Under-relaxation, introduced in Sec-

tion 3.3, places the eigenvalues associated with the high-frequency modes close to -1 when

α = 0.5, so that the smoother is effective at eliminating these modes. For higher order, the

additional eigenvalues all lie at −1, implying that the smoother will converge at a rate that

is independent of the order and guaranteeing p-independent multigrid as well.

4.2 Two-dimensional Analysis

In 2-D, the area [−1, 1] × [−1, 1] is discretized into N2 square elements. For the basis,

the tensor product of the 1-D Lagrange basis is used, so that φαβ(x, y) = φα(x)φβ(y), where

α and β are local element indices. Discretizing the equations as in 1-D results in the system

Au = f .

With periodic boundary conditions, Fourier stability analysis is carried out as in 1-D. In

the 2-D case, the eigenvectors of S are characterized by two modes, (θj, θk) = (jπh, kπh),

where j, k ∈ {−N/2+1, . . . , N/2} and h = 2/N . Indexing the elements by the ordered pair

of integers (r, s), the smoothing operator eigenvectors can be represented as

ēm
rs(θj, θk) = v̄m(θj , θk)e

irθj+isθk , (4.10)

where ēm
rs and v̄m are now vectors of size (p + 1)2. Substituting for e in the basic iterative

method yields the following expression for the error at the mth iteration:

ēm
rs(θj , θk) = S̃m(θj , θk)v̄

0(θj , θk)e
irθj+isθk . (4.11)
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Figure 4-3: Block Jacobi footprint for p = 1, N = 24: (a) α = 1o, (b) α = 25o.

S̃(θj , θk) is now a (p + 1)2 × (p + 1)2 iteration matrix. While the eigenvalues of S̃ cannot

be calculated analytically, numerical results show that |ρ(S̃)| ≤ 1 for all flow angles α =

tan−1(b/a), for both block and line preconditioners. For multigrid studies, it is useful to

differentiate between low (L) and high (H) frequency modes. L modes are defined to be

those with −π/2 < θ ≤ π/2. All other values of θ correspond to H modes. This separation

is ideal for h-multigrid in which the grid size is halved on each finer grid. For p-multigrid,

the ideal separation is not clear, but the stated separation is used for simplicity. With this

distinction, the eigenvalues are separated based on the mode pair (θj , θk) of the eigenvectors:

LL, LH, HL, or HH. Figure 4-3 shows this separation for the cases of α = 1o and α = 25o

using the block Jacobi smoother.

For α = 1o (near horizontal flow), the eigenvalues are close to those for the one-

dimensional case. The modes least affected by under-relaxed Jacobi smoothing are those

with footprint eigenvalues closest to 0 in the complex unit disk. As expected, for both

angles, the HH modes are effectively reduced by the iterative method. The LL modes are

densely clustered near 0 for both, and, as in 1D, some form of multigrid is required to

reduce these errors. For α = 1o and somewhat for α = 25o, the HL modes are effectively re-

duced by the smoother, but the LH modes are not reduced, a consequence of the flow being

aligned more in the x-direction. Since the LH modes contain high frequency components,

they cannot be represented on uniformly-coarsened grids to be affected by multigrid. The

presence of these errors stalls the convergence and degrades the performance of multigrid

with block-Jacobi smoothing.

A line smoother is capable of reducing the “LH” modes - i.e. the modes that are
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Figure 4-4: Line Jacobi footprint for p = 1, N = 24: (a) α = 1o, (b) α = 25o.

low frequency in the flow direction and high frequency in the transverse direction. In the

analysis, the line updates are performed in Jacobi fashion in that the unknown values for

all elements not on the line are held constant when calculating the update. Line smoothing

is most effective in cases where the lines are aligned with the flow direction. Figure 4-4

shows the footprint of line smoothing for the cases of α = 1o and α = 25o, using horizontal

(x-aligned) lines. For α = 1o, the line smoother almost completely eliminates the HH and

HL modes. In addition, under-relaxed line smoothing eliminates the LH modes for this

case. For α = 25o, line Jacobi is more effective at reducing the HH, HL, and LH modes

in comparison to block Jacobi. However, smoothing of the LH modes still results in some

eigenvalues close to 0, a consequence of the 25o difference between the flow angle and the

line angle. Alignment of lines with the flow direction is therefore crucial for good multigrid

performance of the line smoother.
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Chapter 5

Results

This chapter presents accuracy and solver performance results for various smooth prob-

lems in two and three dimensions. For each problem, uniform grid refinement was performed

to study the accuracy of the discretization. Performance and convergence rate were deter-

mined by timing the full multigrid scheme. The following parameters were used in all the

cases:

• - Hierarchical basis

• - ν1 = 4 pre-smoothing sweeps and ν2 = 4 post-smoothing sweeps

• - νc = 100 sweeps on the coarsest level, p = 0

• - Memory-lean line solver

• - Residual-based level switching criterion for FMG

• - Initialization with a converged solution on p = 0

All timing runs were performed on an Intel Pentium 4 2.53 GHz system with 512 MB

RAM.

5.1 Two-dimensional Results

Three problems were studied in two dimensions: Ringleb flow, flow over a Gaussian

bump, and flow over a Joukowski airfoil. In the following sections each problem is described

and the accuracy and performance results are presented.
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Figure 5-1: Description of Ringleb flow.

5.1.1 Ringleb Flow

Ringleb flow is an exact solution of the Euler equations obtained using the hodograph

method. The streamlines and iso-Mach lines for a typical Ringleb solution domain are

shown in Figure 5-1.

The relevant transformation equations between the Cartesian variables (x, y) and the

hodograph variables (V, θ) are

Ψ =
1

V
sin(θ),

c2 = 1 −
γ − 1

2
V 2,

J =
1

c
+

1

3c3
+

1

5c5
−

1

2
log

1 + c

1 − c
,

ρ = c2/(γ−1),

x =
1

2ρ

[
1

V 2
− 2Ψ2

]
+

J

2
,

y = ±
Ψ

ρV
cos(θ).

Since the exact flow state can be determined for any (x, y), the domain is taken to be a

circle inside the regular Ringleb domain, as shown in Figure 5-1. The boundary condition

is imposed by setting the exact state on the exterior of the domain, and using the Riemann

approximate flux function. An accuracy study was performed using a set of three hierar-

chical grids (88, 352, and 1408 elements). Orders of interpolation ranging from p = 0 to

p = 3 were used, and the output of interest was the L2 norm of the error. Each case was
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Figure 5-2: Ringleb flow: accuracy vs. CPU time.

converged to machine zero residual for the p = 3 discretization.

Figure 5-2 shows the solution accuracy versus grid size and order. Optimal accuracy

convergence of p + 1 is attained, in that ||e||L2
= Chp+1. Figure 5-2 also shows the error

plotted versus CPU time to solution. A solution was taken to be converged when the error

norm came within 1 percent of its final value, determined by converging the solution to

machine zero residual beforehand. The advantage of high order interpolation is clear: a

p = 3 solution on the coarsest grid yields the same accuracy as a p = 2 solution on a grid

16 times the size in a time of 17 seconds as compared to 352 seconds.

The error and residual convergence histories for p = 3 FMG solutions on each grid

are given in Figure 5-3. Grid dependence is evident, showing one of the drawbacks of the

solution algorithm. However, order independence can be seen from the asymptotic multigrid

rates shown in Figure 5-4a. These rates were obtained by converging each level of FMG

to machine zero residual. An analogous plot of the L2 error norm is given in Figure 5-4b,
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Figure 5-3: Ringleb flow: FMG convergence history.

showing that error truncation is reached well before the residual reaches machine zero.

5.1.2 Flow over a Gaussian Bump

The second test problem is that of channel flow over a Gaussian bump. The problem

setup is depicted in Figure 5-5. The channel height is 12σ, the channel length is 24σ, and

the bump height is 0.4σ, where σ is the standard deviation of the Gaussian. The bump

geometry was represented using cubic curved elements on the boundary. Wall boundary

conditions were enforced on the top and bottom channel boundaries. At the outflow, the

static pressure was set, and at the inflow, the total temperature, total pressure, and flow

angle (0o) were prescribed, resulting in a free-stream Mach number of M = 0.2. The output

of interest in this case was the L2 norm of the entropy error, ||S −Sfs||L2
, where Sfs is the

free-stream entropy.

Again, three hierarchical grids (587, 2348, and 9392 elements) were used in a conver-

gence study. The results are shown in Figure 5-6. As in the Ringleb case, optimal error

convergence of p + 1 is attained. Figure 5-6 also shows the accuracy versus CPU time for

each run. The advantage of higher order for obtaining accurate solutions is again evident.

The entropy error and residual convergence histories are shown in Figure 5-7. Grid

dependence is apparent but not significant. Order independence is shown in Figure 5-

8a, which shows the residual history for FMG with full convergence on each level. The

accompanying step-like error plot in Figure 5-8b illustrates that error truncation is attained
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Figure 5-4: Ringleb flow (1408 elements): FMG history with full convergence on each level.
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Figure 5-5: Domain for flow over a Gaussian bump.

51



0 1 2
10

-9

10
�-8

10
�-7

10
�-6

10
�-5

10
�-4

10
�-3

10
�-2

10
�-1

||S
�

S
fs
|| L2

10
0

10
2

10
4

10
�-9

10
�-8

10
�-7

10
�-6

10
�-5

10
�-4

10
�-3

10
�-2

10
�-1

CPU Time (s)

0.9

2.4

3.2

3.8

p = 0

p = 1

p = 2

p = 3

p = 1

p = 2

p = 3

10
1

10
3

log
2
(h

0
/h)

Figure 5-6: Gaussian bump: accuracy vs. CPU time.
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Figure 5-8: Gaussian bump (2348 elements): FMG history with full convergence on each
level.

with only a few multigrid iterations after transfer to a finer level, which is characteristic of

an effective multigrid scheme.

5.1.3 Joukowski Airfoil

The third test problem is a 12 percent thick Joukowski airfoil at M = 0.2 and α = 0o.

The airfoil was created using a standard Joukowski transformation. The computational

domain is shown in Figure 5-9, and a portion of an intermediate-sized mesh is shown in

Figure 5-10. Cubic curved elements were used adjacent to the airfoil to represent the

geometry. Total temperature, total pressure, and flow angle were specified at the inlet,

static pressure was specified at the outlet, and the free-stream state was prescribed at the

top and bottom domain boundaries. For this case, the output of interest was the airfoil

drag coefficient, which is zero for the exact inviscid solution.

The results of an accuracy study (grid sizes of 974, 3896, and 15584 elements) are shown

in Figure 5-11. Optimal convergence is roughly attained, although the error on the finest

grid p = 3 solution appears to bottom out. This effect is likely a consequence of a singularity

caused by the inviscid flow assumption and a finite trailing edge angle (due to relatively

coarse gridding). We expect this effect to lessen with the introduction of viscous modeling.

The error and residual histories are shown in Figure 5-12. The drag convergence ap-
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Figure 5-9: Domain for flow over a Joukowski airfoil (not to scale).

Figure 5-10: Close-up of the intermediate mesh around the Joukowski airfoil. Total mesh
size is 3896 elements.
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Figure 5-11: Joukowski airfoil: accuracy vs. CPU time.
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Figure 5-12: Joukowski airfoil: FMG convergence history.
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Figure 5-13: Joukowski airfoil (3896 elements): FMG history with full convergence on each
level.

pears more oscillatory than the previous cases, but still proceeds faster than the residual

convergence. Grid dependence exists, but does not appear to be strong. Figure 5-13 shows

the residual and error histories for FMG with full convergence on each level. The order-

independence is again clear, as is the quick convergence of the drag output.

A low Mach number accuracy and convergence study was performed for the Joukowski

airfoil. For low Mach numbers, the compressible Euler equations describe nearly incom-

pressible flow. This limit poses a problem for the numerical solution process in terms of

slow convergence and decreased accuracy [41, 12]. Numerous investigations in this area

have shed light on the problem, and the behavior is generally well understood. The root

cause for the convergence degradation lies in the vastly different wave speeds in the system

at low Mach numbers. While acoustic modes propagate at the speed of sound, convective

disturbances propagate at the flow velocity, which is much lower. Since it is the acoustic

modes that dictate the effective “time step” of the iterative smoother, the convergence of

low Mach number cases suffers as convective disturbances take many iterations to traverse

the domain [12].

In addition to slow convergence, many schemes that introduce dissipation also suffer from

decreased accuracy [47]. This effect is due to an imbalance at low Mach numbers between

the dissipation terms and the terms of the Euler equations. This problem is often solved

by the same method used to treat the slow convergence, which is local preconditioning.
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Figure 5-14: Joukowski airfoil: accuracy convergence for various M .

Numerous local preconditioners have been developed for the Euler equations [41, 25, 12],

with very good results. However, a drawback of many of these preconditioners is poor

robustness near stagnation points [13]. For SUPG/GLS finite element discretizations Wong

et al [48] have developed a stabilization matrix which remains well-conditioned in the low

Mach number limit.

In the present study, we are interested in the behavior of the DG discretization and

the p-multigrid solver at low Mach numbers. To this end, an accuracy and convergence

study was performed for the Joukowski airfoil using the first two grids (974 and 3896

elements), with free-stream Mach numbers of M = 0.2, M = 0.02, and M = 0.002. The

accuracy plot for CD is shown in Figure 5-14. Although the error convergence rate remains

optimal (p+1), the absolute accuracy in CD deteriorates with decreasing Mach number.

This effect is greatest for the low-order discretizations, and decreases with increasing order.

The deterioration is expected, as the upwind flux function used in the DG discretization

is poorly conditioned as M → 0. However, as the order is increased, the magnitude of the

inter-element jumps decreases for smooth problems, making the poorly scaled dissipation

is less detrimental. Figure 5-15 shows the Mach contours as M is reduced from 0.2 to

0.002, for p = 1 and p = 3 interpolation. While the p = 1 contours exhibit a deterioration
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in accuracy, especially near the airfoil surface where the dissipation is highest, the p = 3

contours remain smooth.

M = 0.2,   p = 1 M = 0.002,   p = 1

M = 0.2,   p = 3 M = 0.002,   p = 3

Figure 5-15: Joukowski airfoil: Mach contours for p = 1 and p = 3 interpolation at M = 0.2
and M = 0.002. For p = 1 the accuracy decrease is evident at low M , while for p = 3 it is
not.

While the higher-order discretization eliminates the low Mach number accuracy degra-

dation, the multigrid convergence rates still suffer, as shown in Figure 5-16. The plots are

for a p = 3 solution on the intermediate-sized mesh. For M = 0.002, the solution requires

over 1500 multigrid iterations to converge to machine zero residual. Local preconditioning

could be used to accelerate convergence at low Mach numbers.

In addition to the low Mach number study, a comparison of line-implicit versus block-

implicit smoothing was carried out using the intermediate Joukowski airfoil mesh. The

results are shown in Figure 5-17 for p = 3 interpolation. In terms of CPU time, the line-

implicit smoother is about twice as fast as the block-implicit smoother. When used in

conjunction with p-multigrid, however, the difference in speed is less pronounced, with the

line-implicit multigrid scheme showing slightly faster convergence. This observation is likely

due to the fact that the lines on the unstructured mesh are not perfectly aligned with the

flow direction, preventing the smoothing of some of the LH modes, as discussed in Section

4.2. The observed behavior is also consistent with Pierce and Giles, who recommended
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Figure 5-16: Joukowski airfoil (3896 elements): multigrid convergence for p = 3.

standard multigrid with simple block relaxation for the Euler equations [34].

5.2 Three-dimensional Results

Two problems were studied in three dimensions: a 3-D extension of Ringleb flow, and

flow through a variable-area duct. In the following sections, both problems are described

and the associated results are presented.

5.2.1 Three-dimensional Ringleb Flow

The 3-D Ringleb flow case is a trivial extension of the 2-D case. The domain considered

is a rectangular box with coordinates as shown in Figure 5-18. 2-D Ringleb flow was

imposed in the (x′, z) plane, where the (x′, y′) coordinates are rotated by 45o from the

(x, y) coordinates.

No variation was specified in the y′ direction. As in the 2-D case, the boundary con-

ditions were imposed by setting the exact state on the exterior of the domain and using

the flux function. The domain was meshed by first uniformly dividing the box into N3

identical box cells, and then subdividing each cell into five tetrahedra. The cell subdivi-

sion is illustrated in the inset of Figure 5-18. Grid refinement for the accuracy study was

performed by uniformly refining the overlaying structured mesh, and then subdividing each

cell into tetrahedra. Although this method does not result in hierarchical grids, it turns out

to be sufficient for an accuracy study, as the same element geometries are employed and

the elemental length scale is halved at each refinement.
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Figure 5-18: Description of Ringleb flow in 3-D.
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Figure 5-19: 3-D Ringleb flow: accuracy vs. CPU time.
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Figure 5-20: 3-D Ringleb flow: FMG convergence history.

An accuracy study was performed using three grids, with sizes of 40 elements (N = 2),

320 elements (N = 4), and 2560 elements, (N = 8) . As in the 2-D case, the L2 norm of

the error served as the output. Figure 5-19 shows that optimal error convergence of p+1 is

approximately attained. The timing results indicate the benefit of higher order in achieving

high accuracy. For example, to achieve an error norm of 10−4, p = 2 can be used over p = 1

with about 1.5 orders of magnitude decrease in CPU time.

Figure 5-20 shows the FMG error and residual histories, which indicate grid dependence.

Figure 5-21 shows the asymptotic convergence rates, illustrating the order independence in

(a), and the early error truncation in (b). These results are similar to the 2-D case.

5.2.2 Flow in a Duct with a Gaussian Perturbation

The second problem studied in 3-D was that of subsonic flow inside a duct with a Gaus-

sian perturbation on the bottom wall. The problem setup is depicted in Figure 5-22. Wall

boundary conditions were imposed on each of the four duct walls. Cubic curved boundary

elements were employed on the bottom wall to fit the Gaussian perturbation. Elements

that shared a face or an edge with the bottom surface were curved to fit the geometry.

Static pressure was prescribed at the outlet, and at the inflow, the total temperature, total

pressure, and flow direction were specified, resulting in a freestream Mach number of 0.2.

The output of interest was the L2 norm of the entropy error over the entire flowfield.

Three grids (240, 1920, and 15360 elements) were constructed for the accuracy study

using the refinement procedure outlined for the 3-D Ringleb case. Results from the accuracy
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Figure 5-21: 3-D Ringleb flow (2560 elements): FMG history with full convergence on each
level.
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Figure 5-22: Flow over a Gaussian perturbation in 3-D.
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Figure 5-23: 3-D Gaussian bump: accuracy vs. CPU time.

study are shown in Figure 5-23. Convergence was observed to be near the optimal p + 1.

The timing results are similar to the 2-D case and again display the benefit of higher order

over grid refinement.

The FMG performance results, shown in Figure 5-24, again indicate grid dependence.

As in the previous cases, however, the asymptotic convergence rate, Figure 5-25a, remains

order independent. The associated step-like error plot in Figure 5-25b shows the rapid error

convergence expected from an effective multigrid scheme.
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Figure 5-24: 3-D Gaussian bump: FMG convergence history.
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Figure 5-25: 3-D Gaussian bump (1920 elements): FMG history with full convergence on
each level.
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Chapter 6

Parallelization

The point was made in Chapter 1 that the local nature of the DG discretization facilitates

parallelization of the solution algorithm. To validate this claim and to reduce the wall-clock

time of the runs, parallel versions of the 2-D and 3-D solvers were implemented. The

Message Passing Interface (MPI) library was used to handle communication, and the code

was tested on a coarse-grain parallel cluster. This chapter presents the methodology behind

the parallelization and the associated scalability results.

6.1 Background

CFD currently makes use of the state of the art in parallel computing to quickly solve

very large problems of practical interest. Industry-standard codes can attain close to ideal

scalability for large numbers of processors but often at the cost of machine-dependent tuning.

In 2001, Gropp et al [16] carried out a parallelization case study with an unstructured

CFD code representative of the state of practice at NASA. They found that they could

achieve optimal parallel efficiency only by tuning to minimize cache-misses for a particular

achievable memory bandwidth. Such platform-dependent tuning is undesirable because

it makes the code less portable. The parallelization effort in this work shies away from

this tuning difficulty in two ways: by using a high-order DG discretization to minimize

communication bandwidth, and by focusing on a coarse-grain parallelization in which the

communication barrier is much less of an issue.

A significant amount of research has been done in the area of DG parallelization, and

parallel solution algorithms have been implemented. Closely related work was done in 1999

by Baggag et al [3], who considered the DG discretization of the Euler equations of gas

dynamics, and used MPI for parallelization. They tested their code on several architectures,

including SGI Origin, IBM SP2, and clusters of SGI and Sun workstations. For the sizes
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of problems tested, they were able to achieve near perfect speedup on 4 processors (3.5-3.8

speedup), but they ran into a communication barrier when they tried to scale higher. With

8 processors, the speedup ranged from 3.1 to 7.1, depending on the system architecture.

The communication barrier is likely due to the small problem sizes considered (in some

cases less than 100 elements per processor) and to the low computation-to-communication

ratio. A key difference between this work and that of the authors is that instead of line-

implicit multigrid, the authors used an explicit time-marching scheme. An explicit method

usually requires more residual evaluations in the solution process and hence reduces the

computation-to-communication time ratio. In addition, Baggag et al considered only 2-D

cases while this work will include both 2-D and 3-D.

A 3-D parallel DG solver was presented by Crivellini et al in 2003 [11]. These authors

studied acoustic propagation and hence were concerned with the linear Euler equations.

They also used MPI for communication and were able to achieve decent speedup (7.5 for

10 processors) with approximately 500 elements per processor. They performed their tests

on a distributed memory Linux cluster containing 5 nodes, 10 CPU AMD MPI 1.33GHz

with standard Ethernet cards and a single switch (100 Mbps). Again, these authors used

explicit Runge-Kutta for advancing in time, which requires several residual evaluations per

time step and decreases the computation-to-communication ratio compared to an implicit

scheme.

More recently, Dong and Karniadakis [15] presented a multilevel parallel model for

general high-order numerical methods. Multilevel parallelism takes advantage of modern

high-performance computer architectures by partitioning a problem on two or more lev-

els. For example, on the first level the domain can be partitioned among the nodes, while

on the second level each subdomain can be partitioned among the multiple processors per

node. In DG with line-implicit smoothing, the final level could be the lines of elements,

for which block-tridiagonal systems have to be inverted. In their implementation within a

spectral element framework, Dong and Karniadakis observed very good scaling of multi-

level parallelism and attributed it to the greatly reduced number of processes involved in

communications at each level. Such a multilevel model presents an option for extending the

coarse-grain parallelization in this work to architectures with large numbers of processors.

6.2 Implementation

An effort was made to introduce parallelization without major changes to the existing

source code. To this end, pre-compiler flags were used to minimize code duplication, allow-

ing most of the serial functions to be reused. The file formats for input and output were
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retained, with the caveat that multiple input grids were used corresponding to the parti-

tioned domain. Two utility functions were created for splitting and joining grids, allowing

for simple conversion between serial and parallel cases.

6.2.1 Data Structure

The existing finite element solver uses an unstructured mesh, which means that the full

grid connectivity is stored explicitly. In the grid data structure, the elements are grouped

into Element Groups. All elements in one Element Group must have the same order of

interpolation and be of the same type (curved elements are a different type than linear

elements). For example, in a mesh around an airfoil, one group of elements can consist of

the interior elements and another of the curved boundary elements.

Boundary Face Groups store information about which element faces form a particular

boundary, and they are associated with specific boundary conditions. It is through these

boundary face groups that the data for parallel computation is communicated. Specifi-

cally, additional storage is created for each Boundary Face Group that is an Inter-Domain

Boundary - that is, a group that represents element faces neighboring a sub-domain stored

on another processor. This storage consists of two types of data for each face on an Inter-

Domain Boundary: the orientation of the neighboring element and the state data stored in

the neighboring element. An example diagram of this connectivity is shown in Figure 6-1

for the case of a square.

Figure 6-1: Connectivity of two sub-domains via Boundary Face Groups.

The overhead associated with the parallel structure storage is minimal in the DG dis-

cretization since only the data for one layer of neighboring elements has to be stored. This

is true even for higher order interpolation since the higher order is introduced locally within

each element.
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6.2.2 Parallel Solution Algorithm

The parallel data structure allows each sub-domain to store the data for the neighboring

elements that are not on the processor. In a parallel solver, the inter-domain boundary data

has to be communicated among the processors at an appropriate time with the intent that

the communication time should not have a significant impact on the computation time

for practical problems. The data communication process is evident by considering the

parallelization of a basic iterative step.

Each iteration requires the construction of the residual vector, R, and part or all of the

Jacobian matrix, ∂R/∂u, on every element. This construction is performed by looping over

the elements, the interior faces, and the boundary faces. Since no order is required for these

loops, for parallelization the loop over the boundary faces is carried out last to allow for

the communication of the boundary data. The resulting parallel solution algorithm reads

as follows,

Parallel Solution Algorithm - Basic Iterative Step

1 Calculate contribution to R and ∂R/∂u from the interior faces and the elements.

2 Wait for inter-domain boundary data transmission to complete.

3 Calculate contribution to R and ∂R/∂u from boundary elements.

4 Calculate un+1 using the basic iterative scheme (3.1).

5 Begin the transmission of inter-domain boundary data.

In Step 5, MPI non-blocking sends and receives are used so that computation can con-

tinue on each processor while the communication is in progress. Ideally, the inter-processor

communications finish by Step 2 in the next iteration so that no computation time is lost

waiting for communications to complete. Before the first iteration, a call to the parallel

initialization function starts the first transmission of boundary data. In addition to the

boundary data, the processors also exchange information on the current residual norm (for

printout by the root processor), the order of interpolation (for p-multigrid), and the status

of computation (e.g. if an error has occurred).

Both the block-implicit and non-lean line-implicit iterative schemes were parallelized

using the above algorithm. The lean line solver is a special case in that the residual and

Jacobian are computed sequentially for each line while the calculation of the boundary

contribution to R and ∂R/∂u is done at once through a single function. Changing the

method of enforcing boundary conditions to suit parallelization would require additional
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storage and computation, and further segregation of the code between serial and parallel.

Thus, the boundary condition enforcement function was not changed, and the communica-

tions were required to end before the calculations of R and ∂R/∂u started. Although this

implementation does not allow as much time for communication at each iteration, with the

relatively small amount of communication inherent in parallel DG, the performance was

not found to suffer significantly.

With the parallelization of the iterative smoother, p-multigrid was effectively parallelized

too. This is because p-multigrid simply consists of smoothing on different interpolation

levels and using prolongation and restriction operators to transfer the solution and residual

between levels. Specifically, on each level of p-multigrid, the parallel versions of the iterative

smoother were employed.

6.2.3 Grid Partitioning and Joining

Two utility programs were written for converting between serial and parallel cases. The

first program takes as input a given grid file (possibly with solution data) and splits it into

a given number of sub-domains, such that each sub-domain constitutes a viable grid with

its appropriate part of the data. The splitting of the grid structure was performed using the

functions available in the METIS library [22]. Specifically, a data tree was constructed with

the domain elements as the tree nodes and the interior faces as the connectivities. A call

to METIS split this tree with the objectives of minimizing the communication requirement

and balancing the number of elements per processor. The remainder of the utility program

was devoted to extracting the sub-grids in the proper format. An example of the splitting

program applied to a 2-D Gaussian bump grid is illustrated in Figure 6-2.

Figure 6-2: Grid splitting utility applied to a Gaussian bump grid.
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The second program takes as input a certain number of sub-grids and joins them into

a single grid. Applied immediately after the splitting program, it returns the original grid.

In practice, the parallel solver is run after splitting a grid causing the data in the sub-grids

to change, and the joining program is run last to piece the grids back together.

6.3 Scalability Results

The parallel code was tested in 2-D and 3-D on a 16-node cluster. Each node of the

cluster contained four Xeon 2.4 GHz processors with 2 GB shared RAM, and the network

connection was 1 Gigabit Ethernet. For the purposes of testing, 10 nodes were used with

no more than one processor per node. The basic iterative methods and FMG were tested

for parallel scalability and convergence.

The 2-D test case was the Joukowski airfoil using the intermediate mesh (3896 elements),

and the 3-D test case was the Gaussian bump using the intermediate mesh (1920 elements).

p = 2 interpolation was used for both cases. Figure 6-3 shows the scalability of the smoothers

for the 2-D case and the 3-D case. The block-implicit scheme is given in 6-3a and the line-

implicit scheme in 6-3b. For the line-implicit scheme, the memory-lean implementation was

used. The data was obtained from the total solution times using each smoother.
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Figure 6-3: Parallel scalability of (a) block-implicit and (b) line-implicit smoothing. p = 2
interpolation was used for all cases.

For each parallel case, the speedup is the ratio of the serial solution time to the parallel

solution time. The line smoother shows slightly lower scalability than the block smoother,
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which can be attributed to the convergence degradation of parallel line smoothing (described

next). In fact, per iteration, the line smoother scales better than the block smoother, which

has a lower computation to communication ratio. For ten processors, the observed line

smoother speedup is around 8.5. Although the block smoother speedup dips to 6.5 on eight

processors, it recovers back to nearly 9 on ten processors. The dip may be due to a less

favorable mesh partitioning for eight processors compared to ten processors. Nevertheless,

for the relatively small mesh sizes tested (about 200 elements per processor in the 3-D,

ten-processor case) both smoothers show outstanding coarse-grain scalability.

While the block-implicit scheme produces identical results in serial as in parallel, the

line-implicit scheme performance degrades slightly in parallel due to shortened lines. That

is, partitioning the domain for parallel computation may cut lines of elements used for

the implicit solver, thereby decreasing the solver’s performance. Figure 6-4 shows the

convergence histories of the line-implicit scheme for the 2-D Joukowski airfoil case using

p = 0 with varying numbers of processors. The degradation in convergence with increasing

processor number, N , is apparent but not considerable: the ten-processor parallel case

requires 12% more iterations to converge to machine zero compared to the serial case. This

minimal effect is likely due to the coarse parallelization, in which the average line length is

not greatly affected by the partitioning. Greater care can be taken in the future to penalize

splitting the mesh across lines, although doing so would require a baseline set of lines (and

hence a solution) on the mesh, and most likely a higher communication bandwidth.
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Figure 6-4: Joukowski airfoil (3896 elements): parallel convergence of the line-implicit
smoother for p = 0 interpolation.
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The results of parallel FMG applied to the 3-D bump case are given in Figure 6-5. This

figure shows the parallel speedup in CPU time to solution using FMG with line-implicit

smoothing and residual-based switching.
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Figure 6-5: 3-D Gaussian bump (1920 elements): time to solution using parallel FMG with
residual-based switching. p = 2 interpolation on fine level.

The observed speedup for this case is 9.5 for ten processors. This high value is likely

due to minimal bandwidth partitioning made possible by the high aspect ratio bump mesh

shown in Figure 5-22. In addition, smoothing iterations are more expensive in 3-D than in

2-D for a given p, increasing the computation to communication ratio. Thus, the observed

speedup in Figure 6-5 is greater than that of the 2-D line smoother, Figure 6-3b.

6.4 Conclusions

The DG solver under investigation was parallelized using the MPI library, and 2-D and

3-D parallel versions of the code were tested to assess scalability and convergence. Even

though relatively small problems were considered (as few as 200 elements per processor), the

parallel solvers showed very good scalability and only slight decrease in convergence for the

line smoother. The improved scalability over some previous parallel DG implementations

can be attributed mostly to the use of an implicit instead of an explicit solution scheme.

The implicit schemes used in this work are more expensive per iteration due to the inversion

of the preconditioner, allowing for an increased computation to communication ratio. In

addition, the cluster used for the tests was equipped with a faster network connection

(Gigabit Ethernet) than that used by most previous authors.
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Chapter 7

Conclusions

A higher-order solution method was presented for DG applied to the Euler equations.

The highlights of this solution method in comparison to most industry-standard CFD meth-

ods include: a discontinuous Galerkin finite element discretization, a line-implicit iterative

smoother, and a p-multigrid solution algorithm. p-multigrid fits naturally into the local

high-order finite element discretization, using local level transfer operators that become

trivial to implement in the case of a hierarchical basis. Line smoothing at each level is

stable regardless of order and is effective at removing the error modes associated with

convection, as predicted by 2-D analysis of an advection problem.

The results for 2-D and 3-D smooth problems demonstrate the advantages, as well as

some of the remaining issues of the solution method. First, optimal accuracy convergence

was attained for all test cases in two and three dimensions. The outputs of interest included

the absolute error norm in the Ringleb cases, the entropy error norm in the Gaussian bump

cases, and the drag in the Joukowski airfoil case. Although these results are promising, all

the problems considered were of smooth flow, without shocks or discontinuities. Since no

effective limiter has yet been implemented for the discretization, the capability of the solver

is restricted to shock-free flows.

In terms of performance, order-independent convergence was demonstrated for all test

cases. However, grid dependence was observed, and found to be significant for the Ringleb

and 3-D bump cases. Regardless, for all test cases, the solution error reaches truncation

level before the residual reaches machine-zero, and usually in only a few multigrid iterations

following an FMG level transfer.

A low Mach number study on the Joukowski airfoil showed that the absolute accuracy

level decreases with decreasing Mach number, although the optimal p + 1 accuracy conver-

gence rate remains. While this result was expected based on previous work, the favorable

observation is that the accuracy degradation diminishes for higher interpolation order. The

75



iterative convergence rate, however, was shown to degrade with decreasing Mach number

for all interpolation orders.

Parallelization work demonstrated the benefits and practicality of parallelizing the DG

solution method. The combination of the DG discretization and the implicit solution

method made the parallelization effective and relatively straightforward to implement. Test-

ing on a coarse-grain cluster showed very good scalability of the basic iterative smoothers

and of p-multigrid.

Most importantly, timing results demonstrated the benefit and practicality of using

higher order for attaining high accuracy. Using the p-multigrid solution method, low-

order discretizations require highly refined grids and more computational time to attain the

levels of accuracy of high-order discretizations on spatially coarser grids. The question that

remains is how these results will be affected by non-smooth problems and more complex

physical models.

Much work remains to be done to make the solution method presented in this work

practical. As already mentioned, a limiter is required to stabilize the oscillatory behavior

of high-order approximations near discontinuities. The effects of such a limiter on accuracy

and convergence are not known, although decreased performance is expected. In addition,

physical models for viscosity (already introduced in 2-D [33]) and turbulence are required

for the simulation of practical flow cases. Regarding the solver, the run times are currently

relatively long due to the expensive preconditioner inversion. This step can potentially

be made cheaper by using an approximate inversion and/or by optimizing the inversion

process. In addition, h-multigrid in conjunction with p-multigrid may be necessary to help

alleviate the observed h dependence.
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Appendix A

Entropy Fix for the Roe Flux

The Roe flux was used to approximately solve the Riemann problem at element bound-

aries. In its standard form, the Roe flux permits expansion shocks as solutions of the

approximate problem. As a result, stationary expansion shocks are not dissipated. Thus,

an entropy fix, described below, was used to introduce artificial dissipation.

The Roe flux can be written as

H(uL,uR) =
1

2

(
FL + FR − T̂|Λ̂|T̂−1(uR − uL)

)
, (A.1)

where T̂Λ̂T̂−1 is the diagonalization of Â, which is the Roe-averaged linear approximation

of the Jacobian ∂F/∂u.

The entropy fix affects eigenvalues (entries of the diagonal matrix Λ̂) which are close to

zero. This is done by replacing all the components (λ̂) of Λ̂ in A.1 by β(λ̂), where

β(λ̂) =

{
|λ̂| |λ̂| ≥ ǫ

(λ̂2 + ǫ2)/(2ǫ) |λ̂| < ǫ

In this work, ǫ = 0.01 was used.
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Appendix B

Boundary Conditions

This appendix describes how various boundary conditions were imposed in two and

three dimensions. In the following description, the ()+ and ()− notation denotes the trace

value taken from the interior and exterior of the domain, respectively.

Full state vector

The simplest boundary condition is the specification of the full exterior state vector,

u−. The Riemann solver is then used with the known interior state, u+, to calculate the

flux at the boundary,

Hbd(u+,u−, n̂) = H(u+,u−, n̂). (B.1)

Flow tangency

To enforce flow tangency, the boundary flux is set to be the pressure contribution to

the momentum flux. The pressure is calculated based on the interior density, energy, and

tangential velocity (by (2.3)),

p = p(ρ+, (ρv)+|| , (ρE)+), (ρv)|| = (ρv) − (ρv · n̂)n̂. (B.2)

In the above, (ρv)|| is the component of the momentum vector tangent to the wall. The

boundary flux is then computed using the inviscid flux definition, (2.2).

Subsonic Inflow

A subsonic inflow is enforced by specifying the total temperature, Tt, total pressure, pt,

and flow direction: one angle, α, in 2-D, or two angles, α and β, in 3-D. The boundary flux

is determined by constructing u− from u+ and the specified parameters, as follows. First,
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the Riemann invariant J+(u+, n̂) is calculated as

J+ = v · n̂ +
2c

(γ − 1)
, (B.3)

where c is the speed of sound based on the interior state. J+ contains all the information

from the interior that is used in constructing the exterior state. The inflow Mach number,

M , is calculated from J+ and the specified parameters by solving the following equation:

(
γRTtd

2
n −

γ − 1

2
(J+)2

)
M2 +

(
4γRTtdn

γ − 1

)
M +

4γRTt

(γ − 1)2
− (J+)2 = 0. (B.4)

R is the universal gas constant, and dn = n̂in · n̂, where n̂in is the specified inflow direction.

The physically relevant solution (M ≥ 0) is used. Using M and the specified stagnation

quantities, the exterior static temperature (T−), exterior static pressure (p−), and exterior

density (ρ−) are calculated. The exterior velocity is found from M and the speed of sound,

c− =
√

γp−/ρ−. Finally, the total energy, (ρE)− is found using the exterior pressure,

density, and velocity. In this manner, the exterior state, u−, is calculated as a function of

u+ and the specified parameters. The boundary flux is then calculated using the inviscid

flux definition, based on u−.

Outflow

Enforcing an outflow condition requires the construction of an exterior state based on

the interior state and possibly the specified static pressure, p−. If the interior velocity

normal to the boundary is sonic or supersonic, we set u− = u+.

Otherwise, the exterior state is calculated from J+(u+), the interior entropy S+ =

S(u+), and the interior tangential velocity v+
|| . The calculation proceeds as follows. First,

ρ− is given by

ρ− =

(
p−

S+

)1/γ

. (B.5)

The normal velocity, v⊥, is found using J+ and c− =
√

γp−/ρ−,

v⊥ = J+ −
2c−

γ − 1
. (B.6)

Setting v−
|| = v+

|| fully defines v−. (ρE)− is then calculated using p−, ρ−, and v−. Having

constructed u−, the boundary flux is computed using the inviscid flux definition.
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Appendix C

Hierarchical Basis

A hierarchical basis was used in one and two dimensions for interpolation of the state

and residual. This appendix gives the details on the construction of such a basis for the

orders used. Much of the following is taken from Soĺın et al [39].

C.1 Kernel Functions

In defining the hierarchical basis, the following one-dimensional high-order kernel func-

tions are used:

ϕ0(x) = −2

√
3

2
,

ϕ1(x) = −2

√
5

2
x,

ϕ2(x) = −
1

2

√
7

2
(5x2 − 1),

ϕ3(x) = −
1

2

√
9

2
(7x2 − 3)x,

ϕ4(x) = −
1

4

√
11

2
(21x4 − 14x2 + 1),

ϕ5(x) = −
1

4

√
13

2
(33x4 − 30x2 + 5)x,

...

The functions ϕk(x) are of order k in x, and arise from a decomposition of the Lobatto

shape functions. The details of this decomposition are given in [39].
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Figure C-1: Reference triangle.

C.2 Hierarchical Basis in Two-dimensions

The reference triangle on which the basis is constructed is shown in Figure C-1. On this

triangle, three affine coordinates are defined,

λ0(X,Y ) = 1 − X − Y, λ1(X,Y ) = X, λ2(X,Y ) = Y.

These coordinates take on the value of 1 on one vertex, and decay linearly to zero on the

other two vertices. The sequence of hierarchical basis functions is defined by three types of

functions: vertex functions, edge functions, and bubble functions.

Vertex Functions

Three vertex functions are defined as follows:

φv0(X,Y ) = λ0(X,Y ),

φv1(X,Y ) = λ1(X,Y ),

φv2(X,Y ) = λ2(X,Y ).

These functions account for p = 1 interpolation. For symmetry, the hierarchical basis

functions do not begin at p = 0.

Edge Functions

For p ≥ 2, p − 1 edge functions are defined on each of the three edges. Specifically, for

k = 2, . . . , p,

φe0

k = λ1λ2ϕk−2(λ2 − λ1),
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φe1

k = λ2λ0ϕk−2(λ0 − λ2),

φe2

k = λ0λ1ϕk−2(λ1 − λ0).

Each edge function vanishes on the two edges with which it is not associated.

Bubble Functions

For p ≥ 3, (p − 1)(p − 2)/2 bubble functions are defined. These functions are indexed

by two indices, n1 and n2, with n1, n2 ≥ 1 and n1 + n2 ≤ p − 1,

φb
n1,n2

= λ0λ1λ2ϕn1−1(λ1 − λ0)ϕn2−1(λ0 − λ2).

The bubble functions vanish on all three edges.

Table C.1 summarizes which basis functions are used for orders of interpolation from

p = 1 to p = 5.

Table C.1: Two-dimensional hierarchical basis functions for various orders.

Order Vertex Edge Bubble Total

p = 1 3 0 0 3

p = 2 3 3 0 6

p = 3 3 6 1 10

p = 4 3 9 3 15

p = 5 3 12 6 21

Separate vertex, edge, and bubble functions have been used previously, namely by Sher-

win and Karniadakis [38], and Szabó and Babus̆ka [40]. The work of these authors differed

in the choice of kernel functions and in the definitions of the edge and bubble functions.

Specifically, Sherwin and Karniadakis used Jacobi polynomials while Szabó and Babus̆ka

used Jacobi polynomials for the edge functions and Legendre polynomials for the bubble

functions. In addition, Sherwin and Karniadakis were interested in preserving C0 continuity

between elements and in a consistent product form for ease in integration, and they there-

fore lost symmetry in their definitions of edge and bubble functions. The edge and bubble

functions used in this work were chosen for their symmetry and ease in implementation, and

the Lobatto-derived kernel functions were used for their favorable conditioning properties

at high order.
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C.3 Hierarchical Basis in Three-dimensions

In three-dimensions the elements are tetrahedra. On the reference tetrahedron, shown

in Figure C-2, four affince coordinates are defined,

λ0(X,Y,Z) = 1 − X − Y − Z,

λ1(X,Y,Z) = Z,

λ2(X,Y,Z) = Y,

λ3(X,Y,Z) = X.

These coordinates take on the value of 1 on one vertex, and decay linearly to zero on the

other three vertices. In 3-D, the sequence of hierarchical basis functions is defined by four

types of functions: vertex functions, edge functions, face functions, and bubble functions.

Vertex Functions

Four vertex functions are defined as in 2-D and account for p = 1 interpolation,

φvi = λi, i = 1 . . . 4.

Edge Functions

For p ≥ 2, p− 1 edge functions are defined on each of the six edges. If j = 1, . . . , 6 is an

index over the edges, and k = 2, . . . , p, the basis functions can be expressed as

φ
ej

k = λj0λj1ϕk−2(λj0 − λj1),
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where j0 and j1 refer to the two vertices that define edge j. In Figure C-2, the arrows on

each edge point from j0 to j1. Note that each edge function vanishes on the two faces which

do not contain that edge.

Face Functions

For p ≥ 3, (p−2)(p−1)/2 face functions are defined on each of the four faces. For a face

i, i = 1, . . . , 4, let A, B, and C be the indices of the three vertices which bound the face.

For uniqueness, A and C are chosen to have the lowest and highest local index, respectively.

The face function associated with face i is then given by

φsi

k = λAλBλCϕn1−1(λB − λA)ϕn2−1(λA − λC),

where n1 and n2 are indices satisfying n1, n2 ≥ 1 and n1 + n2 ≤ p − 1.

Bubble Functions

For p ≥ 4, (p − 3)(p − 2)(p − 1)/6 bubble functions are defined. If n1, n2, and n3 are

indices satisfying n1, n2, n3 ≥ 1 and n1 + n2 + n3 ≤ p − 1, the bubble functions can be

written as

φb
n1,n2,n3

= ϕn1−1(λ0 − λ1)ϕn2−1(λ2 − λ1)ϕn3−1(λ3 − λ1)

3∏

i=0

λi.

The bubble functions vanish on each of the four faces of the tetrahedron.

Table C.2 summarizes which basis functions are used for orders of interpolation from

p = 1 to p = 5. Again, Sherwin and Karniadakis [38] also used a 3-D basis separated into

vertex, edge, face, and bubble functions. However, as in 2-D, they used Jacobi polynomials

for their kernel functions and did not define the edge and face functions symmetrically.

Table C.2: Three-dimensional hierarchical basis functions for various orders.

Order Vertex Edge Face Bubble Total

p = 1 4 0 0 0 4

p = 2 4 6 0 0 10

p = 3 4 12 4 0 20

p = 4 4 18 12 1 35

p = 5 4 24 24 4 56
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