
A Simplex Cut-Cell Adaptive Method for High-Order

Discretizations of the Compressible Navier-Stokes Equations

by

Krzysztof Jakub Fidkowski

M.S., Aerospace Engineering (2004)
S.B., Aerospace Engineering (2003)

S.B., Physics (2003)
Massachusetts Institute of Technology

Submitted to the Department of Aeronautics and Astronautics
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Aerospace Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2007

c© Massachusetts Institute of Technology 2007. All rights reserved.

Author .
Department of Aeronautics and Astronautics

May 25, 2007

Certified by. .
David L. Darmofal

Associate Professor of Aeronautics and Astronautics
Thesis Supervisor

Certified by. .
Jaime Peraire

Professor of Aeronautics and Astronautics

Certified by. .
Per-Olof Persson

Instructor of Applied Mathematics

Accepted by .
Jaime Peraire

Professor of Aeronautics and Astronautics
Chair, Committee on Graduate Students

2

A Simplex Cut-Cell Adaptive Method for High-Order Discretizations of

the Compressible Navier-Stokes Equations

by

Krzysztof Jakub Fidkowski

Submitted to the Department of Aeronautics and Astronautics
on May 25, 2007, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy in Aerospace Engineering

Abstract

While an indispensable tool in analysis and design applications, Computational Fluid
Dynamics (CFD) is still plagued by insufficient automation and robustness in the geometry-
to-solution process. This thesis presents two ideas for improving automation and robustness
in CFD: output-based mesh adaptation for high-order discretizations and simplex, cut-cell
mesh generation. First, output-based mesh adaptation consists of generating a sequence
of meshes in an automated fashion with the goal of minimizing an estimate of the error
in an engineering output. This technique is proposed as an alternative to current CFD
practices in which error estimation and mesh generation are largely performed by experi-
enced practitioners. Second, cut-cell mesh generation is a potentially more automated and
robust technique compared to boundary-conforming mesh generation for complex, curved
geometries. Cut-cell meshes are obtained by cutting a given geometry of interest out of a
background mesh that need not conform to the geometry boundary. Specifically, this thesis
develops the idea of simplex cut cells, in which the background mesh consists of triangles or
tetrahedra that can be stretched in arbitrary directions to efficiently resolve boundary-layer
and wake features.

The compressible Navier-Stokes equations in both two and three dimensions are dis-
cretized using the discontinuous Galerkin (DG) finite element method. An anisotropic
h-adaptation technique is presented for high-order (p > 1) discretizations, driven by an
output-error estimate obtained from the solution of an adjoint problem. In two and three
dimensions, algorithms are presented for intersecting the geometry with the background
mesh and for constructing the resulting cut cells. In addition, a quadrature technique is
proposed for accurately integrating high-order functions on arbitrarily-shaped cut cells and
cut faces. Accuracy on cut-cell meshes is demonstrated by comparing solutions to those
on standard, boundary-conforming meshes. In two dimensions, robustness of the cut-cell,
adaptive technique is successfully tested for highly-anisotropic boundary-layer meshes rep-
resentative of practical high-Re simulations. In three dimensions, robustness of cut cells is
demonstrated for various representative curved geometries. Adaptation results show that
for all test cases considered, p = 2 and p = 3 discretizations meet desired error tolerances
using fewer degrees of freedom than p = 1.

Thesis Supervisor: David L. Darmofal
Title: Associate Professor of Aeronautics and Astronautics

3

4

Acknowledgments

I would like to express my most sincere thanks to my advisor, Professor David Darmofal,

for guiding me throughout the course of this thesis work. His guidance ranged from a

spark of insight into a new problem to careful attention to detail at every step. He was

accommodating in his advising style, letting me run with an idea when things were going

well while taking the time to work through problems when the going got tough. In addition,

I was fortunate enough to co-teach an aerodynamics class with him and to learn from his

experience in effective teaching methods.

I am also grateful to my two other committee members, Professor Jaime Peraire and Dr.

Per-Olof Persson. Their critical comments and feedback motivated several of the research

directions considered in this work. Additionally, I would like to thank my readers, Professor

Paul Houston, Dr. Venkat Venkatakrishnan, and Dr. Mori Mani, for providing very useful

comments and suggestions on the thesis draft. Bob Haimes’s comments on the 3D cut-cell

chapter were also very helpful.

I’d like to thank the ever-evolving Project X team that has been part of my life for the

last four years: Garrett and Todd, not only for contributing greatly to the code, but also for

being great friends and putting up with my thesis excuses while co-teaching aerodynamics;

Laslo for all his solver work that made many of the runs possible; David for his cut-cell

visualization work; JM for using and debugging cut cells; Mike Park for useful discussions

and for flying in for my defense; and all of the PX “has-beens”: Matthieu, Paul, Mike, James,

Doug, Eric, among others. In addition, Jean deserves recognition for being instrumental in

making the entire lab run smoothly.

Outside of lab, a couple other groups have shaped my life as a graduate student. One

of these is the MIT Triathlon Club, which has helped me stay somewhat in shape even in

the most hectic of times. Nothing says camaraderie like swimming, biking, and running

inordinate distances together. The other group is the Burton 2 residents, who have been a

wonderful bunch over the past three years. You will be missed. The same goes for Roe and

Bronwyn, the Burton-Conner housemasters – thank you for your dedication.

Finally, I’d like to thank my family. My parents, Zbigniew and Maria, and my parents-in-

law, Jim and Nancy, for their continuous support. My siblings and siblings-in-law, Piotrek,

Lukasz, Rob, and Liz for making life much less dull. Most of all, I’d like to thank my wife,

Christina, for standing by me and making the last four years the best ones of my life.

This work was supported by the Department of Energy Computational Science Graduate

Fellowship, under grant number DE-FG02-97ER25308.

5

6

Contents

1 Introduction 19

1.1 Motivation . 19

1.1.1 Use of CFD in Analysis . 19

1.1.2 Improving Robustness and Automation of CFD 22

1.2 Background . 23

1.2.1 High-Order Methods . 23

1.2.2 Error Estimation and Adaptation . 24

1.2.3 Cut Cells . 27

1.3 Thesis Overview . 32

2 Compressible Navier-Stokes Discretization 35

2.1 Discontinuous Galerkin Example . 35

2.2 Compressible Navier-Stokes Equations . 36

2.3 Discontinuous Galerkin Discretization . 38

3 Output-based Error Estimation and Adaptation 41

3.1 Output-based Error Estimation . 41

3.1.1 The Adjoint . 41

3.1.2 Error Estimation and Localization 43

3.2 Adaptation Strategy . 48

3.2.1 Anisotropy in High-Order Solutions 49

3.2.2 Mesh Optimization . 52

3.2.3 Implementation . 56

4 Cut Cells in Two Dimensions 59

4.1 Cutting and Integration Mechanics . 59

4.1.1 Geometry Definition and Initial Mesh 59

4.1.2 Cutting Algorithm . 60

7

4.1.3 Integration . 63

4.1.4 Adaptation on Cut-Cell Meshes . 69

4.1.5 Implementation . 71

4.2 Results . 72

4.2.1 Inviscid NACA 0012, M∞ = 0.5, α = 2o 73

4.2.2 NACA 0012, M∞ = 0.5, Re = 5000, α = 2o 77

4.2.3 Sensitivity to Initial Mesh . 83

4.2.4 NACA 0005, M = 0.4, Re = 50000, α = 0o 86

4.2.5 Joukowski Airfoil: High Pe Convection-Diffusion 89

5 Cut Cells in Three Dimensions 103

5.1 Cutting and Integration Mechanics . 104

5.1.1 Geometry Definition . 104

5.1.2 Cutting Algorithm . 108

5.1.3 Integration . 121

5.1.4 Implementation . 129

5.2 Results . 130

5.2.1 Channel Flow Over a Gaussian Perturbation, M = 0.3 131

5.2.2 M = 0.3 Flow Over a Body of Revolution 134

5.2.3 M = 0.1, α = 0o Flow Over a NACA 0012, AR = 2 Wing 137

5.2.4 M = 0.1, α = 0o Flow Over a Wing-body Configuration 138

6 Conclusions and Future Work 143

6.1 Summary . 143

6.2 Conclusions . 145

6.3 Future Work . 145

A Compressible Navier-Stokes Boundary Conditions 149

B Adapting for p > 1 Interpolation 151

C Refinement Prediction Example 153

D Cubic Spline Intersection 155

E Conic Parametrization 159

F Geometry Interpolation Properties of Quadratic Patches 163

8

List of Figures

1-1 Typical use of CFD in analysis. Dashed arrow in the feedback direction refers

to re-meshing of the computational domain based on an adaptive indicator. 20

1-2 DLR-F6 wing-body geometry for the third AIAA Drag Prediction Work-

shop. The triangular surface mesh shown in this figure is used to define the

quadratic patch geometry for the runs in Section 5.2.4. 21

1-3 DPW III results [28, 53]: total drag coefficient predictions for the DLR-F6

wing-body at M = 0.75, CL = 0.5, Re = 5 × 106. The solution index

differentiates between different codes, turbulence models, and mesh types. . 22

1-4 Example of a curved boundary intersecting an interior edge adjacent to two

anisotropic triangles. Attempting to curve the boundary edge introduces a

negative Jacobian in the mapping from the reference triangle to the curved

element and hence renders the triangulation invalid. 28

1-5 Sample Cartesian mesh in two dimensions. The square lattice mesh does not

conform to the geometry. Cut cells are portions of intersected elements that

lie inside the computational domain (above the geometry boundary in this

case). 29

1-6 Comparison of Cartesian and triangular cut-cell meshes of a curved boundary

layer. As the boundary is not aligned with the grid, isotropic refinement is

required for the Cartesian mesh (a). With triangular cut cells, anisotropic

refinement is possible in general directions (b). 31

2-1 Sample solution uH in V p
H , the space of piecewise continuous polynomials of

order p. uH is shown over two elements in a two-dimensional mesh. 36

9

3-1 Sample flow and adjoint solutions: (a) x-momentum for a NACA 0012 in

subsonic, viscous flow; (b) x-momentum for a diamond airfoil in supersonic,

M = 1.5 flow; (c) x-momentum adjoint associated with a drag output on

the NACA 0012; (d) x-momentum adjoint for a pressure line integral output

computed several chords away from the diamond airfoil. For the adjoint, the

absolute value is plotted with dark areas indicating large magnitudes. . . . 44

3-2 Patch of elements, Pκ, associated with element κ. Pκ consists of κ and the

adjacent elements (shaded). The reconstructed primal and adjoint solutions

on κ are based on an H1 error minimization over Pκ. 47

3-3 Ellipse representing requested mesh sizes implied by equal measure under a

Riemannian metric M. Also shown are the principal directions, ei, and the

associated principal stretching magnitudes, hi. 51

3-4 Mapping from unit equilateral triangle to a general triangle, κ, via refer-

ence, right-triangle Jacobians. Singular values of this mapping serve as the

principal stretching directions. 54

3-5 Adaptive solution process flowchart. The input consists of an initial coarse

mesh and a requested error tolerance. Adaptation stops when the error

tolerance is met. In practice, the most expensive step is the flow and adjoint

solution on each mesh. 57

4-1 Sample farfield and symmetry boundary placements for a cut-cell airfoil case.

The background domains are denoted by the shaded areas. As shown in (b),

the geometry may cut through the boundary of the background domain, in

which case the geometry lying outside the background domain is discarded. 60

4-2 Intersection between a background mesh and an airfoil spline geometry. An

embedded edge and two cut edges are identified for one triangle. Embedded

edges consist of contiguous portions of the spline geometry inside the back-

ground mesh triangles, whereas cut edges consist of portions of background

triangle edges inside the computational domain. 61

4-3 Example of cut cells formed at an airfoil trailing edge. The background

triangle on the left is split into two cut cells, as indicated by the labels “1”

and “2.” The triangle on the right becomes one cut cell with four neighbors. 63

4-4 Cut-cell mesh around a NACA 0012 airfoil with completely-contained trian-

gles removed. Triangles straddling the geometry boundary yield cut cells;

one cut cell is shaded in (b). The dashed line indicates the spline geometry. 64

10

4-5 Quadrature points for one-dimensional integration on the boundary of a sam-

ple cut cell. Distinct spline segments, with endpoints at spline knots, are

treated separately. 65

4-6 Construction of the Φi(x) functions for use in defining the integration basis,

ζi(x). The Φi(x) are tensor products of one-dimensional Lagrange functions,

φik(x), in each spatial direction on the cut-cell bounding box. 66

4-7 Interior sampling point selection by ray casting from boundary quadrature

points. The rays are cast with a random perturbation in angle from the

inward-pointing normal. For each ray, one sampling point is chosen between

the ray origin and the point of first exit. 68

4-8 Example of integration points for cut cells around a NACA 0012 geometry.

In addition to the cut-cell interior sampling points, quadrature points on the

embedded edges are also shown. 70

4-9 For non-axis-aligned sliver cut elements (shaded area), the original bounding

box (left) is rotated to obtain a tighter fit (right). Also shown is the original

triangle from which the sliver element was cut. 71

4-10 NACA 0012: M∞ = 0.5, inviscid, α = 2o Initial meshes for adaptive runs. . 74

4-11 NACA 0012: M∞ = 0.5, inviscid, α = 2o. Drag error versus degrees of

freedom. Dashed line indicates prescribed tolerance of e0 = 0.1 counts. . . . 74

4-12 NACA 0012: M∞ = 0.5, inviscid, α = 2o. Final boundary-conforming and

cut-cell meshes for p = 1, 2, 3, adapted to a drag tolerance of e0 = 0.1 counts. 75

4-13 NACA 0012: M∞ = 0.5, inviscid, α = 2o. Mach number contours for p = 1

and p = 3 on the final adapted boundary-conforming and cut-cell meshes. . 76

4-14 NACA 0012: M∞ = 0.5, Re = 5000, α = 2o. Drag error versus degrees of

freedom. Dashed line indicates prescribed tolerance of e0 = 0.1 drag counts. 78

4-15 NACA 0012: M∞ = 0.5, Re = 5000, α = 2o. Final p = 2 meshes adapted on

drag with tolerance e0 = 0.1 counts. 79

4-16 NACA 0012: M∞ = 0.5, Re = 5000, α = 2o. Final p = 3 meshes adapted on

drag with tolerance e0 = 0.1 counts. 79

4-17 NACA 0012: M∞ = 0.5, Re = 5000, α = 2o. Mach number contours for p = 1

and p = 3 on the final adapted boundary-conforming and cut-cell meshes. . 80

4-18 NACA 0012: M∞ = 0.5, Re = 5000, α = 2o. Surface skin friction coefficient

distributions for solutions on the final adapted boundary-conforming and cut-

cell meshes. These plots were generated by evaluating Cf at the quadrature

points on the embedded boundary edges. 81

11

4-19 NACA 0012: M∞ = 0.5, Re = 5000, α = 2o. Lift error versus degrees of

freedom. Dashed line indicates prescribed tolerance of e0 = 1 lift counts. . . 81

4-20 NACA 0012: M∞ = 0.5, Re = 5000, α = 2o. Final p = 2 meshes adapted on

lift with tolerance e0 = 1 count. 82

4-21 NACA 0012: M∞ = 0.5, Re = 5000, α = 2o. Final p = 3 meshes adapted on

lift with tolerance e0 = 1 count. 82

4-22 Mesh-sensitivity study: sample initial meshes showing a uniform triangula-

tion as well as two meshes adapted to the geometry. 83

4-23 Mesh-sensitivity study: adaptation histories for p = 1, 2, 3, starting from

various initial meshes, some shown in Figure 4-22. 84

4-24 Mesh-sensitivity study: final p = 3 meshes for the three initial meshes shown

in Figure 4-22. 85

4-25 NACA 0005: M = 0.4, Re = 50000, α = 0o. Initial mesh consisting of 677

elements. 86

4-26 NACA 0005: M∞ = 0.4, Re = 50000, α = 0o. Drag error versus degrees of

freedom. Dashed line indicates prescribed tolerance of e0 = 0.01 drag counts. 87

4-27 NACA 0005: M∞ = 0.4, Re = 50000, α = 0o. Final cut-cell meshes adapted

on drag. 87

4-28 NACA 0005: M∞ = 0.4, Re = 50000, α = 0o. Mach number contours for

p = 1 and p = 3 on the final adapted cut-cell meshes. 88

4-29 NACA 0005: M∞ = 0.4, Re = 50000, α = 0o. Skin friction coefficient distri-

butions on the final adapted meshes. 88

4-30 Joukowski transformation from a cylinder to an airfoil with a cusped trailing

edge. The origin of the cylinder is on the real axis, which means that the

resulting Joukowski airfoil is symmetric. 90

4-31 Initial mesh for Pe = 4 × 106 computation, adapted to geometry: 904 ele-

ments. Also shown is the airfoil spline representation. 92

4-32 Joukowski airfoil: Pe = 4×106. Output error versus DOF adaptation history

and a histogram of element aspect ratio in the final adapted meshes. 93

4-33 Joukowski airfoil: Pe = 4× 106. Final adapted meshes for p = 1, p = 2, and

p = 3. Shaded areas indicate zoom regions for the subsequent plots. Arrows

point to the dashed line marking the embedded airfoil boundary. 94

4-34 Joukowski airfoil: Pe = 4 × 106. Heat transfer coefficient along the air-

foil surface on the final adapted p = 1, 2, 3 meshes. Negative heat transfer

corresponds to heat flux into the flow, out of the airfoil. 95

12

4-35 Joukowski airfoil: Pe = 4× 106. p = 1 adaptation on heat flux starting from

an initial mesh with significant wake resolution. The wake is coarsened at

each adaptation iteration. 96

4-36 Joukowski airfoil: Pe = 4×108. Output error versus DOF adaptation history

and a histogram of element aspect ratio in the final adapted meshes. 97

4-37 Joukowski airfoil: Pe = 4 × 108. Final adapted meshes for p = 2 and p = 3.

Shaded areas indicate zoom regions for the subsequent plots. Arrows point

to the dashed line marking the embedded airfoil boundary. 98

4-38 Joukowski airfoil: Pe = 4 × 108. Heat transfer coefficient along the airfoil

surface on the final adapted p = 1, 2, 3 meshes. 99

4-39 Joukowski airfoil: Pe = 4 × 1010. Output error versus DOF adaptation

history and a histogram of element aspect ratio in the final adapted meshes. 100

4-40 Joukowski airfoil: Pe = 4× 1010. Final adapted meshes for p = 2 and p = 3.

Shaded areas indicate zoom regions for the subsequent plots. Arrows point

to the dashed line marking the embedded airfoil boundary. 101

4-41 Joukowski airfoil: Pe = 4 × 1010. Heat transfer coefficient along the airfoil

surface on the final adapted p = 2 and p = 3 meshes. 102

5-1 Patch reference triangle (a) and an example of two adjacent patches (b). The

first three nodes in the numbering are the “linear nodes”, whereas the latter

three are the “high-order nodes.” . 106

5-2 Example of a quadratic-patch representation of a portion of a sphere. . . . 107

5-3 Quadratic patch surface representation of a wing-body-nacelle geometry (a)

and one possible choice for the background domain (b). The shaded side of

the background domain indicates a symmetry boundary condition. Farfield

boundary conditions are applied on the other sides. 108

5-4 A background-mesh tetrahedron intersecting a quadratic-patch surface (a).

The upper portion of the tetrahedron lies inside the computational domain.

A wire-frame of the resulting cut-cell (b) is obtained by joining various in-

tersection points (e.g. P and Q) into 1D structures (e.g. e). Loops of 1D

structures enclose 2D structures, such as the shaded one labeled by σ. . . . 109

5-5 Intersection of a quadratic patch with a tetrahedron. 110

13

5-6 Intersection of the quadratic patch and tetrahedron from Figure 5-5, shown

in the reference space of the patch. The plane of each tetrahedron face yields

a conic in reference space. The arrows on the conics indicate the tetrahedron-

interior direction on the patch. The shaded area is the patch region of validity

and corresponds to the portion of the patch lying inside the tetrahedron. . 112

5-7 Valid intersections in patch reference space for the set of conics and patch

edges shown in Figure 5-6. These five intersections (circled) consist of four

conic-line intersections and one conic-conic intersection. 114

5-8 Intersection of a tetrahedron face with a curved patch resulting in an ellipse

completely contained in the reference triangle. The validity region, shown

shaded on the right, consists of the area inside the ellipse. Mapped into

physical space, the associated embedded face is the portion of the patch

inside the tetrahedron. 114

5-9 Detailed intersections for the cut cell introduced in Figure 5-4. On the right

is a top-view of the portion of the quadratic-patch surface contained within

the tetrahedron. Various intersection points and 1D structures are indicated.

One out of the six embedded faces is highlighted. 117

5-10 Two cut cells arising from the cutting of one tetrahedron. The two corners

adjacent to nodes 2 and 4 of the original tetrahedron lie inside the compu-

tational domain. In addition, two of the original tetrahedron’s faces are cut

into multiple (two) disjoint regions. 117

5-11 Numerical calculation of the intersection between two curves is better condi-

tioned for a large intersection angle, θ, (a) compared to a small intersection

angle (b). In (b), the set of points a distance ǫ apart between the two curves

has diameter >> ǫ, and hence the precise location of the intersection is more

difficult to identify. 120

5-12 Parametrization of a conic with a localized region of high curvature. Pos-

sible integration points are shown for two cases. Points obtained from a

parametrization by arc length (a) fail to adequately capture the area of high

curvature. Points from a parametrization by angle from a focus (b) capture

the curvature; however, fewer sampling points away from the region of high

curvature could lead to loss of accuracy for high-order integrands. 122

5-13 Integration along a curved conic segment adjacent to a patch validity region

is performed by parametrizing the conic and using Gaussian quadrature on

the parameter interval. Shown in this figure is a parametrization by angle

from a point (e.g. a focus of the conic). 123

14

5-14 Patch reference space: quadrature points and normals on 1D structures ad-

jacent to validity region (a) and embedded face quadrature points obtained

by ray-casting (b). The outward-pointing normals in (a) are illustrated by

line segments whose length is weighted by the Gauss quadrature weights and

by the mapping Jacobian |ds/dθ|. 124

5-15 Relation between patch validity region, E, in reference space (X,Y), and the

mapped embedded face, σf , in physical space (x, y, z). 125

5-16 Three cut faces result from the intersection depicted in Figure 5-4. This figure

highlights one of these cut faces. Sampling points generated by ray-casting

in the plane of the cut face are also shown. 127

5-17 Interior, volume-integration sampling points for the cut tetrahedron depicted

in Figure 5-5. These points were generated by ray casting from embedded-

face and cut-face integration points. 128

5-18 Numerical conditioning improvement of element-interior integration via bounding-

box rotation for the case of a sliver element. 128

5-19 Gaussian bump channel: M = 0.3. Manually-generated, 18432-element,

boundary-conforming mesh, with q = 3 curved elements on the bottom wall.

The drag from a p = 3 solution on this mesh serves as the true value for the

cut-cell adaptive runs. 131

5-20 Gaussian bump channel: M = 0.3. Quadratic patch representation of the

bump surface (a) and the initial background mesh (b). 132

5-21 Gaussian bump channel: M = 0.3. Drag output error vs degrees of freedom.

Dashed line indicates prescribed tolerance of e0 = 0.15 counts. 133

5-22 Gaussian bump channel: M = 0.3. Final adapted meshes for p = 1 and p = 2.133

5-23 Gaussian bump channel: M = 0.3. Mach number contours on the final

adapted meshes for p = 1 and p = 2. The planar cut is parallel to the x−z

plane and is taken down the middle of the channel. 134

5-24 Body of revolution: M = 0.3. Quadratic patch representation of the geome-

try (a) and the initial background mesh (b). 135

5-25 Body of revolution: M = 0.3. Drag output error versus degrees of freedom.

Dashed line indicates prescribed tolerance of e0 = 1 count. 136

5-26 Body of revolution: M = 0.3. Final adapted meshes for p = 1 and p = 2. . 136

5-27 Body of revolution: M = 0.3. Mach number contours on the final meshes for

p = 1 and p = 2. The cut is parallel to the x−y plane at a height z = .03. . 137

5-28 NACA 0012 wing: AR=2, M = 0.1, α = 0o. Quadratic patch representation

of the geometry (a) and the initial background mesh (b). 138

15

5-29 NACA 0012 wing: AR=2, M = 0.1, α = 0o. Drag output error versus degrees

of freedom. Dashed line indicates prescribed tolerance of e0 = 2 counts. . . 139

5-30 NACA 0012 wing: AR=2, M = 0.1, α = 0o. Final adapted meshes for p = 1

and p = 2. 139

5-31 NACA 0012 wing: AR=2, M = 0.1, α = 0o. Mach number contours on the

final meshes for p = 1 and p = 2. The cut is parallel to the x−z plane and

is situated at 60% of the half-span. 140

5-32 Wing-body: M = 0.1, α = 0o. Surface representation with 9368 quadratic

patches. 140

5-33 Wing-body: M = 0.1, α = 0o. Drag output versus degrees of freedom. . . . 141

5-34 Wing-body: M = 0.1, α = 0o. Finest adapted meshes for p = 1 and p = 2. 142

5-35 Wing-body: M = 0.1, α = 0o. Mach number contours on the finest meshes

for p = 1 and p = 2. The cut is parallel to the x−z plane and is situated at

50% of the half-span. 142

B-1 Three grids used for the interpolation of the function u in (B.1). Hessian-

based analysis predicts AR = 4.0 as the ideal for interpolation. 151

C-1 Example of global mesh modification on a 1D mesh using standard refinement

prediction (lower left) and using an alternate goal-oriented error equidistri-

bution method (lower right). 154

D-1 Intersection between a spline segment and a line. A root-finding formula is

used to determine where a spline segment cuts an interior face. 155

F-1 Interpolation and slope error definitions for an arc of a circle in two dimen-

sions. Nodes of the panels are assumed to be positioned on the true geometry.164

F-2 Geometry interpolation error along a quadratic panel for ∆θ = π/12. The

maximum interpolation error is 9.1 × 10−6. 165

F-3 Measurement of interpolation error and slope error for a linear patch (dark

gray) on a sphere surface (light gray). 165

F-4 Interpolation and slope errors for a quadratic patch. The interpolation error

(a) is shown over the entire patch in patch reference space. The slope error

(b) is shown along one edge. 167

16

Nomenclature

General

CD drag coefficient
Cf skin friction coefficient
CH heat-transfer coefficient (Stanton number)
CL lift coefficient
d dimension (i.e. 2 or 3)
fv viscous shear force
M Mach number
Ω computational domain
Pe Peclet number
R the set of real numbers
Re Reynolds number

Discretization

δfki, δ
bf
ki auxiliary variables used in the DG discretization of the viscous terms

Fki components of the inviscid flux; K × d values
F v
ki components of the viscous flux; K × d values

ηf , ηbf stability factors used in the DG discretization of the viscous terms
κ one finite element; this could be a triangle, a tetrahedron, or a cut cell
K number of equations in the compressible Navier-Stokes system
n, ni normal vector and components
p solution approximation order; also used to denote pressure
q for curved elements, order of geometric mapping from reference to physical space
RH semi-linear weak form of the equations obtained from the discretization
TH set of all elements κ in a triangulation of the computational domain
u, uk exact primal solution in V and components
uH , uk discrete primal solution in VH and components
vH , vk test function in VH and components
V p
H space of piecewise polynomials of order p over TH

V infinite-dimensional solution space
VH finite-dimensional solution space, equal to [V p

H]K

WH infinite-dimensional solution space, equal to VH + V

17

Error Estimation and Adaptation

ei principal stretching directions for measuring anisotropy
e0 user-requested global error level
ẽ0 modified requested error level, taking into account ηa and ηt
ǫκ local error estimate/indicator on element κ; also used in adaptation to denote the

expected local error estimate on the adapted mesh
ǫcκ in adaptation, current local error estimate/indicator on element κ
ǫ global output error estimate equal to

∑
κ ǫκ

H Hessian matrix (d × d) of second derivatives of a scalar quantity
hci , hi current/desired principal stretching magnitudes
ηa adaptation aggressiveness, 0 ≤ ηa < 1
ηt adaptation target 0 < ηt ≤ 1
J output of interest, such as drag, lift, heat flux, etc.
M Riemannian metric defined for measuring lengths in the presence of anisotropy
nκ expected number of adapted-mesh elements contained in element κ of the current mesh
Nf expected number of elements in the adapted mesh
ψ exact adjoint solution in V
ψH discrete adjoint solution in VH
Pκ patch of elements neighboring κ (including κ)
rκ a priori convergence rate estimate for the error indicator on κ

Cut Cells

nq number of sampling points in cut-cell integration
Pj coefficient matrices (3 × 3) for quadratic Lagrange basis functions
Φi(x) tensor-product Lagrange basis functions used for computing the ζi(x)
R [X,Y, 1]T : vector of patch reference coordinates used with Pj and Sf
Sf matrix representation (3 × 3) of a quadratic form
s arc-length parameter used in splines and conics
wq sampling weights associated with xq for cut-cell integration
X [X,Y]T : reference-space coordinates on quadratic patches
x, xi physical-space coordinates. x, y, z are also used
xq sampling points for cut-cell integration
ζi(x) high-order basis functions onto which a cut-cell integrand is projected

Acronyms

CAD Computer-Aided Design
CFD Computational Fluid Dynamics
CFL Courant-Freidrichs-Lewy number
DG Discontinuous Galerkin
DOF Degrees of Freedom
DPW Drag Prediction Workshop
GMRES Generalized Minimal Residual

18

Chapter 1

Introduction

1.1 Motivation

Over the last several decades, increased computational power coupled with improve-

ments in numerical methods have made Computational Fluid Dynamics (CFD) an indis-

pensable tool in analysis and design applications. In aerospace engineering, numerous CFD

software packages exist that include sophisticated modeling and solution techniques. These

CFD packages are used regularly in industry to reduce design cycle costs and to improve

final product design. Wind-tunnel testing, often viewed as the alternative to CFD, is still

performed, although it requires long turnaround times and is often restricted to a cer-

tain range of physical test conditions. On the other hand, the accessibility, relatively fast

turnaround time, and almost arbitrary test conditions offered by CFD make it an attractive

tool, especially for sensitivity studies, optimization, and preliminary vehicle design.

Given its prevalent use in industry, a natural question is whether CFD is a mature field.

In particular, are the current CFD methods adequate for today’s engineering purposes? As

the following sections will show, recent evidence suggests that CFD is not yet a mature

field. Understanding where improvements can be made requires a closer look at the typical

CFD-based analysis process.

1.1.1 Use of CFD in Analysis

Typical use of CFD in analysis is illustrated in Figure 1-1. While this generalized view

does not apply to all CFD methods, it holds for the most-commonly used finite volume

and finite element methods. The starting point is a description of the geometry of interest,

usually in the form of a Computer-Aided Design (CAD) model. For example, this geom-

etry could be an airplane for which an engineer is interested in calculating forces under

19

Error
Estimate,
Adaptive
Indicator

Solution
Flow

Mesh
Computational

Discrete

Geometry
(CAD)

Aided Design
Computer−

Hours/
DaysWeeks

Days/

Figure 1-1: Typical use of CFD in analysis. Dashed arrow in the feedback direction refers
to re-meshing of the computational domain based on an adaptive indicator.

certain prescribed flight conditions. Given the geometry, an engineer must create a discrete

computational mesh of the flow domain, which in the example case is the volume outside

the airplane. For complex geometries, construction of a “quality” mesh, one with adequate

resolution of necessary features, can take days or even weeks. Once the mesh is constructed,

a flow solution can be obtained within hours or days, depending on the size of the problem

and on the computational resources available. The flow solution is then post-processed to

calculate quantities of interest and sometimes visually examined to assess quality. In a

design application, the geometry may be altered based on the post-processing and the cycle

repeated.

Error estimation and adaptation is an additional step that is not often performed in

practical CFD applications. As shown in Figure 1-1, this step occurs after the flow solution.

It consists of estimating some measure of the error in the solution and providing an indicator

of the areas in the approximate solution that contribute most to the error. This adaptive

indicator can then be used to alter (e.g. refine) the computational mesh in an effort to

minimize the error. Over several such adaptive iterations, the error could be reduced to

a prescribed tolerance. The reasons that this step is rarely performed are that a reliable

error indicator is rarely available and that adaptive re-meshing of a complex geometry is

very time-consuming, lacks robustness, or is not even possible (especially for anisotropic

meshes).

A notable example of CFD applied to a practical case is the Drag Prediction Workshop

(DPW) run by the American Institute of Aeronautics and Astronautics (AIAA) [47, 42, 51].

One of the objectives of this workshop is “to assess the state-of-the-art computational

methods as practical aerodynamic tools for aircraft force and moment prediction of industry-

relevant geometries.” This assessment is performed by providing the geometry of a standard

aerodynamic computation to a variety of participating codes from industry, government,

and academia and comparing the resulting force and moment predictions. The most recent

workshop at the time of this writing was the DPW III. The geometry for this workshop

consisted of a DLR-F6 wing-body configuration [15], shown in Figure 1-2. This geometry

20

Figure 1-2: DLR-F6 wing-body geometry for the third AIAA Drag Prediction Workshop.
The triangular surface mesh shown in this figure is used to define the quadratic patch
geometry for the runs in Section 5.2.4.

was distributed to the participants, along with a number of structured and unstructured

meshes, the finest meshes containing approximately 25 million elements. The resulting force

and moment predictions for a fairly standard test case of M = 0.7, CL = 0.5, Re = 5 × 106

were collected. Figure 1-3 shows the total drag predictions obtained from the various

codes on the finest meshes with the code index along the horizontal axis. Even after

neglecting outlying data points, the spread in drag predictions is over 30 drag counts,

where 1 drag count = 10−4 of the drag coefficient, CD. This spread is quite significant in

terms of engineering accuracy: a simple range-equation analysis shows that for a typical

large, long-range, passenger jet, a difference of 1 drag count translates into approximately

4-8 passengers, depending on whether the configuration is limited by fuel volume or weight

[71, 24]. Clearly, for such an application, an uncertainty on the order of 30 drag counts is

unacceptable for engineering analysis and design.

The results from the most recent workshop constitute only a slight improvement over

the results from the two previous workshops [42, 47], even though computational power has

increased substantially. This observation suggests that increases in computational power

alone will be insufficient to decrease this uncertainty to acceptable levels in the near future.

While part of the scatter can be attributed to different discretizations (e.g. cell-centered

versus node-centered finite volume) and turbulence models (e.g. Spalart-Allmaras versus

k−ω), recent evidence points to differences in mesh size distribution as one of the dominant

sources of the scatter [51].

21

0 2 4 6 8 10 12 14 16 18 20 22
0.024

0.026

0.028

0.03

0.032

0.034

Solution Index

C
D

, T
O

T

Multiblock
Overset
Unstructured
Median
1 Std Dev

Figure 1-3: DPW III results [28, 53]: total drag coefficient predictions for the DLR-F6
wing-body at M = 0.75, CL = 0.5, Re = 5× 106. The solution index differentiates between
different codes, turbulence models, and mesh types.

1.1.2 Improving Robustness and Automation of CFD

The recent DPW results demonstrate that the risk of unacceptably large errors is high

for current CFD practices. Typically, such risks are managed by practitioners who are

knowledgeable about the assumptions and limitations of the models. However, even very

experienced users cannot quantify the error in a discrete approximation of a complex flow-

field. As a result, current CFD practices are not robust across the wide variety of existing

applications, including ones such as the DPW case, for which many of the codes are tuned.

Lack of automation is another key issue that plagues the CFD analysis process. Current

industry practices require heavy “person-in-the-loop” involvement, especially during mesh

generation. As indicated in Figure 1-1, mesh generation may require days or weeks of user

involvement. As such, this step is often the bottleneck in CFD analysis. This meshing

bottleneck not only extends the design cycle time but also hinders the application of mesh

adaptation methods and design optimization. Removing the user completely out of the

design loop is neither possible nor advisable; however, improving automation in areas such

as meshing is expected to reduce design cycle time and to allow for techniques such as

solution-based adaptation and optimization.

The objective of this thesis is to demonstrate how current CFD practices can be improved

to increase the robustness and automation of CFD in analysis and design. Two key ideas are

suggested to demonstrate this objective: output-based error estimation and adaptation and

22

a cut-cell meshing technique. With computational efficiency also in mind, these ideas will

be presented in the context of a high-order discretization. The motivation and background

for these ideas are presented in the following section.

1.2 Background

As discussed in the previous section, the proposed improvements to the automation and

robustness of current CFD practices rely on two key ideas: output-based error estimation

and adaptation and a simplex cut-cell meshing strategy. This section presents motivation

and a review of the pertinent background for both of these ideas as well as for a high-order

finite element discretization to which these ideas will be applied. Additional details are also

provided in the respective chapters.

1.2.1 High-Order Methods

A high-order discretization enables practical computations at strict engineering-required

error tolerances. In the context of this work, a high-order method is one with solution

interpolation order, p, greater than 1. The benefit of using high order is motivated by

estimating the time to solution for a high-fidelity CFD calculation. Assuming a solution

error norm that converges at a rate E = O(hp+1), where h is a measure of the mesh size,

the time to solution, T , can be expressed as

log T = d

(
− 1

p + 1
log E + a log(p + 1)

)
− log F + constant.

In the above equation, d is the dimension, F is the computational speed, and a is the

complexity of the solution algorithm. For example, a = 2 if calculations are dominated by

dense matrix-vector multiplications. The derivation of this expression is outlined in [24].

When the accuracy requirement is high (E << 1) and a is moderate, the log E term will in

general dominate the log(p+1) term; hence, the solution time will depend exponentially on

d/(p + 1). In such high-fidelity calculations, increasing the order can significantly decrease

the time to solution, or, alternatively, it can allow for solution of problems of much greater

complexity.

Unfortunately, high-order discretizations are not prevalent in current CFD work in

aerospace engineering. Finite volume discretizations have been the workhorse of CFD in

aerospace engineering for the last couple decades. Although solution acceleration techniques

and increased computational power have made large-scale computations practical, the spa-

tial accuracy in current industry applications of finite volume are limited to, at best, second

23

order. This means that the solution error, measured in some appropriate norm, decreases

as hr, r ≤ 2, where h is a measure of grid spacing. Introducing high order in finite volume

discretizations requires extended stencils, in which degrees of freedom become coupled be-

yond nearest-neighbor volumes. These extended stencils contribute to difficulties in stable

iterative algorithms, memory requirements, and boundary conditions [24, 50]. On the other

hand, finite element formulations introduce high-order degrees of freedom locally in each

element and therefore yield an element-wise compact stencil.

The discontinuous Galerkin (DG) method is an example of a high-order finite element

method in which element-to-element coupling exists only through fluxes on common bound-

aries. In particular, in DG, piecewise polynomials of arbitrary order are used to approximate

the solution on each element, but solution continuity is not enforced at element interfaces.

DG methods for hyperbolic conservation laws have been studied extensively in the litera-

ture [5, 6, 7, 11, 14, 19, 38]. These studies have demonstrated the realizability of high-order

accuracy, error estimation, hp-adaptation, and stable discretization of the Euler and Navier-

Stokes equations. This work uses a high-order DG discretization, the details of which are

given in Chapter 2.

1.2.2 Error Estimation and Adaptation

Error estimation is vital to the usefulness of CFD. A CFD answer without an accompa-

nying error estimate can compromise the fidelity of the analysis. Current practice of tuning

CFD to certain representative on-design cases comes with no guarantees for other on-design

configurations, much less for off-design cases or for novel geometries. Furthermore, meet-

ing the mesh-size requirements is generally a user-intensive process and requires a priori

experience in determining the locations of wakes, shocks, and other features.

Systematic error-estimation increases robustness of CFD by quantifying the solution

error. In particular, an output-based error estimator ensures that outputs obtained from

the solution are only used to the limits of their accuracy. Moreover, in conjunction with

adaptation, error estimation closes the loop in the CFD analysis process depicted in Figure

1-1. This feedback in the loop yields an automated, adaptive method for controlling the

solution error.

Error Estimation

The error in the solution can be quantified by various means. Discretization error is

the difference between the calculated approximate solution and the exact solution. It is a

function of location within the computational domain, although it can be integrated under

24

a chosen norm over the entire domain to yield a global error or over individual elements

to yield a local error. As the exact solution is unknown, the discretization error must be

estimated; often this is done using a solution reconstruction process such as the one that will

be described in Chapter 3. Another error estimate relies on the residual, which is obtained

by substituting the approximate solution into the underlying partial differential equation.

Nonzero residuals, calculated point-wise or in a weak sense on an enriched space, indicate

regions where the governing equations are not strongly enforced. The residual can also be

integrated to yield a global or element-wise local error estimate.

Zhang et al present adaptive results using discretization error and residual indicators

for the Euler equations [79]. For one-dimensional, subsonic flows, Zhang et al find that a

residual indicator is more efficient compared to a discretization-error indicator in driving the

adaptation to reduce the total solution error. However, for transonic or multi-dimensional

flows, neither indicator is adequately effective. In general, error estimates based on residual

or discretization errors fail to capture propagation effects inherent to hyperbolic problems

[39]. For hyperbolic problems, the residual and discretization error may not necessarily be

large in certain crucial areas that significantly affect the solution downstream. For example,

for separated flow over an airfoil, small perturbations in certain upstream areas may have

large effects on the location of the separation point, which in turn has a large effect on the

calculated lift and drag. Stated another way, engineering outputs can be highly sensitive

to discretization or residual errors in areas that may not be easily identifiable a priori.

Fortunately, another type of error estimate, which is based on engineering outputs, ad-

dresses these problems. An engineering output is a quantity of interest for design purposes,

such as the lift or drag on an airfoil. Techniques exist for estimating errors in engineering

outputs. These techniques identify all areas of the domain that are important for the ac-

curate prediction of an output, properly accounting for propagation effects in the process.

A common output error estimation technique requires solution of an adjoint problem as-

sociated with the output, where the adjoint links local residuals to the output error. The

resulting error estimate can be used to ascribe confidence levels to the engineering output

or to drive an adaptive method with the goal of reducing the output error below a user-

specified tolerance. This output-error estimation technique is employed in the current work.

Section 3.1 presents further background and details.

Mesh Adaptation

One of the uses of error estimation is to drive an adaptive method that modifies the

solution space in an attempt to decrease and equidistribute the error. For high-order finite

25

element methods, in which degrees of freedom vary with the number of elements and with

the interpolation order, the adaptation strategy can in general be classified into one of three

categories: p-adaptation, h-adaptation, or hp-adaptation.

In p-adaptation, introduced by Szabo [70], the number of degrees of freedom is varied

by changing the order of interpolation. With the discontinuous Galerkin method, changing

the order is simple and can be done locally on each element. A recent example of p-

adaptation applied to DG is given by Lu [48], who used an output-based error estimator

to drive the adaptation. An advantage of p-adaptation is that the computational mesh

remains fixed. In addition, an exponential error convergence rate with respect to degrees of

freedom (DOF), E ∼ C
(DOF)C2

1 , is possible for sufficiently-smooth solutions. Disadvantages,

however, include difficulty in handling singularities and areas of anisotropy and the need

for a reasonable starting mesh.

In h-adaptation, the solution space is modified by adjusting the size of the elements in

the computational mesh. Elements can be made smaller (refinement) or larger (coarsening),

resulting in a local increase or decrease in the degrees of freedom. Mesh changes can be

introduced locally, by splitting edges or adding extra nodes, or globally, by re-meshing

the entire domain. A key feature of h-adaptation is that it allows for the generation of

anisotropic (stretched) elements, which increase mesh efficiency in areas such as boundary

layers and wakes. However, the best attainable error convergence is only algebraic with

respect to DOF, E ∼ DOFC1 .

hp-adaptation strives to combine the best of both strategies, employing p-refinement in

areas where the solution is smooth and h-refinement near singularities or areas of anisotropy.

The motivation for this strategy is that, in smooth regions, p-refinement is more effective at

reducing the error per unit cost, compared to h-refinement [75, 40]. Implemented properly,

hp-adaptation can isolate singularities and yield exponential error convergence with respect

to DOF. In practice, however, the difficulty of hp-adaptation lies in making the decision

between h- and p-refinement, a decision that requires either a solution regularity estimate

or a heuristic algorithm. Houston and Süli [40] present a review of commonly used methods

for making this decision.

The adaptation strategy chosen for this work is h-adaptation at a constant p. This strat-

egy does not take advantage of the cost savings offered by hp-adaptation, but it avoids the

additional complexity involved in making the regularity estimation decision. This simplifi-

cation also allows for a straightforward comparison of the adaptive performance of different

interpolation orders. Extension to hp-adaptation is one of the areas of possible future work.

26

1.2.3 Cut Cells

Currently, most industry-level meshers employ multiblock or fully-unstructured mesh-

generation techniques. Multiblock mesh generation consists of subdividing the computa-

tional domain into block volumes for which structured meshes are easier to generate. The

user generally has control of the number, size, location, and refinement level of the blocks,

enabling targeted resolution of areas that are known a priori to require significant refine-

ment. However, complex geometries usually require non-trivial multiblock subdivisions that

result in significant user involvement in the mesh-generation process. A common alternative

to multiblock mesh generation is unstructured mesh generation, in which the mesh connec-

tivity is explicitly stored. Typically, unstructured meshes consist of triangles or tetrahedra.

While unstructured meshers are often more automated, they generally offer less user con-

trol of sizing and suffer from robustness problems for stretched meshes around complex

geometries.

One option for more automated and robust meshing is the use of cut cells, in which

the computational mesh is cut out from a background mesh that need not conform to

the geometry of interest. Without the boundary-conforming constraint, generation of the

background mesh is straightforward and can be incorporated into an adaptive solution

process. The burden of robustness is transferred to intersecting the background mesh with

the geometry, a process that can be fully-automated.

Current finite volume/finite element computational meshes fall into one of the following

categories: structured, boundary-conforming; unstructured, boundary-conforming; Carte-

sian, cut-cell. Strictly speaking, structured meshes are those for which the mesh connectivity

is not stored, but rather implied in the ordering of nodes or elements. Often, structured

meshes consist of rectangles in 2D and boxes in 3D, although this need not be the case.

Cartesian meshes consist of rectangles or boxes, but, depending on how they are refined,

need not be strictly structured.

Structured meshes have the advantage that associated solution methods are often memory-

lean and fast. However, generation of boundary-conforming structured meshes on arbitrary

geometries is not automated and requires significant user involvement. Unstructured meshes

can often be generated automatically for geometries that are not overly complex and for

linear geometry approximations. However, curved meshes have been found necessary for

certain high-order methods, such as boundary-conforming DG discretizations [5]. Currently,

construction of curved meshes for practical configurations is neither automated nor robust.

One of the difficulties is ensuring that a curved geometry boundary does not intersect any

interior faces, as shown for 2D in Figure 1-4. This is a difficult task for highly-anisotropic

27

boundary layer meshes, in which several layers of interior faces may intersect the curved

boundary . In addition, even linear, unstructured mesh generation is not bulletproof for

very complex geometries. Compared to their structured counterparts, unstructured meshes

are not as lean since they have to store mesh connectivity.

Curved boundary

Interior edge intersection

Figure 1-4: Example of a curved boundary intersecting an interior edge adjacent to two
anisotropic triangles. Attempting to curve the boundary edge introduces a negative Jaco-
bian in the mapping from the reference triangle to the curved element and hence renders
the triangulation invalid.

The Cartesian Method

The “Cartesian method” is a meshing technique in which rectangular/hexahedral cells

on a regular lattice are allowed to cut through the geometry, resulting in “cut cells” on

the geometry boundary, as shown in Figure 1-5. Mesh adaptation is in general necessary

to resolve the boundary well. Since the boundary-conforming constraint is removed, the

Cartesian mesh generation process can be fully-automated. The costs of this automation

are the additional required capability of intersecting the geometry with a background mesh

and the ability to use arbitrarily-shaped cut cells in the flow solver. However, given the

large cost of boundary-conforming mesh generation, the automation benefit of cut cells may

be worth the additional effort.

The idea of using Cartesian cut cells began with the works of Purvis and Burkhalter in

1979 [62] and Wedan and South in 1983 [76]. These authors worked with a finite volume

method for the full potential equations in which the geometry was cut out in a piecewise

linear fashion on each cell. This work was extended to the 2D Euler equations by Clarke,

Salas, and Hassan in 1986 [18], who also added an agglomeration technique in which small

cells were incorporated into adjacent cells so as not to limit the allowable time step. Their

work showed reasonable agreement with an analytical airfoil solution, except at the leading

edge, where the grid was deemed too coarse. Shortly thereafter, Gaffney, Salas, and Hassan

[29] extended the Euler finite volume method to 3D, still using linear cuts and small volume

cut-cell agglomeration. They found that when the geometry surfaces were not grid-aligned,

heavy (isotropic) clustering was required to sufficiently resolve the flow.

28

Cut Cell

Geometry
Boundary

Figure 1-5: Sample Cartesian mesh in two dimensions. The square lattice mesh does not
conform to the geometry. Cut cells are portions of intersected elements that lie inside the
computational domain (above the geometry boundary in this case).

Around the same time, a group at Boeing developed a Cartesian cut-cell method for

the 3D potential flow equations on complex geometries. The Cartesian method was chosen

because, while geometries were at hand from previous linear panel codes, robust techniques

for volume mesh generation around these geometries were not available. Rubbert et al [66]

and Young et al [78] presented details of the resulting Cartesian cut-cell finite element

method, which became the TRANAIR code. The method is based on the construction of a

conforming finite element basis on linear cut cells, using Stokes’ theorem to carry out the

volume integration. The method also allows for adaptation based on geometry (length scale

of panels), solution features, and user-prescribed refinement. Since its inception, TRANAIR

has undergone several upgrades and is still in active use. Its success is primarily due to the

robustness and automation inherent in the cut-cell mesh generation technique.

In the late 1980’s, Leveque looked into relaxing the time-step limit imposed on small cut

cells frequently encountered in the Cartesian finite volume method [45, 46]. His resulting

generalized Godunov method accounted for wave propagation through more than one cell,

and he was able to implement the method in two dimensions. Berger and Leveque [10]

then presented a 2D Cartesian mesh method that incorporated the time step fix and an

isotropic adaptation technique based on Richardson extrapolation. In this work, they noted

that general anisotropic grid stretching would be a formidable challenge for the Cartesian

method.

In the early 1990’s, the Cartesian method for finite volume gained popularity. Quirk

[63] used Bezier curves for 2D geometry definition, although he still only allowed linear cuts,

and an adaptive mesh refinement technique similar to that of Berger and Leveque [10]. De

Zeeuw and Powell [22] presented a 2D Euler Cartesian method that incorporated adaptation

29

on solution gradients and a local time stepping procedure. Melton et al [52] presented a

3D Euler Cartesian method with an automated cutting algorithm using CAD-based surface

triangulation intersections and local geometry-based grid refinement. Pember and Bell [59]

also worked with a 3D Euler Cartesian method but allowed for solution-based adaptation

using Richardson extrapolation.

Extending the Cartesian method from Euler to Navier-Stokes entails two challenges.

First, at least for finite volume, accurate treatment of the viscous flux terms is difficult on

irregularly-shaped cut cells. Second, anisotropic adaptation is not possible in general, non-

grid aligned directions. Nevertheless, Coirier and Powell [20] applied the Cartesian method

“as-is” to the 2D Navier-Stokes equations. With a diamond-path reconstruction scheme

for the viscous term and isotropic adaptation, they obtained good results but mentioned

that isotropic adaptation would become prohibitive in 3D. Karman [41] undertook the

solution of the 3D Reynolds-averaged Navier-Stokes (RANS) equations. His resulting code,

SPLITFLOW, takes as input a geometry together with an anisotropic prismatic boundary-

layer mesh, and generates a Cartesian grid that intersects the outer portion of the boundary-

layer mesh. Karman was able to obtain results for complex geometries, but his technique

requires user construction of a viscous grid, which in turn requires a priori knowledge of

the position, extent, and necessary refinement of the boundary layers and wakes. Such a

requirement hinders the automation and robustness of the resulting method.

The late 1990’s saw more work on the Cartesian method with researchers bolstering

strengths such as automated mesh generation and tackling outstanding issues such as

anisotropy and small cut cells. Lahur et al [43, 44] looked into anisotropic splitting of Carte-

sian meshes using horizontal or vertical refinement. Such adaptation resulted in savings only

for grid-aligned features. Leveque continued working on high-resolution wave propagation

in finite volume and introduced the CLAWPACK software package. This package was used

subsequently by Forrer and Jeltsch [27], who gave a boundary treatment based on reflect-

ing flowfield at a straight boundary line, and Calhoun and Leveque [16], who considered

the advection-diffusion problem using a capacity function. In 1997, Aftosmis presented a

comprehensive review of the Cartesian method that focused on geometric algorithms and

surface modeling [1]. One of Aftosmis’s takeaway messages is that an important advantage

of the Cartesian method is separating the geometry mesh from the solution mesh. He also

presented a counting argument demonstrating why anisotropic adaptation is crucial for 3D.

In addition, Aftosmis mentioned that Cartesian methods often store full grid connectiv-

ity anyway, due to adaptation, resulting in so-called “unstructured Cartesian” approaches.

Aftosmis et al [2] then presented the details of a 3D Cartesian solver package, Cart3d, that

featured fast and automated mesh generation using surface geometry triangulation inter-

30

sections. Cart3d is currently in use for large scale computations, including space shuttle

ascent debris calculations [55]. Ongoing work continues in computing adjoints and shape

sensitivities [57] and in novel ways of moving beyond Euler calculations [3]. However, it

appears that a practical viscous discretization for the Cartesian method is going to be a

tough challenge to overcome.

Cut Cells on Simplex Elements

The Cartesian method offers a robust and automated alternative to boundary-conforming

mesh generation with advantages realized primarily for complex geometries. However, the

use of a regular lattice in one Cartesian coordinate system precludes the possibility of

anisotropic mesh adaptation along directions not aligned with the grid, as illustrated in

Figure 1-6a. Shown in the figure is a mesh of a boundary layer with a certain minimum

required mesh size in a direction normal to the boundary. While the mesh size require-

ment in the streamwise direction along the boundary is much less stringent, the Cartesian

refinement mechanism cannot capture this anisotropy. This lack of practical anisotropic

adaptation is a major obstacle in applying the Cartesian method to the Navier-Stokes or

RANS equations.

(a) Cartesian mesh (b) Triangular mesh

Figure 1-6: Comparison of Cartesian and triangular cut-cell meshes of a curved boundary
layer. As the boundary is not aligned with the grid, isotropic refinement is required for the
Cartesian mesh (a). With triangular cut cells, anisotropic refinement is possible in general
directions (b).

31

The need for anisotropic adaptation motivates another cut-cell mesh generation tech-

nique: simplex cut cells. Simplex elements are triangles in two dimensions and tetrahedra

in three dimensions. Figure 1-6b shows a triangular mesh of the same boundary-layer flow

as in Figure 1-6a. Without a regular lattice, arbitrarily-shaped elements are possible. In

particular, the anisotropy of the boundary layer is reflected in the mesh, which contains

fewer elements for the same resolution. Of course, this method shares the drawback of

any unstructured method: the mesh connectivity has to be stored. However, for practical,

viscous simulations, the gains of general anisotropic adaptation are likely to outweigh this

cost.

The mechanics of the simplex cut-cell method introduced in this work can be extended

to other element shapes. Simplices were chosen because automated, metric-driven meshers

exist for generating triangular and tetrahedral elements. These meshers are robust when

the boundary-conforming requirement is removed. That is, the mesh generation problem

reduces to creating a mesh for a simple shape such as a box with boundaries at the farfield.

An important aspect of applying cut cells to a high-order finite element method is dealing

with curved boundaries and integration on the interiors of arbitrarily-shaped elements.

These topics will be addressed in Chapters 4 and 5.

1.3 Thesis Overview

This thesis addresses the development of a robust adaptation methodology for high-

order discretizations, focusing on all aspects of the adaptation process. These aspects

include output-based error estimation, anisotropic mesh adaptation, and simplex cut-cell

meshing. The specific contributions of this thesis are as follows:

• Extension of solution anisotropy detection from p = 1 to higher-order interpolation.

• Goal-oriented mesh optimization that incorporates predictions of the adapted mesh

size during error equidistribution.

• Triangular cut-cell meshing and associated intersection with curved spline geometries.

• Tetrahedral cut-cell meshing and associated intersection with curved quadratic-patch

surface representations.

• A sampling-point-based integration technique for arbitrarily-shaped volumes and ar-

eas in two and three dimensions.

32

While these contributions are intended to be general, this work applies the methods de-

veloped to a discontinuous Galerkin finite element discretization of the compressible Navier-

Stokes equations. Details of the discretization are given in Chapter 2. Chapter 3 outlines the

output-based error estimation procedure and the anisotropic adaptation strategy. Special

attention is given to anisotropic adaptation for high-order interpolation and to a simple, yet

efficient, mesh optimization algorithm. Chapters 4 and 5 describe the details of simplex cut

cells in two and three dimensions, respectively. Both chapters contain results demonstrating

the accuracy of cut cells compared to boundary conforming meshes and their performance

in the output-based adaptive method. Finally, conclusions and ideas for future work are

given in Chapter 6.

33

34

Chapter 2

Compressible Navier-Stokes

Discretization

While the error estimation, adaptation, and cut-cell methods to be presented are valid

for general equations, the target application for this work is the compressible Navier-Stokes

equations. For completeness, this chapter presents the Navier-Stokes equations and their

discretization via the discontinuous Galerkin (DG) finite element method. This method is

introduced in the first section, using an advection example.

2.1 Discontinuous Galerkin Example

This section illustrates the basic features of the DG method applied to the scalar ad-

vection equation. Using index notation with implied summation, the advection equation

reads

∂iFi(u) = 0, Fi(u) = Viu, (2.1)

where Vi are components of a prescribed velocity field, u is a scalar quantity, and i ∈ [1, .., d]

indexes the spatial dimension, d. (2.1) is a conservation statement for u when u advects

with velocity V = [Vi]. A standard finite element discretization proceeds by triangulating

the computational domain, Ω, into elements κ and searching for a solution, uH , in a finite-

dimensional space, V p
H , for which a weak form of (2.1) is satisfied. V p

H is the space of

piecewise polynomials of order p over the elements. Figure 2-1 illustrates a sample solution

uH ∈ V p
H over two elements. Note, TH refers to the set of elements in the triangulation.

As shown, V p
H admits discontinuities across the elements, allowing for greater freedom in

the choice of basis functions on each element compared to the continuous finite element

35

u(x,y)

x
y

TH

Figure 2-1: Sample solution uH in V p
H , the space of piecewise continuous polynomials of

order p. uH is shown over two elements in a two-dimensional mesh.

method. Specifically, the same solution space can be used for arbitrarily-shaped cut elements

regardless of the number and location of adjacent elements.

A weighted residual statement, or weak form, is obtained by multiplying (2.1) by test

functions vH ∈ V p
H and integrating over the elements. Considering one element, κ, the weak

form is obtained by an integration by parts,

∫

κ
∂iFi(uH)vHdx = 0,

−
∫

κ
Fi(uH)∂ivH , dx +

∫

∂κ
F̂i(u

+
H , u−

H)niv
+
Hds = 0. (2.2)

The ni are components of the outward-pointing normal vector, and the notation ()+ and

()− refers to quantities taken from the interior and exterior of κ, respectively. F̂i(u
+
H , u−

H) is

a suitably-chosen average flux on the boundary of κ, where uH may be discontinuous. For

example, for the advective flux in (2.1), a suitable choice for F̂i(u
+
H , u−

H) is full upwinding,

F̂i(u
+
H , u−

H)ni =
1

2
Vini

(
u−

H + u+
H

)
− 1

2
|Vini|

(
u−

H − u+
H

)
.

Summing (2.2) over all elements yields the desired weak form, RH(uH , vH). With a suitably

chosen basis for V p
H , this weak form becomes a system of equations, which can be solved to

yield uH .

2.2 Compressible Navier-Stokes Equations

The compressible Navier-Stokes system consists of K equations, where K = d + 2 for

laminar flow in d dimensions. The first equation is a statement of conservation of mass, the

next d equations represent conservation of momentum, and the final equation represents

36

conservation of energy. The kth equation, written using index notation, reads

∂tuk + ∂iFki(u) − ∂iF
v
ki(u) = 0, (2.3)

where i ∈ [1, .., d] indexes the spatial dimension, and u is the state vector with K com-

ponents, uk. In this work, the conservative state vector is used, u = [ρ, ρvi, ρE], where ρ

is the density, vi are the d components of the velocity, and E is the total energy. Fki(u)

and F v
ki(u) are inviscid and viscous flux components, respectively, chosen such that (2.3)

is a compact expression for the conservation of mass, momentum, and energy. These flux

components are:

Conservation of Mass, k = 1:

F1i = ρvi, F v
1i = 0.

Conservation of Momentum, k = 2, .., d + 1:

Fki = ρvk−1vi + δ(k−1)i p, F v
ki = τ(k−1)i.

Conservation of Energy, k = d + 2:

F(d+2)i = ρviH, F v
(d+2)i = κT ∂iT + vjτij.

In the above equations, j indexes the spatial dimension, δij is the Kronecker delta

function, with δij = 1 if i = j, and 0 if i 6= j, and τij are the viscous shear and normal

stresses for a Newtonian fluid,

τij = µ(∂ivj + ∂jvi) + δijλ∂mvm, (2.4)

where m indexes the spatial dimension. The pressure, p, total enthalpy, H, and temperature,

T , are related via

p = (γ − 1)

(
ρE − 1

2
ρ(vivi)

)
,

H = E + p/ρ,

T =
p

ρR
.

37

Relevant physical quantities for air are,

Dynamic viscosity: µ = µref

(
T

Tref

)1.5(Tref + Ts

T + Ts

)
,

(Sutherland’s law: Tref = 288.15K, Ts = 110K)

Bulk viscosity coefficient: λ = −2

3
µ,

Thermal conductivity: κT =
γµR

(γ − 1)Pr
,

Specific-heat ratio: γ = 1.4,

Prandtl number: Pr = 0.71,

Gas constant: R.

The fluxes are nonlinear functions of the state vector components. It is convenient to

make use of the linear dependence of F v
ki on the spatial gradients ∂jul by writing

F v
ki = Akilj(u)∂jul, (2.5)

where Akilj(u) is a tensor that is a nonlinear function of the state vector components and

l indexes the state vector.

2.3 Discontinuous Galerkin Discretization

As in the advection example at the beginning of this chapter, the discretization of (2.3)

proceeds in standard finite element fashion by triangulating the computational domain, Ω,

into elements κ and searching for a solution, uH , in a finite-dimensional space, VH , for which

a weak form of (2.3) is satisfied. As uH is a state vector with K components, VH = [V p
H]K ;

that is, each component of uH resides in V p
H , the space of piecewise polynomials of order p

over the elements.

The weak form is presented here for one element κ with boundary ∂κ. The steady-state,

discrete semi-linear form, RH(uH ,vH), follows by summing over all elements,

RH

(
uH ,vH

)
=
∑

κ

(Eκ(uH ,vH) + Vκ(uH ,vH)) = 0, (2.6)

where Eκ(uH ,vH) is the contribution of the inviscid flux, Vκ(uH ,vH) is the contribution

of the viscous flux, and vH ∈ VH denotes an arbitrary test function. In the equations that

follow, vk refers to components of vH , and uk refers to components of uH . Of particular

relevance to the cut-cell algorithm is the fact that construction of the residual requires

element-interior area integrals in addition to element-boundary integrals.

38

First, Eκ(uH ,vH) is obtained by forming the inner product of ∂iFki in (2.3) with the

test-function components, vk, and integrating by parts over the element. The resulting

expression is

Eκ(uH ,vH) = −
∫

κ
∂ivkFkidx +

∫

∂κ
v+
k F̂ki(u

+
H ,u−

H)nids,

where ni is the outward-pointing normal, and F̂ki is an approximate characteristic-based

flux function (Roe-averaged flux in this work [65]). Boundary conditions are imposed by

setting F̂ki appropriately when ∂κ is on the domain boundary, ∂Ω, as described in Appendix

A for the boundary conditions used in this work.

The viscous flux term contribution is discretized using the second form of Bassi & Rebay

(BR2) [6]. In this form, the steady-state Navier-Stokes equations are re-written as a system

of first-order equations by introducing Qki,

∂iFki − ∂iQki = 0,

Qki − Akilj∂jul = 0.

Taking the inner product of the first equation set with test function components vk ∈ V p
H ,

and the second equation set with test function components wki ∈ V p
H , yields, after an

integration by parts,

Eκ(uH ,vH) +

∫

κ
∂ivkQkidx −

∫

∂κ
v+
k Q̂kinids = 0, (2.7)

∫

κ
wkiQkidx +

∫

κ
∂j

(
wkiAkilj

)
uldx −

∫

∂κ
w+
kiÂkiljulnjds = 0, (2.8)

where ·̂ denotes flux averaging for discontinuous quantities. Note, since 1 < k ≤ K and

1 < i ≤ d, the wki are components of vector-valued functions of size Kd. Setting wki = ∂ivk

in (2.8), substituting for

∫

κ
∂ivkQkidx in (2.7), and integrating by parts one more time

yields the viscous contribution to the weak form,

Vκ(uH ,vH) =

∫

κ
∂ivkAkilj∂juldx −

∫

∂κ
∂iv

+
k

(
A+
kilju

+
l − Âkiljul

)
njds

−
∫

∂κ
v+
k Q̂kinids.

The choice of Q̂ki and Âkiljul is not unique, but only certain choices produce discretizations

that are consistent, dual-consistent, and compact [48]. The set of fluxes used in this work

is shown in Table 2.1.

39

Table 2.1: Viscous fluxes

Q̂ki Âkiljul

Interior {Akilj∂jul} − ηf{δfki} A+
kilj{ul}

Boundary, Dirichlet Ab
kilj∂ju

+
l − ηbfδbfki Ab

kilju
b
l

Boundary, Neumann
(
Akilj∂jul

)b
A+
kilju

+
l

The operator {·} denotes the average across an element boundary, {·} = 1
2

(
(·)+ + (·)−

)
,

the superscript b indicates values computed using a state appropriately constructed from

boundary conditions (Appendix A), and ηf and ηbf are constant stability factors set to 3

and 3/2, respectively. δfki, δ
bf
ki ∈ V p

H are components of auxiliary variables for interior and

boundary faces, respectively, that satisfy, ∀wki ∈ V p
H ,

∫

κ+

δf+
ki wkidx +

∫

κ−
δf−ki wkidx =

∫

σf

{wkiAkilj}
(
u+
l − u−

l

)
njds,

∫

κ
δbfkiwkidx =

∫

σbf

wkiA
b
kilj

(
u+
l − ubl

)
njds,

where σf and σbf denote interior and boundary faces, respectively, and κ+, κ− are elements

on either side of σf . This viscous discretization yields a compact stencil in that the element-

to-element influence is only nearest-neighbor.

40

Chapter 3

Output-based Error Estimation

and Adaptation

3.1 Output-based Error Estimation

Output-based error estimation and adaptation for CFD have been studied extensively

in the literature [61, 9, 49, 31, 36, 4, 26, 74, 48]. In the following analysis, an output error

estimate for a generic weighted residual statement is derived, motivated by the previously

cited work. This estimate is then applied to the DG weighted residual statement. Before

presenting the derivation of the output error estimate, however, the concept of an adjoint

solution is introduced.

3.1.1 The Adjoint

As discussed in Section 1.2.2, accurate prediction of an output (e.g. drag or lift) may

depend on resolution of seemingly un-interesting areas. This is especially the case in hy-

perbolic problems, in which disturbances do not necessarily decay away from the source

but rather propagate and affect the solution downstream. Error estimators based on local

criteria often fail to capture the error due to such propagation effects. Output-based error

estimators address this problem by linking local residuals to outputs through the use of the

adjoint solution.

The adjoint can be thought of as a Green’s function that relates the residual of an

underlying partial differential equation (PDE) to an output derived from the PDE solution.

For a finite-dimensional problem, the adjoint vector weights the residual vector in an inner

product that gives the change in the output. For example, let u ∈ Rn be a solution to a

41

nonlinear system of equations,

F(u) = 0, F : R
n → R

n. (3.1)

Given a source (i.e. residual), δr ∈ Rn, the solution is perturbed: F(u + δu) = δr. For

infinitesimally-small sources and perturbations, F can be linearized about u, resulting in a

linear system,

F′[u]δu = δr, (3.2)

where F′[u] = ∂r/∂u is the n×n Jacobian matrix. Let J (u) be an output of interest, where

J may be a nonlinear function of u. Evaluating the output with the perturbed solution

results in a change of

δJ = J (u + δu) −J (u) = J ′[u]δu, (3.3)

where J ′[u] = ∂J /∂u is a 1 × n row vector of partial derivatives of J with respect to the

entries of u. By the chain rule,

∂J
∂u

=
∂J
∂r

∂r

∂u
, (3.4)

where ∂J /∂r is a 1×n row vector. The adjoint vector, ψ ∈ Rn, associated with the output

J is defined as the variation of the output with respect to the residual,

ψ =

(
∂J
∂r

)T
,

where the transpose makes ψ an n × 1 column vector. Taking the transpose of (3.4), the

adjoint is obtained from the solution of the following n × n linear system:

F′[u]Tψ = J ′[u]T . (3.5)

Multiplying (3.5) by δuT yields

δuTF′[u]T︸ ︷︷ ︸
δrT

ψ = δuTJ ′[u]T︸ ︷︷ ︸
δJ

.

δJ = δrTψ. (3.6)

Thus, ψ relates the local residual to the output error. For problems governed by PDEs,

42

(3.6) becomes an integral over the domain, Ω, with ψ acting as a Green’s function, e.g.

δJ =
∫
Ω δrψdx.

Figure 3-1 illustrates sample flow and adjoint solutions. Figure 3-1a shows the x-

momentum for a Navier-Stokes solution around a NACA 0012 airfoil at M = 0.5, Re = 5000,

α = 2o. Directly below, in Figure 3-1c, is the associated adjoint solution for a drag output.

Note, for K equations (i.e. mass, momentum, energy), the adjoint solution has K compo-

nents, each relating one of the K residual components to the output error. According to the

discussion in the previous paragraph, the output error is affected by residuals in locations

where the adjoint is nonzero. As shown in Figure 3-1c, the x-momentum adjoint is nonzero

in the boundary layer, in the wake, and in the flow in front of the airfoil leading edge.

Therefore, x-momentum residuals in these areas will likely contribute more to the drag

error in comparison to x-momentum residuals in other parts of the domain. Figure 3-1b

shows another flow solution: the x-momentum for an Euler solution around a diamond air-

foil in supersonic, M = 1.5 flow. The associated adjoint for a pressure line-integral output

is given directly below, in Figure 3-1d. Since information can only propagate downstream

at certain angles (Mach wave angles) in supersonic flow, the pressure integral is not affected

by residuals in areas from which information cannot propagate to the measurement line.

This observation is reflected by the fact that the adjoint solution is zero in these areas. To

be precise, for a finite element formulation in which the residual is due to the discretiza-

tion error, application of Galerkin orthogonality shows that the adjoint interpolation error,

rather than the adjoint itself, weights the residual in the output error expression.

3.1.2 Error Estimation and Localization

The adjoint solution can be used to estimate the error in the output and to localize the

error to individual elements. The following analysis is based on an abundant number of

similar techniques available in the literature. The works of Hartmann and Houston [36], Lu

[48], Barth and Larson [4], Giles and Suli [31], Giles and Pierce [30], Becker and Rannacher

[9], and Venditti and Darmofal [73] are the most relevant to this analysis. These authors

present fundamentally similar ideas with differences primarily in the implementation. In

particular, the error estimate used in this work is nearly identical to that used by Hartmann

and Houston and by Lu.

The starting point for the error estimation and localization is a more formal definition

of the adjoint for a general semi-linear form and for a non-infinitesimal perturbation in

the solution. Let RH

(
uH ,vH

)
= 0, ∀vH ∈ VH be a general semi-linear weighted resid-

ual statement, such as that obtained in equation (2.6) for the compressible Navier-Stokes

43

(a) NACA 0012: x-momentum (b) Diamond airfoil: x-momentum

(c) NACA 0012: x-momentum adjoint (d) Diamond airfoil: x-momentum adjoint

Figure 3-1: Sample flow and adjoint solutions: (a) x-momentum for a NACA 0012 in
subsonic, viscous flow; (b) x-momentum for a diamond airfoil in supersonic, M = 1.5
flow; (c) x-momentum adjoint associated with a drag output on the NACA 0012; (d) x-
momentum adjoint for a pressure line integral output computed several chords away from
the diamond airfoil. For the adjoint, the absolute value is plotted with dark areas indicating
large magnitudes.

discretization. VH is the discrete approximation space and RH : WH × WH → R, where

WH ≡ VH +V is a space that includes functions in VH and V. This space is defined because

VH is not required to be a subspace of V; in particular, this is the case with DG approxi-

mation. For the exact solution, u, the assumption is made that RH

(
u,w

)
= 0, ∀w ∈ WH .

For a nonlinear output, J (u), the adjoint, or dual, problem reads: find ψ ∈ V such that

R̄H(u,uH ;v,ψ) = J̄ (u,uH ;v), ∀v ∈ WH . (3.7)

44

The mean value linearizations R̄H : WH ×WH → R and J̄ : WH → R are given by

R̄H(u,uH ;v,w) =

∫ 1

0
R′
H [θu + (1 − θ)uH](v,w)dθ,

J̄ (u,uH ;v) =

∫ 1

0
J ′[θu + (1 − θ)uH](v)dθ,

where v,w ∈ WH , and the primed notation denotes the Frechét derivative. The semi-linear

form and output are assumed to be sufficiently regular such that the adjoint solution exists

and is unique. The use of the mean-value linearizations to define the adjoint problem is the

typical starting point for non-linear problems [36, 48, 4, 9]. For v = u − uH ,

R̄H(u,uH ;u− uH ,w) = RH(u,w) −RH(uH ,w),

J̄ (u,uH ;u − uH) = J (u) − J (uH).

Using RH(u,w) = 0, ∀w ∈ WH , the output error can be expressed as

J (u) − J (uH) = J̄ (u,uH ;u − uH)

= R̄H(u,uH ;u − uH ,ψ)

= 0 −RH(uH ,ψ)

= −RH(uH ,ψ −ψH), (3.8)

where ψH ∈ VH can be arbitrary at this point due to the Galerkin orthogonality property:

RH(uH ,vH) = 0 for any vH ∈ VH . Defining an adjoint residual,

R̄ψ
H(u,uH ;v,w) ≡ R̄H(u,uH ;v,w) − J̄ (u,uH ;v), v,w ∈ WH ,

the output error can also be expressed as

J (u) − J (uH) = R̄H(u,uH ;u− uH ,ψH) − R̄ψ
H(u,uH ;u − uH ,ψH)

= RH(u,ψH) −RH(uH ,ψH) − R̄ψ
H(u,uH ;u − uH ,ψH)

= −R̄ψ
H(u,uH ;u − uH ,ψH). (3.9)

As u and ψ are in general not known, two approximations are employed to make the

above output error estimates practical. First, the exact mean-value linearizations are re-

placed by approximate linearizations about uH . This approximation is used by Hartmann

and Houston and by Lu. Barth and Larson [4] additionally employ a more accurate ap-

proximation to the mean-value linearization using numerical integration between uH and a

45

reconstructed approximation to u. However, the results do not indicate a substantial im-

provement in the accuracy of the error estimate. To minimize errors in (3.8) and (3.9) due

to no longer using mean-value linearizations, ψH is set to the finite element approximation

of ψ [31]. That is, ψH satisfies

Rψ
H(uH ;vH ,ψH) = 0, ∀vH ∈ VH , (3.10)

where Rψ
H(uH ;v,w) is the adjoint residual computed with linearization only about uH :

Rψ
H(uH ;v,w) = R′

H [uH](v,w) − J ′[uH](v), v,w ∈ WH .

In the vicinity of under-resolved flow features or shocks, the error due to this approximate

linearization is not guaranteed to be small. Care must be taken in working with error

estimates obtained in these cases.

The second approximation consists of replacing the exact solution errors u − uH and

ψ−ψH by uh −uH and ψh−ψH , respectively, where uh and ψh are approximations to u

and ψ on an enriched finite element space, Vh. A common approach for choosing Vh consists

of adding degrees of freedom to VH by uniformly refining the mesh and/or by increasing

the interpolation order, p [8, 30, 73, 48]. The motivation for using a richer space for Vh is to

increase the accuracy of uh and ψh and, hence, to improve the error estimate. However, the

richer the space Vh, the more costly the estimator, with uniform grid refinement becoming

particularly expensive and cumbersome for practical three-dimensional simulations. For

example, in three dimensions, a quasi-uniform tetrahedral refinement leads to a five-fold

increase in the degrees of freedom, whereas an order increase from p = 2 to p = 3 leads to a

two-fold increase. Thus, in this work, Vh is constructed from VH by increasing the order to

p+1 while keeping the mesh fixed. The primal and adjoint solutions are then reconstructed

on Vh in a patch-wise manner. Lu [48], Barth and Larson [4], and Rannacher [64] employ

this approach and obtain satisfactory results for numerous cases. Hartmann and Houston

[36] also use an order p + 1 space for the dual solution, but rather than reconstructing the

dual, they solve for it on the enriched space. Soĺın and Demkowicz [68] extend this idea by

solving both the primal and dual problems on a uniformly-refined mesh, h = H/2, at order

p + 1. While these approximations are more accurate, they are also more expensive.

The approximations uh and ψh are created by a reconstruction process on Vh. Local H1

patch reconstruction is used, in which the minimized error for each element κ ∈ TH takes

46

the form

E2
κ(vκ,uH) =

∑

l∈Pκ

(∫

l
(vκ − uH)2dx +

d∑

i=1

ci

∫

l
(∂ivκ − ∂iuH)2dx

)
,

where Pκ is the patch of neighboring elements in TH (including κ), vκ ∈ P p+1(Pκ) denotes

the order p+1 reconstructed solution on the patch, d is the dimension, and the ci are O(∆x2
i)

scaling coefficients specific to each element, determined by the dimensions of the elemental

bounding boxes. An example of a patch of elements, Pκ, associated with element κ is

illustrated for two dimensions in Figure 3-2. Effectively, the reconstruction process creates

a smooth representation of the solution, minimizing in a least squares sense the error in

value and slope relative to the existing solution, uH , on the patch. In practice, the least-

squares error minimization is performed via a QR factorization. The reconstructed solution,

uh, is set according to uh|κ = vκ|κ; that is, the reconstruction is performed separately for

each element. ψh is obtained analogously. To further improve the approximation, one

element-Jacobi smoothing iteration is performed on uh and ψh.

Using uh and ψh in place of u and ψ in (3.8) and (3.9) yields the following approxima-

tions to the output error (making use of VH ⊂ Vh):

J (u) −J (uH) ≈ −Rh(uH ,ψh −ψH) = −
∑

κ∈TH

Rh(uH , (ψh −ψH)|κ),

J (u) −J (uH) ≈ −Rψ
h (uH ;uh − uH ,ψH) = −

∑

κ∈TH

Rψ
h (uH ; (uh − uH)|κ,ψH).

κ

Figure 3-2: Patch of elements, Pκ, associated with element κ. Pκ consists of κ and the
adjacent elements (shaded). The reconstructed primal and adjoint solutions on κ are based
on an H1 error minimization over Pκ.

47

In the above expressions, |κ refers to restriction to element κ, and TH is the triangulation.

A local error indicator on each element is obtained by averaging the local primal-residual

and adjoint-residual contributions to the output error in the above expressions. Specifically,

in this work, the error indicator in each element κ is taken to be

ǫκ =
1

2

(∣∣Rh(uH , (ψh −ψH)|κ)
∣∣+
∣∣Rψ

h (uH ; (uh − uH)|κ,ψH)
∣∣
)
. (3.11)

For systems of equations, indicators are computed separately for each equation and summed

together. The global output error estimate, ǫ =
∑

κ ǫκ, is not a bound on the actual

error in the output because of the approximations made in the derivation. However, the

validity of the approximations is expected to increase as uH → u. In the literature, various

other indicators are presented, using either/both the primal-based and the dual-based error

estimate expressions [73, 9, 36, 31, 4]. Using a combination of both expressions targets

errors in both the primal and the dual solutions and has been found sufficiently effective in

driving adaptation.

3.2 Adaptation Strategy

Given a localized error estimate, an adaptive method modifies the computational mesh

in an attempt to decrease and equidistribute the error. As mentioned in Section 1.2.2,

in high-order finite element methods, possible adaptation strategies include p, h, and hp,

where p-adaptation refers to changing only the order of interpolation, h-adaptation refers

to changing only the computational mesh, and hp-adaptation is a combination of both.

The adaptation strategy chosen for this work is h-adaptation at a constant p. h-

adaptation was chosen over pure p-adaptation to allow for efficient resolution of singularities

and areas of anisotropy and to avoid the requirement of a reasonable starting mesh. Com-

pared to hp-adaptation, this strategy does not take advantage of the cost savings associated

with optimally choosing h versus p adaptation. However, it avoids the regularity decision,

which requires either a solution regularity estimate or a heuristic algorithm. Extending the

proposed methods to hp-adaptation is one of the possible areas of future work.

The h-adaptation method consists of high-order anisotropy detection and mesh op-

timization. Inputs to this method are the current mesh, the solution on the mesh, an

element-local error indicator, and a user-specified error tolerance. The output is a mesh-

sizing request in the form of a metric associated with each element for use in re-meshing.

The following two sections describe the high-order anisotropy detection and mesh optimiza-

tion strategies.

48

3.2.1 Anisotropy in High-Order Solutions

An important ingredient in h-adaptation for aerodynamic computations is the ability

to generate stretched elements in areas where the solution exhibits anisotropy, which is

variation of disparate magnitudes in different directions. For p = 1, the dominant method

for detecting anisotropy involves estimating the Hessian matrix, H, of a scalar solution, u

[60, 32, 17]. The components of H are given by

Hij =
∂2u

∂xi∂xj
, i, j ∈ [1, .., d].

The second derivatives can be estimated by, for example, a quadratic reconstruction of the

linear solution. For the Euler or Navier-Stokes equations, the Hessian of the Mach number

has been found to perform sufficiently well. Of course, other scalar quantities may also be

suitable, and perhaps the most effective choice is an average or minimum Hessian of several

scalar quantities [17]. In this work, use of the Mach number for u has produced acceptable

results.

The Hessian matrix is used to define a Riemannian metric, the idea being that in an

optimal mesh, all edge lengths will have unit measure under the metric [17, 32]. In a

Cartesian coordinate system, the length of an infinitesimal segment δx under a Riemannian

metric M is given by

δΓ = δxT M δx = δxi Mij δxj , (3.12)

where δxi are the components of the length-d vector δx and Mij are the components of the

d×d matrix M. The metric is obtained from the Hessian by requiring that the interpolation

error estimate of the scalar quantity u is the same in any chosen spatial direction. For linear

interpolation of a scalar quantity along the segment δx, the maximum interpolation error

can be bounded by (see for example [69])

max
x∈δx

|u(x) − uH(x)| ≤ C1|δx|2 max
x∈δx

∣∣∣u(2)
δx (x)

∣∣∣ , (3.13)

where uH(x) is the linear interpolant of u, C1 is a constant independent of u, and u
(2)
δx is the

second derivative of u evaluated in the direction of δx. Requiring the interpolation error

bound to be approximately constant, independent of the direction of δx, yields

|δx|2
∣∣∣u(2)
δx

∣∣∣ = C2 = const.

49

The left-hand side can be bounded in terms of the Hessian,

|δx|2u(2)
δx = δxTHδx ⇒ |δx|2

∣∣∣u(2)
δx

∣∣∣ ≤ δxT |H|δx, (3.14)

where |H| is the positive, semi-definite form of the Hessian: |H| = V|Λ|V−1 for H =

VΛV−1. This bound on the interpolation error is used to define the Riemannian metric.

Comparing (3.14) and (3.12), the requirement that the interpolation error estimate be

independent of the direction of δx can be expressed as a requirement of equal measure of

δx under the metric

M = C|H|, (3.15)

where C is a constant independent of direction. Two intervals, δx1 and δx2, having the

same measure under this M will have the same estimated interpolation error bounds.

The metric M contains information on the desired mesh edge lengths in physical space.

As M is symmetric and positive, semi-definite, the unit measure requirement,

xT M x = 1,

describes an ellipsoid in physical space. The eigenvectors of M, ei, are the orthogonal axes

of the ellipsoid – i.e. the principal directions. The corresponding eigenvalues, λi, are related

to the lengths of the axes, hi, via

λi =
1

h2
i

.

Physically, the hi are the principal stretching magnitudes. In this work, the eigenvalues

are ordered from largest to smallest so that λ1 is the largest eigenvalue, and, hence, h1 is

the smallest stretching magnitude. A diagram of an ellipse resulting from the unit-measure

requirement in two dimensions is given in Figure 3-3.

The constant C in (3.15) controls the absolute magnitude of the requested mesh sizes,

hi. In standard Hessian-based adaptation, C is constant over the computational domain,

and its value is often set heuristically [17]. Regardless of the value of C, however, the

Hessian matrix contains information on the relative mesh sizes,

hi/hj = (λj/λi)
1/2 .

Note that, from (3.15), the ratio of eigenvalues of M equals the ratio of eigenvalues of |H|.

50

e
2

h
2

e
1

h
1

Figure 3-3: Ellipse representing requested mesh sizes implied by equal measure under a
Riemannian metric M. Also shown are the principal directions, ei, and the associated
principal stretching magnitudes, hi.

Unfortunately, anisotropy detection based on the standard Hessian matrix is not suited

for p > 1 interpolation, because the interpolation error estimate in (3.13) assumes lin-

ear interpolation of u. An example demonstrating the problem of applying Hessian-based

anisotropy detection to a higher-order solution is given in Appendix B. For a general, order

p interpolant, uH , the equivalent interpolation error estimate reads

max
x∈δx

|u(x) − uH(x)| ≤ C3|δx|p+1 max
x∈δx

∣∣∣u(p+1)
δx (x)

∣∣∣ . (3.16)

That is, the p + 1st derivatives of u govern the inability of an order p interpolant to in-

terpolate the exact solution. Thus, the Riemannian metric (i.e. stretching ratios, hi/hj ,

and principal directions, ei) should be based on estimates of the p + 1st derivatives. An

important assumption implicit in this estimate is that the analytical solution is sufficiently

regular. For general compressible flows, this assumption may need to be modified in the

presence of discontinuities or singularities.

While second derivatives can be arranged into a symmetric d × d Hessian matrix, this

is no longer the case with p + 1st derivatives. Thus, (3.15) cannot be used for the metric

definition. One solution, used in this work, is to construct a metric by explicitly identifying

orthogonal principal stretching directions and associated magnitudes. Specifically, let e1

be the direction of maximum p + 1st derivative and e2 the direction of maximum p + 1st

derivative in the plane orthogonal to e1. Under this definition, the final direction, ed, is

fully-determined by the previous directions. The p + 1st derivative in a general direction

51

is calculated by applying a coordinate transformation to p + 1st derivatives in a fixed

frame. Since an order p interpolant contains no information on p + 1st derivatives, these

derivatives must be approximated. In this work, the derivatives are calculated on the order

p + 1 reconstructed solution created for error estimation (Section 3.1). Thus, the p + 1st

derivatives are constant over each element.

The direction of maximum p + 1st derivative is calculated by an exhaustive search

combined with bisection. For example, in two dimensions, an angle range is discretized into

nθ intervals, and the p + 1st derivative is calculated in each discrete direction. The interval

around the maximum calculated value serves as the angle range for nb bisection iterations

that hone in on the maximum derivative value. Default values for the search parameters

in two dimensions are nθ = 36 and nb = 15. While this exhaustive search has not been

a bottleneck for the test cases in this work, a more efficient option consists of identifying

local extrema of the p + 1st derivative by differentiating the transformation expression

with respect to the transformation parameters (e.g. one angle in 2D or two angles in 3D).

This approach requires solving one polynomial equation in 2D and two coupled polynomial

equations in 3D. The maximum p + 1st derivative can then be found by evaluating the

transformation expression in the local extrema directions.

By construction, the ei directions are orthogonal and, therefore, suitable for specifying

the metric of directional sizes. The stretching magnitudes are obtained by an equal interpo-

lation error estimate from (3.16). Equidistributing the interpolation error in each principal

direction yields

hp+1
i u

(p+1)
ei

= const. ⇒ hi
hj

=
(
u

(p+1)
ej

/u
(p+1)
ei

)1/(p+1)
. (3.17)

As with Hessian-based analysis, the result in (3.17) provides only the relative mesh sizing.

The absolute magnitudes for hi are based on the error indicator, as described in the following

section. The final metric, M, is fully specified by the d eigenvectors, ei, and associated

eigenvalues, λi = 1/h2
i .

3.2.2 Mesh Optimization

In h-adaptation, mesh optimization refers to deciding which elements to refine or coarsen

and/or the amount of refinement or coarsening. The optimization has important implica-

tions for practical simulations: too little refinement at each adaptation iteration may result

in an unnecessary number of iterations; too much refinement may ask for an expensive solve

on an overly-refined mesh.

Many of the current adaptation strategies rely on some variation of the fixed-fraction

52

method [40, 68, 36], in which a prescribed fraction of elements with the highest error indica-

tor is refined. While adequate for testing and small cases, this method poses an automation

and efficiency problem for practical simulations due to the often ad-hoc fixed-fraction pa-

rameter. More sophisticated optimization strategies attempt to meet the global tolerance

while equidistributing the error among elements. Zienkiewicz and Zhu [80] define a permis-

sible element error eκ = e0/N at each adaptation iteration, where e0 is the global tolerance,

and N is the current number of elements. Coupled with an a priori error estimate, this

“refinement prediction” method yields element sizing at each adaptation iteration. Venditti

and Darmofal [73, 74], employ a similar approach and extend it to anisotropic sizing using

the Hessian matrix. Compared to the fixed-fraction method, refinement prediction has the

advantage that it specifies the magnitude of refinement in each element.

For elliptic problems, Rannacher et al [64, 9] present another mesh optimization strategy

in which an optimal mesh size function is constructed continuously over the entire domain.

The construction is based on solving a constrained minimization problem with a Lagrangian

method. Details can be found in the references and in an earlier work by Brandt [13]. Key

to this method is an assumption regarding the existence of a mesh-independent function

in an expression for the global error. The authors note that this is a heuristic assumption,

and that the existence of this function can be rigorously justified only under very restrictive

conditions [9].

Anisotropy detection introduces another variable into the mesh optimization process;

namely, the stretching of the elements. As mentioned in Section 3.2.1, in “pure” Hessian-

based adaptation, the absolute magnitude of stretching is controlled by an arbitrary global

scaling factor: the constant C in (3.15). Venditti and Darmofal use an output-based error

indicator to determine the length magnitude and obtain a more robust adaptation pro-

cess [74]. Formaggia et al [26] have combined Hessian-based interpolation error estimates

with output-based a posteriori error analysis to arrive at output-based anisotropic error

estimates.

This work adopts a variation of the refinement prediction method of Zienkiewicz and

Zhu, modified to allow for mesh anisotropy. One drawback of straightforward refinement

prediction is the fact that error equidistribution is performed over the current mesh as

opposed to some reasonable prediction of the adapted mesh. While in the asymptotic limit

the current and the predicted mesh will converge, by attempting to equidistribute the error

on the predicted mesh, adaptive convergence can be accelerated. An example of this effect

is demonstrated in Appendix C.

Equidistributing the error on the adapted mesh involves a prediction of the number of

elements, Nf , in the adapted (fine) mesh. Let nκ be the number of fine-mesh elements

53

contained in element κ. nκ need not be an integer, and nκ < 1 indicates coarsening. Let hci

denote the current element sizes of κ in principal directions eci , where again i indexes the

spatial dimension. If hi are the requested element sizes in principal directions ei, nκ can be

approximated as

nκ =
∏

i

(hci/hi) . (3.18)

The current sizes, hci , are calculated as the singular values of the mapping from a unit

equilateral triangle/tetrahedron to element κ. In practice, this mapping is calculated using

reference-element Jacobian mappings. If Jκ is the mapping between the reference element

and κ, and JE is the mapping between the reference element and the unit equilateral

triangle/tetrahedron, then JκJ
−1
E is the mapping of interest. This mapping is illustrated

for two dimensions in Figure 3-4. The singular values of JκJ
−1
E are the stretching magnitudes

in each of the principal directions. The resulting grid-implied metric is similar to that used

JKEJ
−1

Figure 3-4: Mapping from unit equilateral triangle to a general triangle, κ, via reference,
right-triangle Jacobians. Singular values of this mapping serve as the principal stretching
directions.

by Venditti [72]. Such a calculation ensures that an isotropic metric is retained for a mesh of

equilateral triangles. Note, (3.18) is based on an approximate volume comparison between

the current and refined elements and, therefore, does not depend on the principal directions

eci or ei

To satisfy error equidistribution, each fine-mesh element is allowed an error of e0/Nf ,

which means that each element κ is allowed an error of nκe0/Nf . By relating changes in

element size to expected changes in the local error, an expression for nκ is obtained, from

which the absolute element sizes, hi, follow. In this work, an a priori estimate for the

output error serves as this relation,

ǫκ
ǫcκ

=

(
h1

hc1

)rκ
, (3.19)

54

where ǫcκ is the current error indicator, ǫκ is the expected error indicator following adapta-

tion, and rκ is the expected convergence rate of the error indicator. Formally, rκ = s+ t−2

for elliptic problems, and rκ = s + t − 1 for first-order hyperbolic problems, where 1 ≤
s ≤ min(p + 1, γκ) is the convergence of the primal solution, and 1 ≤ t ≤ min(p + 1, γΨ

κ)

is the convergence of the dual solution [34]. γκ and γΨ
κ are the regularities of the primal

and dual solutions, respectively. In this work, rκ is set using the asymptotic estimates,

s = min(p + 1, γκ) and t = min(p + 1, γΨ
κ), and the regularities are assumed to be at least

p + 1 on elements away from geometric singularities (i.e. corners). On elements adjacent to

or containing geometric corners (e.g. a trailing edge of an airfoil), numerical experiments

indicate that rκ is at most 1 for both hyperbolic and elliptic problems. Thus, geometric

corners are detected for both boundary-conforming and cut-cell meshes and rκ is limited to

1 on adjacent elements.

The a priori estimate in (3.19) is asymptotically valid for many common engineering

outputs, including forces and pressure distribution norms. In the estimate, the error is

assumed to scale with h1, which corresponds to the direction of maximum p+1st derivative.

Implicit in the estimate is that the principal directions corresponding to the requested size,

h1, and the current size, hc1, align. One option for accounting for a difference in principal

directions is to replace hc1 in (3.19) with hc(e1), the current, grid-implied size in the requested

principal direction e1. However, as hc1 ≤ hc(e) for any direction, e, using hc1 in (3.19) leads

to a more conservative estimate for h1 in the early stages of adaptation. Furthermore, the

assumption that h1 and hc1 align becomes more valid as the adaptation progresses. Equating

the allowable error with the expected error from the a priori estimate yields

nκ
e0

Nf︸ ︷︷ ︸
allowable error

= ǫcκ

(
h1

hc1

)rκ

︸ ︷︷ ︸
a priori estimate

. (3.20)

Expressing h1

hc
1

in terms of nκ and the known relative sizes (3.17) yields a relation between

nκ and Nf . For example, in two dimensions,

nκ =
hc1
h1

hc2
h2

⇒ h1

hc1
=

(
1

nκ

h1

h2

hc2
hc1

)1/2

,

where both h1/h2 and hc2/h
c
1 are known. Substituting for h1/h

c
1 into (3.20),

nκ
e0

Nf
= ǫcκ

(
1

nκ

h1

h2

hc2
hc1

)rκ/2
⇒ n1+rκ/2

κ =
ǫcκ

e0/Nf

(
h1

h2

hc2
hc1

)rκ/2
.

55

Using Nf =
∑

κ nκ,

Nf =
∑

κ

nκ =
∑

κ

[(
ǫcκ

e0/Nf

) 2

rκ+2
(

h1

h2

hc2
hc1

) rκ
rκ+2

]

. (3.21)

A similar expression is obtained in three dimensions. If the rκ are the same for every

element, this equation can be solved directly for Nf . Otherwise, it is solved iteratively.

With Nf known, (3.20) yields nκ, from which the hi are calculated using (3.18) and (3.17).

Thus, the output error estimate in conjunction with the mesh optimization step provides

the remaining piece of information necessary to fully specify the directional sizes, hi. These

sizes, along with the principal directions ei, yield the Riemannian metric for every element.

Mesh optimization is performed at every adaptation iteration following output-error

estimation. The adaptation iterations stop when the total error estimate drops below the

requested tolerance: ǫ ≡ ∑
κ ǫκ ≤ e0. In practice, two parameters are used to control the

behavior of the optimization and adaptation algorithm: the target error fraction, 0 < ηt ≤ 1,

and the adaptation aggressiveness, 0 ≤ ηa < 1. Specifically, instead of e0 in (3.20), a

modified requested error level, ẽ0 is used, where

ẽ0 = max (ηaǫ, ηte0) .

ηt prevents the adaptation convergence from stalling as the error estimate, ǫ, approaches the

tolerance, e0. The aggressiveness parameter, ηa, controls how quickly the error is reduced

when the error estimate is far from e0, and hence may not be very accurate. A value close to

zero indicates aggressive adaptation, which has the danger of over-refinement, while a value

close to 1 may require an excessive number of adaptation iterations to converge. Default

values for these parameters that have been found to work well over a variety of cases are

ηt = 0.7 and ηa = 0.25.

3.2.3 Implementation

The adaptive solution process is illustrated in Figure 3-5. The input is an initial coarse

mesh along with an error tolerance for an output. The iterative process starts by solving the

primal and adjoint problems on the initial coarse mesh. Next, the output error is estimated

and localized to the elements. If the global error tolerance criterion is met, the adaptive

process terminates. Otherwise, the local error indicators are converted to mesh size requests

using anisotropy detection and mesh optimization. The computational domain is re-meshed

using the requested metric, and the solution on the new mesh is initialized by a transfer of

the solution from the old mesh. The process then repeats.

56

Flow and adjoint solution

Anisotropy detection and
mesh optimization

Re-meshing and solution transfer

Tolerance
met?

Done

Initial coarse mesh & error tolerance

Error estimation and localization

Figure 3-5: Adaptive solution process flowchart. The input consists of an initial coarse
mesh and a requested error tolerance. Adaptation stops when the error tolerance is met.
In practice, the most expensive step is the flow and adjoint solution on each mesh.

The primal problem is solved using a preconditioned Newton-GMRES (Generalized

Minimal Residual) method, where one of several preconditioners is used in practice. These

preconditioners include a line smoother and an incomplete LU smoother, used alone or

combined with linear p-multigrid [23]. The default preconditioner used in this work is

linear p-multigrid with line smoothing. The adjoint problem is solved sequentially after the

primal solve, costing one extra linear solve (or more for multiple outputs). Preconditioned

GMRES is used for the adjoint linear solve. Adjoint capability for an output requires only

the specification of that output and its linearization, J ′[uH](v), as the transpose of the

discrete primal Jacobian matrix is used for the adjoint solve.

In two dimensions, meshing of the domain is performed via the Bi-dimensional Anisotropic

Mesh Generator (BAMG) [12], which takes as input a mesh with the requested metric de-

fined at the input mesh nodes and produces a new mesh based on the requested metric. The

BAMG input mesh is constructed by first uniformly refining the mesh twice and assigning

to each subelement the same metric as the original element. Next, on the refined mesh, the

metric components at each node are set to the arithmetic mean of the metric components

of the adjacent elements since BAMG requires the metric prescribed at the nodes. The

uniform refinement of the mesh is necessary to prevent smoothing-out of small mesh size

requests in the element-to-node metric transfer. In three dimensions, meshing is performed

using TetGen [67], which currently supports only isotropic mesh refinement. Mesh opti-

mization for isotropic refinement is performed as described in this chapter, using one mesh

size parameter, h = hi. TetGen creates adapted meshes based on volume requests for each

57

element. These volume requests follow directly from the current, hc, and requested, h, mesh

sizes.

To improve robustness and to speed up convergence, the solution on the new mesh is

initialized via a transfer of the solution from the previous mesh. The transfer is performed

using an L2 projection of the state. Specifically, the error minimized in the transfer takes

the form

E2 =

∫

κ′
(u′ − u)2dx, (3.22)

where κ′ is an element on the new mesh, u′ is the solution on κ′, and u is the solution on

the current mesh. E2 is minimized using QR factorization, with the state representation

coefficients on κ′ as the unknowns.

For solutions with large inter-element jumps (e.g. on coarse meshes), such a projection

may produce a non-physical state on the new mesh. In such cases, detected by testing

for non-physical states at quadrature points, a p = 0 restriction of the solution from the

previous mesh is performed. This p = 0 restriction is always performed on cut cells, which

are described in the next section.

58

Chapter 4

Cut Cells in Two Dimensions

4.1 Cutting and Integration Mechanics

One goal of this thesis is to explore the feasibility of using simplex, cut-cell meshes in

a discontinuous Galerkin finite element framework. As mentioned previously in Section

1.1, the motivation for simplex cut cells is to improve meshing robustness, to automate

mesh generation for complex geometries, and to allow for general anisotropic meshes. For

high-order DG approximations, a cut-cell method relies on robust intersection of triangles

with curved geometries and on accurate integration on the resulting cut cells. The following

sections describe one implementation of such a cut-cell method in two dimensions.

4.1.1 Geometry Definition and Initial Mesh

In two dimensions, a relatively simple but effective geometry representation consists of

cubic splines. A cubic spline is an interpolated fit of an ordered set of points, or knots, with

the property that the first and second derivatives (i.e. slope and curvature) are continuous

across the knots. On spline segments between adjacent knots, the spline coordinates are

analytical cubic functions of one parameter, which is usually taken to be the arc length

along the spline. Geometric corners, where the tangent vector is discontinuous, can be

represented using multiple splines. At spline endpoints, boundary conditions such as zero

second or third derivative can be imposed in each coordinate.

Spline geometry representation was chosen in this work because geometry interrogation

and intersection with line segments can be performed analytically. The orientation of the

splines determines the interior versus exterior of the computational domain; in particular,

the computational domain is always on the left as the splines are traversed in the direction

of increasing spline parameter value. The computational domain is also bounded by a

59

set of farfield or symmetry boundaries. A common farfield boundary is a rectangular box

around the embedded object (Figure 4-1a), although cuts through symmetry boundaries

are also allowed (Figure 4-1b). The area enclosed by these farfield/symmetry boundaries

is referred to as the “background domain.” It includes the computational domain, where

the solution is defined, as well as the interior of the embedded geometry, where no solution

exists. An initial mesh of the background domain consists of a coarse triangulation without

regard to the embedded objects. If desired, subsequent geometry-adapted triangulations

are constructed by refining elements that intersect the splines. Currently, this refinement

consists of isotropically decreasing the mesh size request by a prescribed factor and re-

meshing the domain a prescribed number of times or until a maximum number of elements

is reached. The details of geometry adaptation are not crucial, as only a reasonable starting

mesh is sought for the solution-adaptive method.

Farfield Boundary

Geometry

(a) Single farfield boundary

Farfield Boundary

GeometrySymmetry Boundary

(b) Farfield and symmetry boundaries

Figure 4-1: Sample farfield and symmetry boundary placements for a cut-cell airfoil case.
The background domains are denoted by the shaded areas. As shown in (b), the geometry
may cut through the boundary of the background domain, in which case the geometry lying
outside the background domain is discarded.

4.1.2 Cutting Algorithm

Given an area-filling mesh of the background domain and a set of splines defining the

geometry, a cutting algorithm is employed to determine which elements are cut by the

splines and the precise geometry of the cuts. The cutting algorithm proceeds by solving

cubic intersection problems (described in Appendix D) to determine intersections of spline

segments with element edges and nodes. Careful attention must be given to conditioning for

node and tangency intersections. The intersections are performed once and stored for the

60

entire mesh to prevent floating point errors in repeating calculations in a possibly different

order. Each portion of a spline lying inside an element between two spline-node or spline-

edge intersections is labeled as an “embedded edge,” as illustrated in Figure 4-2, and is

identified by the spline arc-length parameters at the two intersections.

The orientation of the splines is used to determine the direction of validity of each cut,

where a valid direction is one that points into the computational domain. This step is also

performed only once as it requires floating point calculation. Based on the intersections

and validity directions, new “cut edges” are constructed from intersected edges of the back-

ground mesh. Connectivity information in the form of spline-edge intersections, triangle

vertices, and spline endpoints is used to stitch together the cut edges and embedded edges

into loops that enclose disjoint cut regions. Specifically, for one background triangle, denote

by E the set of embedded edges and cut or whole edges. Denote by I the set of spline-

edge/spline-node intersections and background triangle vertices that form the endpoints for

the members in E. For example, for the triangle of interest in Figure 4-2, E consists of

one embedded edge, two cut edges, and one whole edge, while I consists of two spline-edge

intersections and two vertices of the triangle. In general, each i ∈ I joins two members

of E, labeled by I2E(i, 1) and I2E(i, 2), where I2E is the intersection-to-edge connectiv-

ity list. Traversing this list once, an edge-to-intersection list, E2I, is constructed, where

E2I(e, 1) and E2I(e, 2) are the two intersections adjacent to an edge e ∈ E. The algorithm

for creating loops enclosing disjoint cut regions proceeds as follows:

Spline−edge
intersection

Spline
geometry

Cut edge
Embedded
 edge

Figure 4-2: Intersection between a background mesh and an airfoil spline geometry. An
embedded edge and two cut edges are identified for one triangle. Embedded edges consist
of contiguous portions of the spline geometry inside the background mesh triangles, whereas
cut edges consist of portions of background triangle edges inside the computational domain.

61

Loop creation algorithm

1 From E, pick an edge, e0.

2 Begin a new loop. Let i0 = E2I(e0, 1). Note, one could also choose E2I(e0, 2), in

which case the order of the edges in the loop would be reversed.

3 Set e = e0, i = i0.

4 Do:

– Add e to the loop.

– One of the edges, I2E(i, 1) or I2E(i, 2), is e. Set e to the other edge.

– One of the intersections, E2I(e, 1) or E2I(e, 2) is i. Set i to the other intersection.

Repeat until e = e0.

5 If all edges are part of loops, the algorithm is done. Otherwise, pick a new edge, e0,

that is not yet part of a loop and return to step 2.

Each loop encloses a disjoint region as long as no loops are contained within other loops.

The latter case only occurs when an entire piece of the geometry, consisting of one or more

splines, is completely contained within a background triangle. A check for this special case

is performed separately.

The enclosed disjoint regions are the newly-formed cut cells. Note that cut cells may

have a nearly arbitrary number of edges and neighbors, depending on the geometry of the

cuts. Figure 4-3 shows the cut cells formed near a trailing edge of an airfoil. The background

triangle at the apex of the trailing edge becomes one cut cell with four neighbors, while the

adjacent triangle straddling the airfoil is split into two cut cells.

In this work, disjoint regions of the cut background triangles are identified with distinct

cut cells, and separate interpolation polynomials are used within each cut cell. An alternate

approach, not taken in this work, is to use a single polynomial over all cut regions associated

with one background triangle. For example the solution on the two disjoint regions arising

from the triangle on the left in Figure 4-3 would be interpolated with a single polynomial.

While this approach is simpler in that it does not require detection of disjoint regions, so-

lution representation is adversely affected because one polynomial may not be suitable for

interpolating the solution in possibly very different flow regions. This effect is especially

troublesome during adaptation, leading to oscillatory convergence as multiply-cut elements

are alternately over- and under-refined. Specifically, a multiply-cut element interpolating

62

1

2

Figure 4-3: Example of cut cells formed at an airfoil trailing edge. The background triangle
on the left is split into two cut cells, as indicated by the labels “1” and “2.” The triangle
on the right becomes one cut cell with four neighbors.

different flow fields will likely contain high error and be targeted for refinement in the sub-

sequent adaptation iteration. On the refined mesh, the errors would drop substantially,

resulting in a request for larger elements on the next adaptation iteration and again pro-

ducing multiply-cut cells. In [25], this problem is alleviated by refining multiply-cut edges

and triangles. While satisfactory for the cases considered, this refinement is not practical

for thin, curved geometries, especially in three dimensions. Under the current approach of

associating each disjoint region with an individual cut cell, this ad-hoc mesh refinement is

not necessary.

During the creation of cut cells and edges, nodes of the cut background triangles are

marked as lying either inside or outside the computational domain. This information is

propagated to all other nodes of the background mesh by traversing the non-cut edges

and triangles. Triangles contained completely within the geometry and, hence, outside the

computational domain are identified according to the status of their adjacent nodes. These

triangles (if any exist) are eliminated from the computational data structure such that no

finite element calculations are performed on these triangles. An example of a cut-cell mesh

around a NACA 0012 airfoil is shown in Figure 4-4. Triangles completely contained within

the geometry are not shown. Triangles that intersect the geometry are shown in entirety,

although the cut cells consist only of the portions inside the computational domain.

4.1.3 Integration

As described in the discretization (Chapter 2), a high-order DG method requires inte-

gration over element interiors as well as over element boundaries, which consist of edges

inside or on the boundary of the computational domain. One-dimensional integration on

63

(a) Entire airfoil

Cut cell

(b) Leading edge

Figure 4-4: Cut-cell mesh around a NACA 0012 airfoil with completely-contained triangles
removed. Triangles straddling the geometry boundary yield cut cells; one cut cell is shaded
in (b). The dashed line indicates the spline geometry.

cut edges and embedded edges is performed by mapping each segment to a reference interval

and using numerical quadrature. Mapping of curved spline segments is done using the spline

arc-length parameter, s. Figure 4-5 shows sample quadrature points for one-dimensional

integration along the boundary of a cut cell. Boundary integrals often require a normal

vector, which is readily available for the straight cut edges. On curved spline segments, the

normal vector is in the direction [dy/ds,−dx/ds], where x and y are the spline coordinates

defined in equation (D.1) of Appendix D.

Currently, each spline segment of an embedded edge is mapped to a reference interval

separately. In Figure 4-5, this is indicated by separate sets of Gauss points on either side

of the knot in the embedded edge. This splitting at spline knots, where the geometry in

general contains third-order discontinuities, leads to more accurate integration; specifically,

exact quadrature for constant integrands. While useful in development, this splitting could

be avoided in practice in order to reduce the computational costs of embedded-boundary

integrations.

Integration on cut-cell interiors is not as straightforward as on the boundaries. One

possibility is to subdivide each cut cell into possibly-curved simplices on which standard

quadrature rules apply. However, this subdivision on each cut cell reduces to the original

problem of meshing a domain with curved boundaries. A more general approach, used

in this work, is outlined below. The goal of this method is to produce for each cut cell

64

n

Cut−edge
Gauss points Spline

Knot

Embedded−edge
Gauss points

��

��

������������������
��

��
��
��
��

��
��
��
��

��

��
��
��
��

��

����

����

����

����

����

������
��
��
��
����
�
�
�
�����
����
����
����
����
����
������

�
�
�
�

����

����

�
�
�
�

��

��
��
��
��

��
��
��
��

�
�
�
�
�
�
�

�
�
�
�
�
�
�

���
���
���
���

���
���
���
���

��
��
��
��
��
��

��
��
��
��
��
��

�
�
�
�
�

�
�
�
�
�

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
�� ����

����
����

����
����
����

Geometry
splines

Figure 4-5: Quadrature points for one-dimensional integration on the boundary of a sample
cut cell. Distinct spline segments, with endpoints at spline knots, are treated separately.

Nquad integration points, xq, and associated weights, wq, to integrate arbitrary f(x) via a

quadrature-like sum,

∫

κ
f(x)dx ≈

∑

q

wqf(xq). (4.1)

The key idea is to project f(x) onto a space spanned by Nbasis high-order basis functions,

ζi(x), where the subscript i indexes the basis functions. The ζi(x) are chosen to allow for

simple computation of the integral
∫
κ ζi(x)dx. In particular, choosing ζi ≡ ∂kGik, where

k ∈ [1, .., d], leads, by the divergence theorem, to

∫

κ
ζidx =

∫

κ
∂kGikdx =

∫

∂κ
Giknkds, (4.2)

where the nk are components of the outward-pointing normal. Note, implied summation is

used on the repeated index k. While d = 2 for cut cells in two dimensions, the following

equations generalize naturally to three dimensions, and hence d is kept as a parameter.

The integrals over the element boundary, ∂κ, appearing on the right-hand side of (4.2)

are computed using the cut-edge and embedded-edge quadrature rules so that the interior

integrals of the ζi are calculated in a straightforward fashion. The functions Gik are chosen

as

Gik(x) = xkΦi(x), Φi(x) =
∏

k

φik(xk), x = [xk], i = [ik]. (4.3)

Note, for convenience in representing tensor-product basis functions, i is treated as a vector

65

�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������

�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������

�
�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

��
��
��

��
��
��

�
�
�
�

Φ

x

x

(x)φ

φ

Bounding Box

(x , x)

(x)

1

1

0

0

1

0

Figure 4-6: Construction of the Φi(x) functions for use in defining the integration basis,
ζi(x). The Φi(x) are tensor products of one-dimensional Lagrange functions, φik(x), in each
spatial direction on the cut-cell bounding box.

index with d components, ik. The functions φik(x) are well-conditioned, one-dimensional

basis functions. In this work, Lagrange basis functions are used with Gauss point nodes on

the element bounding box intervals (except for certain ill-conditioned cases, as described at

the end of this section), as shown in Figure 4-6. The order of these functions is the desired

order of integration for f(x). This order depends on the equation set and on the solution

interpolation order, p. The same order is used for cut cells as for standard elements; for

compressible the Navier-Stokes equations, in which the integrands are not polynomial, an

order of 2p + 1 has been found to be sufficient [24]. Note, the ζi and Φi basis functions are

used only for the calculation of cut-cell integration rules. They are different from the basis

functions used for solution approximation.

The factors of xk in the definition of Gi ensure that the basis functions ζi = ∂kGik =

dΦi(x)+xk∂kΦi(x) span the same complete space as the tensor product functions Φi. This

statement can be proved as follows. Let

xj ≡
∏

k

xjkk , k ∈ [1, .., d],

be the standard monomial basis indexed by j = [jk]. For example, j = [4, 3] represents the

monomial x4
1x

3
2. Since the Φi(x) are assumed to form a complete basis, every monomial can

be written as a linear combination of the Φi,

xj = ajiΦi(x),

66

where the aji are constants. Taking the gradient of both sides, followed by an inner product

with xk yields

xk∂k

(
xj
)

= xk∂k (ajiΦi(x)) ,
(
∑

k

jk

)

xj = ajixk∂kΦi(x).

Adding dxj = d ajiΦi to both sides results in

(
∑

k

jk + d

)
xj = aji (dΦi(x) + xk∂kΦi(x)) = ajiζi(x).

Since d > 0 and the jk are non-negative, dividing both sides by (
∑

k jk + d) yields a

representation of each monomial by the ζi functions. Thus, the ζi span the same complete

space as the Φi.

The projection of f(x) onto ζi(x), f(x) ≈
∑

i Fiζi(x), is performed by minimizing the

sum of squares of the projection error,

E2 =
∑

q

[
∑

i

Fiζi(xq) − f(xq)

]2

,

where q in the sum ranges over the sampling points, xq, and f(xq) is the value of the

integrand evaluated at xq. The solution vector, Fi, is found using QR factorization of the

Nquad × Nbasis matrix ζi(xq),

Fi = (R−1)ij(Q
T)jqf(xq), where ζi(xq) = QqjRji.

Thus, the integral of f(x) over κ can be written as

∫

κ
f(x)dx ≈

∑

i

Fi

∫

κ
ζi(x)dx

︸ ︷︷ ︸
projection

=
∑

q

f(xq)Qqj(R
−T)ji

∫

κ
ζi(x)dx

︸ ︷︷ ︸
wq

, (4.4)

where the expression for the sampling weights is deduced by comparing (4.4) to (4.1). Note,

the summation symbol is included only for clarity; implied summation is still used for all

repeated indices. In the last step in (4.4), a change in the order of summation between i and

q was performed. None of the terms in the sampling weights expression, Q,R,
∫
κ ζi(x)dx,

depend on the integrand function, f(x). Thus, for each cut-cell interior, the sampling

weights can be computed once in a pre-processing step and used for arbitrary integrands.

67

The choice of sampling points, xq, affects the conditioning of the QR factorization of

ζi(xq). The points should lie inside the cut cell so that the integrand remains physical.

For example, quantities such as pressure or temperature may not necessarily evaluate to a

positive value outside the cut cell. Multiple methods exist for choosing these interior points.

One option consists of picking points randomly in the element bounding box and checking

whether or not they lie inside the element. The inside/outside check can be performed by

casting a segment to a point that is known to be inside or outside the element and counting

the number of intersections with the 1D element boundaries. However, this method becomes

inefficient for elements whose area is small relative to the area of the bounding box, in which

case a randomly-chosen point is likely to lie outside the cut cell. Thus, in this work, the

random points are chosen by an alternate method, which involves casting interior-bound

rays from quadrature points on the 1D element boundary, as shown in Figure 4-7. These

Ray

Sampling
point

��

��

������������������
��

��
��
��
��

��
��
��
��

��

��
��
��
��

��

����

����

����

����

����

������
��
��
��
����
�
�
�
�����
����
����
����
����
����
������

�
�
�
�

����

����

�
�
�
�

��

������
������
������
������

�����
�����
�����

�����
�����
�����

��������
��������
��������
��������

��������
��������
��������
��������

Point of
first exit

Figure 4-7: Interior sampling point selection by ray casting from boundary quadrature
points. The rays are cast with a random perturbation in angle from the inward-pointing
normal. For each ray, one sampling point is chosen between the ray origin and the point of
first exit.

rays are directed normal to the element boundary with a random angle variation (default

range is ±15o). The closest intersection of each ray with the element boundary marks where

the ray first exits the element. A random interior point is chosen between the origin of the

ray and the exit point. This process repeats until the desired number of sampling points

is obtained, each time using a randomly-chosen boundary quadrature point. The random

choice of boundary quadrature points is weighted by the length of the boundary edges. That

is, quadrature points on longer edges are more likely to be selected than points on shorter

edges. This weighting is performed to avoid clustering of sampling points that could result

from many rays being cast from a very short boundary edge. Example sampling points

68

produced by the ray-casting method for a cut-cell mesh around a NACA 0012 are shown in

Figure 4-8.

Since a random set of points may possess unfavorable clusters, conditioning of the QR

factorization generally improves with an increasing number of sampling points, Nquad. In

this work, Nquad is set to four times the number of ζi basis functions: Nquad = 4Nbasis. In

the event of a singular error in the QR factorization, an event that has not yet been observed

for any cases in practice, another set of sampling points is chosen. In addition, using an

axis-aligned element bounding box to define the Φi(x) may pose conditioning problems

for non-axis-aligned sliver elements, as shown in Figure 4-9. In this case, conditioning is

improved by rotating the bounding box for a tighter fit around the element. Specifically,

for each element, two new bounding boxes are constructed, oriented along the diagonals of

the original axis-aligned bounding box. The tightest-fitting bounding box, which is the one

with the smallest area, is used.

Better algorithms likely exist for performing the cut-cell integrations or for improving

the proposed method. For example, the sampling point selection process can be made more

sophisticated. Random selection was used here for its simplicity, justified by the fact that

unfavorable clusters are detected by degeneracy in the weight calculation, in which case the

selection process is repeated. An improved selection process may be more expensive, but it

may allow for fewer sampling points. This is an area of possible future research.

4.1.4 Adaptation on Cut-Cell Meshes

One of the primary advantages of using cut cells in an adaptive method lies in being able

to re-mesh the domain at each iteration according to some prescribed metric without requir-

ing the mesh to conform to an intricate geometry. Such re-meshing requires specification

of the metric request everywhere in the background domain, including inside the geometry.

The standard approach of specifying the metric on the nodes or elements of the current

mesh must be modified for cut cells, as the cutting process removes triangles contained

completely within the geometry. The approach taken in this work is to store, at each adap-

tation iteration, the original background mesh from which the cut-cell mesh is obtained.

The metric for re-meshing is prescribed on this background mesh. In cases of multiple cut

cells originating from the same background triangle, the metric on the background triangle

is taken to be the component-wise average of the metrics on the multiple cut cells. As no

solution exists outside the computational domain, a grid-implied metric (Section 3.2.2) is

used on background-mesh triangles completely contained within the geometry. This choice

preserves the sizes of these contained triangles, except possibly at the geometry boundary,

69

(a) Entire airfoil

(b) Leading edge (c) Trailing edge

Figure 4-8: Example of integration points for cut cells around a NACA 0012 geometry. In
addition to the cut-cell interior sampling points, quadrature points on the embedded edges
are also shown.

70

Figure 4-9: For non-axis-aligned sliver cut elements (shaded area), the original bounding
box (left) is rotated to obtain a tighter fit (right). Also shown is the original triangle from
which the sliver element was cut.

where metric smoothing by the mesher or by the element-to-node metric transfer brings in

influence from neighboring cut cells. Such smoothing prevents any sudden changes in mesh

size near the geometry boundary.

Error estimation on cut cells remains fundamentally unchanged from the boundary-

conforming case. During the solution transfer from the current mesh to the adapted mesh

(described in Section 3.2.3), p = 0 restriction is performed in lieu of L2 projection on cut

cells to prevent the creation of non-physical states. Specifically, on every cut cell in the

adapted mesh, the transferred solution consists of a weighted average of the solutions from

overlapping elements of the current mesh.

4.1.5 Implementation

The cut-cell method was implemented in an existing discontinuous Galerkin finite ele-

ment code, with no change to the basic numerical integration paradigm on element interiors

and boundaries. No changes were necessary because the cut-cell integrations take the form

of quadrature sums, as indicated in (4.1) and (4.4). For each cut cell, integration rules

consisting of sampling points and associated sampling weights are created once in a pre-

processing step and saved before beginning solution iterations. For integration on embedded

boundaries, boundary normals are also pre-computed and stored. Solution approximation

functions for cut cells are defined not on the original triangles, but rather on “shadow”

triangles. A shadow triangle is taken to be the right triangle obtained by dividing in half

the oriented bounding boxes shown on the right in Figure 4-9. This choice is permissible

because element-wise continuity in the solution approximation is not enforced for the dis-

continuous Galerkin method. Thus, the basis for each element may be practically arbitrary.

Using shadow triangles improves conditioning of the approximation basis for small and/or

sliver cut cells. The basis functions on the shadow triangles are the same as for standard

elements: either nodal Lagrange or hierarchical [24].

71

Even though this work deals with steady-state solution via implicit schemes, an unsteady

term with local time steps is used to improve robustness in the early stages of convergence.

As cut cells may have very small areas, global time stepping (i.e. constant time step ∆t) is

not used. Rather, a local time step is chosen for each element using a global CFL number:

∆tκ = CFL(hκ/sκ,max), where hκ and sκ,max are the element-specific size (e.g. hydraulic

diameter) and maximum wave speed, respectively. The method for setting the CFL number

proceeds as follows:

• At the beginning of a run, the global CFL number is initialized to CFL0.

• Following each Newton iteration:

– If a full state update is taken, the CFL number is increased: CFL = CFL ∗
CFLincrease.

– If the state update is limited, in practice, by allowable changes in pressure and

density [24], the CFL number is not increased.

– In case of a limited update, the update is taken if the limited update is greater

than a prescribed fraction (default is 1%) of the original update. Otherwise, the

update is not taken and the CFL number is decreased: CFL = CFL/CFLdecrease.

The parameters used in this work are CFL0 = 1, CFLincrease = 2, and CFLdecrease = 10.

4.2 Results

The adaptation scheme is applied to several representative aerodynamic cases using

orders p = 1 to p = 3. Comparisons of the adapted meshes and the error convergence

histories are given for both boundary-conforming and cut-cell meshes in terms of degrees of

freedom (DOF). The number of degrees of freedom in a solution is computed as the total

number of unknowns excluding the equation-specific multiplier (e.g. 4 for the 2D Euler or

Navier-Stokes equations).

For comparing different interpolation orders, p, a better metric than degrees of freedom

is computational time. However, relative run times depend heavily on the implementation

and on the hardware. Nevertheless, a more accurate estimate of the computational work

is possible by assuming a work expression of the form, W ∼ Ne[n(p)]a, where Ne is the

number of elements, n(p) is the degrees of freedom per element, and a is a measure of the

computational complexity per element. Using DOF = Nen(p), the work estimate may be

written as W ∼ DOF[n(p)]a−1. From experience, at least for orders up to p = 3, the work

is dominated by the matrix-vector products during the GMRES linear solve; i.e. a ∼ 2.

72

In addition, in two dimensions, the number of degrees of freedom per element is given by

n(p) = (p + 1)(p + 2)/2. Thus, as n(1) = 3, n(2) = 6, and n(3) = 10, for the same DOF,

p = 2 is expected to be twice as expensive as p = 1, while p = 3 is expected to be over three

times more expensive than p = 1.

4.2.1 Inviscid NACA 0012, M∞ = 0.5, α = 2o

This case considers a NACA 0012 airfoil contained within a farfield box that is a distance

of 100 chord lengths away from the airfoil. The NACA geometry is modified to close the

trailing edge gap,

y = ±0.6(0.2969
√

x − 0.1260x − 0.3516x2 + 0.2843x3 − 0.1036x4). (4.5)

The performance of the isotropic adaptation algorithm is tested using drag as the out-

put with a tolerance of 0.1 drag counts. As mentioned in Section 1.1, a “count” in a

force calculation refers to a fraction of the corresponding non-dimensional force coefficient.

Specifically, one drag count corresponds to 10−4CD, where CD is the drag coefficient. All

two-dimensional force coefficients in this work are normalized by the freestream dynamic

pressure and the chord length. In this inviscid case, the drag is obtained from the static

pressure distribution on the airfoil surface with the pressure calculated using only the tan-

gential velocity, vt: ps = (γ − 1)(ρE − 0.5ρ|vt|2). The “exact” output value is taken as the

drag computed on a p = 3 boundary-conforming run adapted to 10−3 drag counts. Note,

boundary effects of the finite farfield contribute to a nonzero drag value at steady state.

Figure 4-10 shows the initial 123-element boundary-conforming mesh and the initial 133-

element cut-cell mesh. In the boundary-conforming mesh, elements adjacent to the airfoil

surface are represented using cubic (q = 3) curved elements. Each cubic element is obtained

by mapping ten Lagrange nodes from a reference right triangle to physical space. Curved

edges are obtained by placing the additional edge nodes on the curved geometry. The

position of the single interior node is determined by an average of the edge node positions.

These boundary elements have to be curved at every adaptation iteration, since BAMG

produces linear meshes. For the isotropic elements in this case, this curving does not pose

a problem. In the cut-cell cases, the cubic-spline geometry contains 200 knots placed using

curvature-based spacing.

Figure 4-11 summarizes the results of the adaptation runs. The plots show the output

error versus DOF at each adaptation iteration for every run. The horizontal dashed lines in

both plots mark the error tolerance of 0.1 drag counts. In both the boundary-conforming

and the cut-cell methods, the p = 3 runs achieve the desired accuracy with the fewest

73

(a) Boundary-conforming: 123 elements (b) Cut-cell: 133 elements

Figure 4-10: NACA 0012: M∞ = 0.5, inviscid, α = 2o Initial meshes for adaptive runs.

degrees of freedom. The advantage of p = 3 is about a factor of 1.5 over p = 2 and a

factor of 10 over p = 1. In terms of the computational work estimate discussed at the

beginning of this section, the differences are diminished: p = 3 is comparable to p = 2,

which is almost three times less expensive than p = 1. A more important result, however, is

that the convergence of the cut-cell runs is comparable to that of the boundary-conforming

10
3

10
4

10
5

10
−2

10
−1

10
0

10
1

10
2

10
3

DOF

C
D

 e
rr

or
 (

co
un

ts
)

p = 1
p = 2
p = 3

(a) Boundary-conforming

10
3

10
4

10
5

10
−2

10
−1

10
0

10
1

10
2

10
3

DOF

C
D

 e
rr

or
 (

co
un

ts
)

p = 1
p = 2
p = 3

(b) Cut-cell

Figure 4-11: NACA 0012: M∞ = 0.5, inviscid, α = 2o. Drag error versus degrees of
freedom. Dashed line indicates prescribed tolerance of e0 = 0.1 counts.

74

p = 1, 13813 elements

p = 2, 1205 elements

p = 3, 554 elements

(a) Boundary-conforming

p = 1, 16599 elements

p = 2, 1061 elements

p = 3, 431 elements

(b) Cut-cell

Figure 4-12: NACA 0012: M∞ = 0.5, inviscid, α = 2o. Final boundary-conforming and
cut-cell meshes for p = 1, 2, 3, adapted to a drag tolerance of e0 = 0.1 counts.

runs. This fact implies not only that the cut-cell runs converge to the same answer as the

boundary-conforming runs, but also that the adaptive method is not significantly affected

by the presence of cut cells.

Figure 4-12 shows close-ups of the final, adapted meshes for p = 1, 2, 3. The similarity

between the cut-cell and boundary-conforming meshes at each p is evident, not only in the

number of elements but also in their distribution in areas targeted for refinement. These

areas include the leading and trailing edges, a fact that is expected as these are the areas

that most significantly influence the drag output. The mesh coarseness allowed by higher-

order interpolation is clear: the p = 3 meshes are about 30-40 times coarser than the p = 1

meshes.

Mach number contours for p = 1 and p = 3 on the final adapted meshes are shown

in Figure 4-13. The cut-cell solutions are rendered on the background mesh triangles,

and, hence, some of the contours cross the geometry boundary. However, the solution is

physically valid only inside the computational domain. The contours for the four cases

shown are nearly identical. As the requested error tolerance is quite strict, the flow is well

resolved. In particular, no spurious dissipation wake is present.

75

0.6

0.6

0.5

0.5

(a) Boundary-conforming, p = 1

0.5

0.6

0.6

0.5

(b) Cut-cell, p = 1

0.5

0.5

0.6

0.6

(c) Boundary-conforming, p = 3

0.5

0.5

0.6

0.6

(d) Cut-cell, p = 3

Figure 4-13: NACA 0012: M∞ = 0.5, inviscid, α = 2o. Mach number contours for p = 1
and p = 3 on the final adapted boundary-conforming and cut-cell meshes.

76

4.2.2 NACA 0012, M∞ = 0.5, Re = 5000, α = 2o

In this case, a Navier-Stokes solution is computed around a NACA 0012 in a freestream

Mach number of 0.5, Reynolds number (Re = u∞c/ν) of 5000, and angle of attack of 2o.

The initial meshes are isotropic and adapted to the geometry with roughly 250 elements.

The farfield is a square, 100 chord lengths away from the airfoil. Mesh optimization is

performed with anisotropic elements to efficiently resolve the boundary layer and wake. In

the presence of anisotropic elements near the airfoil boundary, the boundary-curving step

in post-processing the linear boundary-conforming meshes is prone to failure. That is, the

curved boundary may intersect interior edges and lead to un-allowable elements. This mode

of failure was observed for some of the runs. One possible fix in this situation is to curve

interior edges in addition to the boundary edges. However, this approach is difficult to

extend to three dimensions. Therefore, when such a failure occurred, the adaptation was

re-run with slightly-perturbed values for adaptation aggressiveness.

Viscous Force Calculation

A force output for a viscous simulation consists of two components: a pressure force and

a viscous shear force, fv. The pressure force is calculated as in the inviscid example, using

only the tangential velocity at the boundary. The viscous force, fv = [f v1 , f v2] is obtained

from the viscous flux, F v
ki, with a dual-consistent correction,

[
f v1

f v2

]
=

∑

σbf∈Γairfoil

∫

σbf

[
−F v

2ini + ηbfδbf2i ni

−F v
3ini + ηbfδbf3i ni

]
ds. (4.6)

F v
2i and F v

3i are viscous momentum flux components that account for the shear stress, as

presented in Chapter 2. The ni are components of the normal vector pointing outward

from the computational domain, and summation is implied on i ∈ [1, .., 2]. The integral

is performed over boundary edges, σbf , that lie on the airfoil boundary, Γairfoil. δbf2i and

δbf3i are components of the auxiliary variable associated with the BR2 discretization of the

viscous flux terms. Not including this correction leads to an adjoint solution that is not

well-behaved at the airfoil boundary and to a loss of accuracy in the force estimate [48].

Drag Adaptation

The adaptation algorithm was first tested using drag as the output, with a tolerance of

0.1 counts. The “true” drag of 568.84 counts (CD = .056884) was computed on a p = 3

cut-cell mesh, adapted to an error of 10−3 counts. The boundary-conforming and cut-cell

77

runs converge to the same drag value. The error convergence histories from the adaptation

are plotted in Figure 4-14.

Overall, the cut-cell and boundary-conforming results are similar. For both the boundary-

conforming and the cut-cell cases, p = 3 requires the fewest degrees of freedom at the error

tolerance, although p = 2 does not require much more. Thus, in terms of estimated work,

p = 2 becomes slightly advantageous to p = 3 in this case. p = 1, however, remains the most

expensive, requiring a factor of 4-5 more degrees of freedom than p = 2, which translates

to an estimated work increase of about a factor of 2.

Figures 4-15 and 4-16 show the final adapted meshes for p = 2 and p = 3, respectively.

The final adapted meshes for p = 1 are much finer: 98808 elements for the boundary-

conforming case and 61163 for the cut-cell case. They are not shown here because, on the

scale used, the elements are practically indiscernible in regions of refinement. In all meshes,

areas of high refinement include the boundary layer, a large extent of the wake, and, to a

lesser extent, the flow in front of the airfoil. Elements in the boundary layer and in the

wake are stretched in the flow direction, correctly capturing the anisotropy in this viscous

solution. The similarity in element size and anisotropic stretching between the cut-cell

meshes and their boundary-conforming counterparts is evident.

Mach number contours for p = 1 and p = 3 solutions on the final adapted meshes are

shown in Figure 4-17. In all cases the flow appears to be well-resolved, yielding smooth

contours that are nearly identical among the four plots. Mach number anisotropy is evident

10
3

10
4

10
5

10
−2

10
−1

10
0

10
1

10
2

10
3

DOF

C
D

 e
rr

or
 (

co
un

ts
)

p = 1
p = 2
p = 3

(a) Boundary-conforming

10
3

10
4

10
5

10
−2

10
−1

10
0

10
1

10
2

10
3

DOF

C
D

 e
rr

or
 (

co
un

ts
)

p = 1
p = 2
p = 3

(b) Cut-cell

Figure 4-14: NACA 0012: M∞ = 0.5, Re = 5000, α = 2o. Drag error versus degrees of
freedom. Dashed line indicates prescribed tolerance of e0 = 0.1 drag counts.

78

(a) Boundary-conforming: 4068 elements (b) Cut-cell: 3403 elements

Figure 4-15: NACA 0012: M∞ = 0.5, Re = 5000, α = 2o. Final p = 2 meshes adapted on
drag with tolerance e0 = 0.1 counts.

in the boundary layer and in the wake: the variation of the Mach number in the streamwise

direction is much smaller than the variation in the normal direction. This anisotropy is

responsible for the stretched elements in the boundary layer and in the wake.

The skin friction coefficient distributions for solutions on the final adapted meshes are

shown in Figure 4-18. The skin friction coefficient, Cf , on the airfoil surface is given by

Cf = fv · t/
(

1
2ρ∞V 2

∞

)
, where fv is the viscous force, t is a unit tangent vector along the

(a) Boundary-conforming: 1781 elements (b) Cut-cell: 1680 elements

Figure 4-16: NACA 0012: M∞ = 0.5, Re = 5000, α = 2o. Final p = 3 meshes adapted on
drag with tolerance e0 = 0.1 counts.

79

0
.5

0.5

0.6

(a) Boundary-conforming, p = 1

0.6

0.50
.5

(b) Cut-cell, p = 1

0
.5

0.5

0.6

(c) Boundary-conforming, p = 3

0.5
0

.5

0.6

(d) Cut-cell, p = 3

Figure 4-17: NACA 0012: M∞ = 0.5, Re = 5000, α = 2o. Mach number contours for p = 1
and p = 3 on the final adapted boundary-conforming and cut-cell meshes.

airfoil, and ρ∞ and V∞ are the freestream density and velocity magnitude, respectively. The

flow is attached throughout; on the lower surface of the airfoil, t points opposite to the flow

direction and Cf is negative by the above definition. As shown, the Cf plots are practically

identical for the boundary-conforming and the cut-cell cases and for the different orders, p.

Lift Adaptation

A second test of the adaptation algorithm was performed using lift as the output. Each

test case was adapted to 1 count of lift. The “true” lift of 369.4 counts (CL = .03694). was

taken from a p = 3 solution on a cut-cell mesh, adapted to 0.01 counts. The lift output

error, relative to the true value, is shown for all adaptation runs in Figure 4-19. All runs

converged to error levels below the requested tolerance. The required degrees of freedom

at error tolerance are similar between the boundary-conforming and the cut-cell runs. For

both methods, p = 1 adaptation is the least efficient in terms of error per degrees of freedom,

requiring about a factor of 4 times more DOF compared to p = 2 at the error tolerance. In

80

0 0.2 0.4 0.6 0.8 1

−0.1

−0.05

0

0.05

0.1

0.15

0.2

x/c

C
f

p = 1
p = 2
p = 3

(a) Boundary-conforming

0 0.2 0.4 0.6 0.8 1

−0.1

−0.05

0

0.05

0.1

0.15

0.2

x/c

C
f

p = 1
p = 2
p = 3

(b) Cut-cell

Figure 4-18: NACA 0012: M∞ = 0.5, Re = 5000, α = 2o. Surface skin friction coefficient
distributions for solutions on the final adapted boundary-conforming and cut-cell meshes.
These plots were generated by evaluating Cf at the quadrature points on the embedded
boundary edges.

terms of estimated work, this difference decreases to roughly a factor of 2. p = 3 is slightly

more advantageous compared to p = 2 in terms of DOF; in terms of estimated work, the

difference is negligible. The final lift-adapted meshes are shown in Figures 4-20 and 4-21

10
3

10
4

10
5

10
−1

10
0

10
1

10
2

10
3

DOF

C
L e

rr
or

 (
co

un
ts

)

p = 1
p = 2
p = 3

(a) Boundary-conforming

10
3

10
4

10
5

10
−1

10
0

10
1

10
2

10
3

DOF

C
L e

rr
or

 (
co

un
ts

)

p = 1
p = 2
p = 3

(b) Cut-cell

Figure 4-19: NACA 0012: M∞ = 0.5, Re = 5000, α = 2o. Lift error versus degrees of
freedom. Dashed line indicates prescribed tolerance of e0 = 1 lift counts.

81

for p = 2 and p = 3, respectively. For comparison, the final p = 1 meshes contained 29838

elements in the boundary-conforming case and 33243 elements in the cut-cell case. The

areas targeted for refinement are similar to the drag-adaptation case: the boundary layer,

the leading edge, and portions of the wake. Anisotropy is clearly present in both the p = 2

and the p = 3 meshes.

(a) Boundary-conforming: 4066 elements (b) Cut-cell: 3778 elements

Figure 4-20: NACA 0012: M∞ = 0.5, Re = 5000, α = 2o. Final p = 2 meshes adapted on
lift with tolerance e0 = 1 count.

(a) Boundary-conforming: 1424 elements (b) Cut-cell: 1164 elements

Figure 4-21: NACA 0012: M∞ = 0.5, Re = 5000, α = 2o. Final p = 3 meshes adapted on
lift with tolerance e0 = 1 count.

82

4.2.3 Sensitivity to Initial Mesh

For the adaptation method to be practical, the final adapted meshes should not be

highly sensitive to the starting meshes. The sensitivity was tested for a NACA 0012 at

Re = 5000, M = 0.5, α = 2o, adapted to drag with an error tolerance of 1 drag count.

Runs were performed with several different cut-cell starting meshes, including a set of

uniform, structured, triangulations of the entire domain, as well as two meshes adapted to

the geometry to different levels of refinement. These meshes are shown in Figure 4-22.

Figure 4-23 shows the adaptation histories for p = 1, 2, 3. For the finer uniform starting

meshes, the degrees of freedom decrease rapidly in the first adaptation iteration due to

coarsening of the mesh away from the airfoil, where the mesh is initially relatively too fine.

The adaptation histories appear somewhat scattered for the first several iterations, but then

converge as the error decreases. For a given p, the final adapted meshes are close not only in

DOF count, but also in DOF spatial distribution. This observation is made by qualitatively

comparing locations of refinement and element aspect ratio. In particular, Figure 4-24 shows

the final adapted meshes obtained for p = 3, starting from the initial meshes in Figure 4-22.

Although the meshes are not identical, they exhibit similar resolution near the leading and

trailing edges and in the wake. Therefore, these runs illustrate that for a low-enough error

tolerance, the final meshes generated by the adaptation algorithm are relatively insensitive

to the initial mesh.

−100 −50 0 50 100
−100

−50

0

50

100

(a) Uniform 8x8

−0.5 0 0.5 1 1.5
−1

−0.5

0

0.5

1

(b) Adapted to geometry: 245
elements

−0.5 0 0.5 1 1.5
−1

−0.5

0

0.5

1

(c) Adapted to geometry: 478
elements

Figure 4-22: Mesh-sensitivity study: sample initial meshes showing a uniform triangulation
as well as two meshes adapted to the geometry.

83

10
3

10
4

10
5

10
−1

10
0

10
1

10
2

10
3

DOF

C
D

 e
rr

or
 (

co
un

ts
)

Uniform 8x8

Uniform 16x16

Uniform 32x32

Geom. adapt: 245

Geom. adapt: 478

(a) p = 1

10
3

10
4

10
5

10
−1

10
0

10
1

10
2

10
3

DOF
C

D
 e

rr
or

 (
co

un
ts

)

Uniform 8x8

Uniform 16x16

Uniform 32x32

Geom. adapt: 245

Geom. adapt: 478

(b) p = 2

10
3

10
4

10
5

10
−1

10
0

10
1

10
2

10
3

DOF

C
D

 e
rr

or
 (

co
un

ts
)

Uniform 8x8

Uniform 16x16

Uniform 32x32

Geom. adapt: 245

Geom. adapt: 478

(c) p = 3

Figure 4-23: Mesh-sensitivity study: adaptation histories for p = 1, 2, 3, starting from
various initial meshes, some shown in Figure 4-22.

84

From uniform 8x8: 587 elements

From 245−element geom. adapt: 617 elements

From 478−element geom. adapt: 606 elements

Figure 4-24: Mesh-sensitivity study: final p = 3 meshes for the three initial meshes shown
in Figure 4-22.

85

4.2.4 NACA 0005, M = 0.4, Re = 50000, α = 0o

This case considers a thin airfoil in a subsonic, high-Reynolds number flow. The NACA

0005 geometry is given by (4.5) with 0.25 for the leading coefficient instead of 0.6. The

farfield is located 100 chord lengths away from the airfoil. Only cut-cell meshes are presented

for this case, as boundary-conforming meshes readily yielded invalid elements upon curving

the highly-stretched boundary elements in latter stages of adaptation. The initial mesh for

this case, shown in Figure 4-25, was created by starting from a geometry-adapted mesh

and adapting several times at p = 2, Re = 10000 to a loose drag error requirement. The

resulting 677-element mesh is relatively coarse but contains adequate resolution to allow for

initial p = 2 and p = 3 solves at Re = 50000.

The adaptation algorithm was tested using drag as the output with a tolerance of 0.01

counts. The “true” drag of 161.043 counts was taken from a p = 3 solution on a mesh

obtained by uniformly refining the final adapted p = 2 mesh. The drag error histories for

p = 1, 2, 3 are shown in Figure 4-26. At the error tolerance, p = 3 requires about 1.5 times

fewer DOF than p = 2 and about a factor of 10 fewer DOF than p = 1. Thus, in terms of

estimated work, p = 2 and p = 3 are relatively comparable, while p = 1 is a factor of three

times more expensive.

The final adapted meshes are shown in Figure 4-27 for p = 2 and p = 3. For p = 1, the

final adapted mesh contains 106201 elements, which would not be discernable on the scale

used. Clearly, the p = 2 and p = 3 meshes are much coarser with 5859 and 2004 elements,

respectively. Highly-anisotropic elements are present in the boundary layer and in the wake.

The high anisotropy near the boundary makes the boundary-conforming meshes prone to

Figure 4-25: NACA 0005: M = 0.4, Re = 50000, α = 0o. Initial mesh consisting of 677
elements.

86

10
3

10
4

10
5

10
−3

10
−2

10
−1

10
0

10
1

10
2

DOF

C
D

 e
rr

or
 (

co
un

ts
)

p = 1
p = 2
p = 3

Figure 4-26: NACA 0005: M∞ = 0.4, Re = 50000, α = 0o. Drag error versus degrees of
freedom. Dashed line indicates prescribed tolerance of e0 = 0.01 drag counts.

failure during the curving of the first layer of elements but does not hinder the cut-cell

method.

Mach number contours for p = 1 and p = 3 on the final adapted meshes are shown

in Figure 4-28. The p = 1 contours are very similar to the p = 3 contours. Compared

to the Re = 5000 case, the boundary layer and wake are significantly thinner so that the

Mach number anisotropy is more pronounced. The surface skin friction distributions on the

adapted meshes are shown in Figure 4-29. Cf is nearly identical for the three orders.

(a) p = 2: 5859 elements (b) p = 3: 2004 elements

Figure 4-27: NACA 0005: M∞ = 0.4, Re = 50000, α = 0o. Final cut-cell meshes adapted
on drag.

87

0
.4

0

0.35
0.40

(a) Cut-cell, p = 1

0
.4

0

0.35
0.40

(b) Cut-cell, p = 3

Figure 4-28: NACA 0005: M∞ = 0.4, Re = 50000, α = 0o. Mach number contours for p = 1
and p = 3 on the final adapted cut-cell meshes.

0 0.2 0.4 0.6 0.8 1

−0.1

−0.05

0

0.05

0.1

0.15

x/c

C
f

p = 1
p = 2
p = 3

Figure 4-29: NACA 0005: M∞ = 0.4, Re = 50000, α = 0o. Skin friction coefficient distri-
butions on the final adapted meshes.

88

4.2.5 Joukowski Airfoil: High Pe Convection-Diffusion

One of the proposed advantages of the cut-cell method over the boundary-conforming

method lies in the robustness of cut cells in dealing with anisotropic meshes near curved

boundaries. This advantage has been demonstrated in the above results, notably in the

Re = 5000, NACA 0012 runs and in the Re = 50000, NACA 0005 runs, in which the

boundary-conforming method was prone to failure during curving of anisotropic boundary

elements in post-processing. However, these cases arguably did not fully test the robustness

of the cut-cell method. In terms of element aspect ratio, Re = 50000 is relatively benign

compared to some of the practical high Reynolds numbers observed in cases of engineering

interest. For example, a wing cross-section of a typical transport aircraft at cruise condition

often faces Reynolds numbers in excess of 107. Furthermore, at such Reynolds numbers,

the flow is turbulent, and accurate prediction of quantities such as skin friction and heat

transfer demands resolution down to the viscous sublayer. In the presence of very high

aspect ratio elements resulting from this required resolution, the cut-cell method faces a

robustness challenge stemming from cutting a mesh whose edges in the boundary layer are

nearly parallel to the geometry. In addition, a challenge for the adaptive algorithm is to

robustly mesh the areas of high anisotropy.

An ideal test of the cut-cell adaptive method would be a Reynolds-averaged Navier-

Stokes (RANS) simulation. However, as RANS discretization and solution is currently

under development, a simpler equation set, convection-diffusion, was chosen to assess the

robustness of the cut-cell adaptive method. The convection-diffusion equation is given by

∇ · (VT) −∇ · (ν∇T) = 0, P e =
V∞L

ν
, (4.7)

where T is the scalar of interest, V is a prescribed velocity field, ν is the diffusion coefficient,

V∞ is a constant farfield velocity, L is a reference length scale, and Pe is the Peclet number,

measuring the strength of convection relative to diffusion. The discontinuous Galerkin

discretization of (4.7) proceeds similarly to that of the Navier-Stokes equations. Specifically,

full upwinding is used for the convection term and the second form of Bassi & Rebay,

described in Chapter 2, is used for the diffusion term. As neither V nor µ are assumed to

be a function of T , (4.7) is a linear equation.

For the convection-diffusion equation, boundary-layer behavior can be observed at high

Pe when a boundary condition specifies a T different from that in the bulk flow. To be

concrete, in the following examples T will represent a temperature field, and the case of

interest will be a heated airfoil in a high-speed flow. To allow for an analytical specification

of the required velocity field in (4.7), potential flow around a Joukowski airfoil geometry is

89

used. The velocity field is obtained via a conformal mapping of the velocity potential for

non-lifting flow over a cylinder. Specifically, in a complex plane Z, non-lifting flow over a

circular cylinder with center z0 and radius R is governed by a complex potential, f(z), that

consists of a freestream flow superimposed with a doublet,

f(z) = V∞

(
z +

R2

z − z0

)
,

where V∞ is the magnitude of the freestream velocity. The complex velocity at any point z

is then given by VZ(z) = df/dz. That is, the real component of VZ is the “x-velocity”, and

the imaginary component is the “y-velocity”. The cylinder in the Z plane is mapped to an

airfoil in a new plane, W , via the conformal mapping,

w = z +
1

z
.

A property of conformal mappings is that harmonic functions remain harmonic. Thus,

since f(z) is harmonic, so is f(w), and hence the velocity over the Joukowski airfoil is given

by VW (w) = df/dw = (df/dz)(dz/dw). In this work, a symmetric airfoil is considered,

obtained from a cylinder with center z0 = (−0.1, 0) and radius R = 1.1, as shown in Figure

4-30.

The Peclet number, Pe, is chosen to simulate boundary-layer resolution required for a

high Re, turbulent, Navier-Stokes flow. Simply setting Pe = Re is not sufficient because a

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

Real(z)

Im
ag

(z
) R

z
0

(a) Cylinder in Z plane

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Real(w)

Im
ag

(w
)

(b) Airfoil in W plane

Figure 4-30: Joukowski transformation from a cylinder to an airfoil with a cusped trailing
edge. The origin of the cylinder is on the real axis, which means that the resulting Joukowski
airfoil is symmetric.

90

turbulent boundary layer contains an inner viscous sublayer that must also be resolved. A

more realistic choice for Pe is one for which the thickness of the simulated scalar boundary

layer matches the thickness of the turbulent inner layer. This inner layer extends to y+ ∼
O(10), where y+ is a non-dimensional wall distance, related to the physical wall distance, y,

via y+ = (y/L)Re
√

Cf/2. Specifically, in this work, y+ = 10 is used as an estimate for the

inner layer thickness. Cf , the skin friction coefficient, can be empirically correlated with

Re. One such fit, due to Karman and Schoenherr, reads

1√
Cf

≈ 4.15 log10(Re Cf) + 1.7. (4.8)

More information on this fit, as well as turbulent boundary layers in general can be found

in [77]. For a specified Re, (4.8) yields the corresponding Cf ; y/L as a function of y+ then

follows from the definition of y+.

As mentioned previously, Re = 107 is a representative value for an aircraft at cruise. At

this Re and y+ = 10, the above analysis yields y/L ≈ 2.8 × 10−5. The Pe corresponding

to an equivalent scalar boundary layer is found from a Blasius fit, y99/L ≈ 5/
√

Pe, where

y99 is the 99% thickness [77]. Setting y99/L = 2.8 × 10−5 yields Pe ≈ 4 × 1010, over three

orders of magnitude higher than the Re value.

The following sections present cut-cell, adaptive results for three Peclet numbers: Pe =

4 × 106, Pe = 4 × 108, and Pe = 4 × 1010. These conditions correspond to an equivalent

y+ = 10 inner-layer thickness for Re = 7 × 104, Re = 106, and Re = 107, respectively. The

freestream temperature is set to T = 1, while at the airfoil surface, a Dirichlet boundary

condition of T = 1.2 is prescribed. The temperature difference is therefore ∆T = 0.2. A

velocity field with V∞ = 1 is prescribed. The output of interest in each adaptive run is the

total heat flux into the airfoil, given by

J =
∑

σbf∈Γairfoil

∫

σbf

[
−ν∂iTni + ηbfδbfi ni

]
ds, (4.9)

where Γairfoil is the airfoil surface consisting of boundary edges σbf , ni are components of

the normal vector pointing out of the computational domain, and δbfi are components of the

auxiliary variable associated with the BR2 discretization of the diffusion term. Summation

is implied on the repeated index i ∈ [1, .., 2]. As in (4.6), the auxiliary variable term is

necessary to ensure dual-consistency. The error tolerance in each case is set to 1% of an

order of magnitude estimate for the output,

J̄ = ν∆T
√

Pe.

91

This estimate is derived using (∆T)/δ to approximate the heat flux, where δ/L = 1/
√

Pe

is an estimate of the distance over which heat transfer occurs. Finally, the geometry of the

Joukowski airfoil is represented using a spline with 3200 knots. Such high accuracy in the

geometry representation is required to ensure that the airfoil boundary remains parallel to

the analytical velocity field.

Pe = 4 × 106

The initial mesh used for the adaptive runs at Pe = 4× 106 is shown in Figure 4-31. It

was obtained by adapting a uniform square mesh to the geometry. The adaptive method

was run starting from this initial mesh for interpolation orders of p = 1, p = 2, and p = 3.

The resulting output error convergence versus degrees of freedom is given in Figure 4-32a

with the horizontal line indicating the error tolerance. The true value for the heat flux

was taken from a p = 3 solution on a uniformly-refined finest-level p = 2 mesh. While

both p = 2 and p = 3 achieve the desired heat flux error tolerance with slightly over 10000

DOF, p = 1 requires over 40000 DOF. Thus, in terms of estimated work, p = 2 is the

least expensive by a factor of 2 compared to p = 1. Another useful measure for this case

is the aspect ratio, AR, of the elements in the final meshes. A histogram of these aspect

ratios is given in Figure 4-32b. This histogram was generated using 20 bins, distributed

logarithmically between 0 and 104. The count in each bin was normalized by 20/Nelem to

account for differing number of elements in the meshes. While the average AR for p = 1 is

36, it is 15 for p = 2 and 10 for p = 3.

Figure 4-31: Initial mesh for Pe = 4×106 computation, adapted to geometry: 904 elements.
Also shown is the airfoil spline representation.

92

10
4

10
5

10
−7

10
−6

10
−5

10
−4

10
−3

DOF

H
ea

t F
lu

x
E

rr
or

p = 1
p = 2
p = 3

(a) Adaptation history

10
0

10
1

10
2

10
3

10
4

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

AR

N
or

m
al

iz
ed

 e
le

m
en

t c
ou

nt

p = 1, avg(AR) = 36
p = 2, avg(AR) = 15
p = 3, avg(AR) = 10

(b) AR histogram

Figure 4-32: Joukowski airfoil: Pe = 4× 106. Output error versus DOF adaptation history
and a histogram of element aspect ratio in the final adapted meshes.

The final adapted meshes for p = 1, 2, 3 are shown in Figure 4-33. The wake is not re-

solved because it does not significantly affect the heat transfer at the airfoil. A sequence of

magnified images is shown for each mesh to illustrate the relative thickness of the boundary

layer. Triangles of the background mesh that are completely contained within the airfoil

geometry are not shown, giving the illusion of boundary conforming meshes due to the

geometry-aligned anisotropic elements in the boundary layer. The coarseness in the bound-

ary layer mesh allowed by p > 1 is clearly evident. A rough count of the average number of

cells within the boundary layer in a direction normal to the airfoil boundary yields about

25-30 for the final adapted p = 1 mesh, 5-6 for the final adapted p = 2 mesh, and 2-3 for the

final adapted p = 3 mesh. The coarser meshes for higher p not only result in fewer degrees

of freedom but also take some of the burden off the mesh generator. This fact becomes

particularly important at the higher Peclet numbers.

Finally, Figure 4-34 shows the heat transfer coefficient, CH , for the solutions on the final

adapted p = 1, 2, 3 meshes. This coefficient is computed via

CH =
−ν∂iTni + ηbfδbfi ni

V∞∆T
,

where the δbfi term is included for dual-consistentcy, as in (4.9). ∆T is the difference between

the airfoil surface temperature and the freestream temperature. CH exhibits oscillatory

behavior, especially near the leading edge.

93

(a) p = 1 (b) p = 2

(c) p = 3

Figure 4-33: Joukowski airfoil: Pe = 4 × 106. Final adapted meshes for p = 1, p = 2, and
p = 3. Shaded areas indicate zoom regions for the subsequent plots. Arrows point to the
dashed line marking the embedded airfoil boundary.

94

0 0.2 0.4 0.6 0.8 1
−5

−4

−3

−2

−1

0
x 10

−3

x/c

C
H

(a) p = 1

0 0.2 0.4 0.6 0.8 1
−5

−4

−3

−2

−1

0
x 10

−3

x/c

C
H

(b) p = 2

0 0.2 0.4 0.6 0.8 1
−5

−4

−3

−2

−1

0
x 10

−3

x/c

C
H

(c) p = 3

Figure 4-34: Joukowski airfoil: Pe = 4 × 106. Heat transfer coefficient along the airfoil
surface on the final adapted p = 1, 2, 3 meshes. Negative heat transfer corresponds to heat
flux into the flow, out of the airfoil.

The refined meshes in Figure 4-33 exhibit very little refinement of the wake. However,

the output error indicator is not a bound, but rather an estimate that improves with reso-

lution. Thus, the fact that the wake is not refined may be due to poor wake resolution in

the initial mesh. To verify whether wake refinement is truly not important for the heat flux

calculation in this case, adaptation was also performed starting from an initial mesh with

significant wake resolution. This initial mesh is shown at the top of Figure 4-35. It was

generated by adapting to a temperature line integral output along the wake. Starting with

this mesh, the adaptive method was run for p = 1 using heat flux at the airfoil as the output

95

Initial mesh: 3139 elements

Adaptation Iteration 1: 2371 elements

Adaptation Iteration 2: 3561 elements

Adaptation Iteration 3: 5218 elements

Figure 4-35: Joukowski airfoil: Pe = 4 × 106. p = 1 adaptation on heat flux starting from
an initial mesh with significant wake resolution. The wake is coarsened at each adaptation
iteration.

of interest. The meshes from the first three adaptation iterations are shown in Figure 4-35.

Clearly, the mesh in the wake is significantly coarsened at each adaptation iteration. Thus,

wake resolution does not affect the airfoil heat flux in this case, an observation that can be

explained by the fact that the magnitude of diffusion is very small compared to convection

and that there is no coupling between temperature and velocity.

96

Pe = 4 × 108

For the Pe = 4 × 108 case, the estimate of the output error calculated from a solution

on the initial mesh in Figure 4-31 is below the error tolerance (.01J̄), even though the

true output error is not. As discussed in Section 3.1, although the output error estimate

converges to the true error as the solution becomes more accurate, it does not constitute a

bound for the error. To remedy this situation, the error tolerance can be reduced, at least

for the first few iterations, or a finer initial mesh can be used. In order to keep the error

tolerances consistent, the latter approach is taken in this work so that the final adapted

meshes from the Pe = 4 × 106 runs at each order serve as the starting meshes.

The adaptive method was run at the new Pe and e0 for interpolation orders of p = 1, 2, 3.

The resulting output error convergence histories versus degrees of freedom are given in

Figure 4-36a. As in the previous section, a p = 3 solution on a uniformly-refined final

adapted p = 2 mesh was used to calculate the true value of the heat flux. The difference in

DOF at error tolerance between p = 1 and p = 2, 3 is now greater: p = 1 requires almost

an order of magnitude more degrees of freedom, which corresponds to about a factor of 5

increase in work compared to p = 2. p = 3 performs slightly better than p = 2 in terms

of DOF, but slightly worse in terms of estimated work. Relative to the Pe = 4 × 106 case,

the increases in degrees of freedom for Pe = 4 × 108 are 10, 5, 4 for p = 1, 2, 3, respectively.

Thus, the relative DOF increase for p = 2 and p = 3 is lower than for p = 1.

10
4

10
5

10
−7

10
−6

10
−5

10
−4

DOF

H
ea

t F
lu

x
E

rr
or

p = 1
p = 2
p = 3

(a) Adaptation history

10
0

10
1

10
2

10
3

10
4

0

0.5

1

1.5

2

2.5

3

3.5

4

AR

N
or

m
al

iz
ed

 e
le

m
en

t c
ou

nt

p = 1, avg(AR) = 138

p = 2, avg(AR) = 67

p = 3, avg(AR) = 27

(b) AR histogram

Figure 4-36: Joukowski airfoil: Pe = 4× 108. Output error versus DOF adaptation history
and a histogram of element aspect ratio in the final adapted meshes.

97

(a) p = 2 (b) p = 3

Figure 4-37: Joukowski airfoil: Pe = 4 × 108. Final adapted meshes for p = 2 and p = 3.
Shaded areas indicate zoom regions for the subsequent plots. Arrows point to the dashed
line marking the embedded airfoil boundary.

A histogram of the element aspect ratios in each of the final adapted meshes is shown

in Figure 4-36b. Again, p = 3 exhibits the lowest average aspect ratio of 27, while p = 1

exhibits the highest of 138. Figure 4-37 shows the final adapted meshes for p = 2 and p = 3.

Again, a sequence of magnified meshes is used to depict the thickness of the boundary layer

relative to the geometry. The final p = 1 mesh is not shown as, at the same magnification,

the individual elements are not discernible. An approximate count of the average number

of cells within the boundary layer in the normal direction yields about 35-40 for the final

adapted p = 1 mesh, 5-6 for the final adapted p = 2 mesh, and 3 for the final adapted p = 3

mesh. These numbers are similar to the Pe = 4 × 106 case with the exception that the

p = 1 count is slightly higher. Figure 4-38 shows the heat transfer coefficient, CH , for the

solutions on the final adapted p = 1, 2, 3 meshes. As in the Pe = 4× 106 case, CH exhibits

oscillatory behavior, especially near the leading edge.

98

0 0.2 0.4 0.6 0.8 1
−5

−4

−3

−2

−1

0
x 10

−4

x/c

C
H

(a) p = 1

0 0.2 0.4 0.6 0.8 1
−5

−4

−3

−2

−1

0
x 10

−4

x/c
C

H

(b) p = 2

0 0.2 0.4 0.6 0.8 1
−5

−4

−3

−2

−1

0
x 10

−4

x/c

C
H

(c) p = 3

Figure 4-38: Joukowski airfoil: Pe = 4 × 108. Heat transfer coefficient along the airfoil
surface on the final adapted p = 1, 2, 3 meshes.

99

Pe = 4 × 1010

As discussed at the beginning of this section, Pe = 4× 1010 results in a boundary layer

that is of comparable thickness to a turbulent inner layer in a typical cruise-configuration

simulation. As in the Pe = 4× 108 case, a solution on a coarse initial mesh yields an error

estimate below the tolerance (0.01J̄). Thus, the initial meshes for the adaptive runs consist

of the final adapted meshes from the Pe = 4 × 108 runs.

The adaptive, output-error convergence results for p = 1, 2, 3 are shown in Figure 4-39a.

As in the previous cases, a p = 3 solution on a uniformly-refined adapted p = 2 mesh

served as the true solution. Only three adaptation iterations are shown for p = 1 because

the mesher failed to return a valid mesh after the third adaptation iteration. Specifically,

the returned mesh contained triangles with areas that were negative and close to machine

precision. This failure is likely due to areas of very high anisotropy requested in the p = 1

adaptive run.

On the other hand, both p = 2 and p = 3 converged successfully to satisfy the error

tolerance. The convergence histories between the two are very similar. For both p = 2 and

p = 3, the degree of freedom count at the error tolerance is roughly 6 times greater than

for the Pe = 4 × 108 case. A histogram of the element aspect ratios in the final p = 2 and

p = 3 adapted meshes is shown in Figure 4-39b. The average element aspect ratio is 92 for

p = 2 and 49 for p = 3.

10
5

10
6

10
−9

10
−8

10
−7

10
−6

10
−5

DOF

H
ea

t F
lu

x
E

rr
or

p = 1
p = 2
p = 3

(a) Adaptation history

10
0

10
1

10
2

10
3

10
4

0

0.5

1

1.5

2

2.5

3

3.5

AR

N
or

m
al

iz
ed

 e
le

m
en

t c
ou

nt

p = 2, avg(AR) = 92
p = 3, avg(AR) = 49

(b) AR histogram

Figure 4-39: Joukowski airfoil: Pe = 4×1010. Output error versus DOF adaptation history
and a histogram of element aspect ratio in the final adapted meshes.

100

(a) p = 2 (b) p = 3

Figure 4-40: Joukowski airfoil: Pe = 4 × 1010. Final adapted meshes for p = 2 and p = 3.
Shaded areas indicate zoom regions for the subsequent plots. Arrows point to the dashed
line marking the embedded airfoil boundary.

The final adapted meshes for p = 2 and p = 3 are shown in Figure 4-40. Note the four

levels of magnification compared to the two for Pe = 4 × 106 and three for Pe = 4 × 108.

Away from the boundary layer, the meshes are nearly identical. Inside the boundary layer,

p = 3 again admits a coarser mesh with an average of 3 elements within the boundary

layer, compared to 5-6 for p = 2. The fact that these meshes, with edges nearly parallel

to the geometry, were successfully cut demonstrates the robustness of the cut-cell method

for modeling boundary layers in practical simulations. Finally, Figure 4-41 shows the heat

transfer coefficient, CH , for the solutions on the final adapted p = 2 and p = 3 meshes.

Again, CH exhibits oscillatory behavior, especially near the leading edge.

101

0 0.2 0.4 0.6 0.8 1
−3

−2.5

−2

−1.5

−1

−0.5

0
x 10

−5

x/c

C
H

(a) p = 2

0 0.2 0.4 0.6 0.8 1
−3

−2.5

−2

−1.5

−1

−0.5

0
x 10

−5

x/c

C
H

(b) p = 3

Figure 4-41: Joukowski airfoil: Pe = 4 × 1010. Heat transfer coefficient along the airfoil
surface on the final adapted p = 2 and p = 3 meshes.

102

Chapter 5

Cut Cells in Three Dimensions

The two-dimensional cut-cell method presented in Chapter 4 demonstrates the feasibility

of using simplex cut cells in practical aerodynamic computations. However, the problem

of robust, boundary-conforming mesh generation in two dimensions is not insurmountable.

Current meshers can handle complex geometries and curved boundaries can often be dealt

with in a systematic manner. Nevertheless, the two-dimensional cut-cell method provides

a relatively quick and easy start-up alternative to boundary conforming meshes. The only

requirement is a mesher that can mesh a simple background area such as a rectangle,

according to a prescribed metric. Geometry information is never passed to the mesher,

eliminating the need for a common geometry format or the loss of geometry information.

Furthermore, robustness of the two-dimensional cut-cell method has been demonstrated

even for difficult problems, such as high-Peclet number convection-diffusion flow.

While two-dimensions offer several difficult problems suitable for cut cells, the potential

impact of cut cells in three dimensions is much greater. As mentioned in Chapter 1, there is

currently no robust three-dimensional boundary-conforming mesher that can handle curved

boundaries for general, anisotropic meshes. A three-dimensional cut-cell method that pro-

duces results similar to the two-dimensional cut-cell method is quite desirable. Therefore,

this chapter explores the feasibility of a practical three-dimensional cut-cell implementa-

tion. The challenges in three dimensions include a well-conditioned high-order integration

technique, a suitable geometry definition, and a robust cutting algorithm. The following

sections explore one possible set of solutions to these challenges.

103

5.1 Cutting and Integration Mechanics

5.1.1 Geometry Definition

Three-dimensional surface modeling is a broad field, with many geometry represen-

tation techniques. Computer-Aided Design packages typically employ one or more of a

variety of spline representations, including bivariate splines and non-uniform rational B-

splines (NURBS) [21]. For CFD purposes, the surface representation should be watertight,

which means that no gaps should be present at surface junctures. While general CAD

models are not always watertight, robust post-processing tools are available for generating

watertight descriptions. One of these tools is the Computational Analysis Programing In-

terface (CAPRI) [33], which supports a wide variety of CAD models. CAPRI is used in this

work, and the resulting watertight description is treated as the exact geometry for the CFD

calculations. An ideal cut-cell method would use the CAD or exact geometry to perform

the intersections with the background mesh and to obtain the integration rules. However,

supporting general CAD models requires ability to perform intersections with a variety of

surface representations, including NURBS and bivariate splines. Such capability is beyond

the scope of this initial proof-of-concept demonstration.

An alternate approach to supporting CAD directly is to use an intermediate surface

representation for which the cut-cell implementation is simplified. The desired qualities of

such an intermediate representation are as follows:

• Watertight: no gaps in the surface.

• Easy to construct from existing CAD representations.

• Possible to intersect analytically with simplex elements (tetrahedra).

• Suitable for high-order finite element computations.

One common representation used in CFD consists of surface tessellations with linear trian-

gular patches. Tolerances on deviation from the exact geometry necessitate high refinement

in areas where the surface curvature is large. These linear patch representations usually

serve as the first step in a boundary-conforming volume mesh generation process, although

recently they are also being used in finite volume cut-cell methods [56]. Linear patches can

represent a surface in a watertight fashion and can be intersected analytically with linear

elements via plane-plane intersections. In addition, tools are available for constructing sur-

face tessellations from CAD models. For example, CAPRI provides this capability and also

ensures that the obtained linear tessellation is watertight.

104

A drawback of using linear triangular patches for geometry representation is that they

are not very well-suited for high-order finite element computations. The problem lies in

the relatively large geometry slope discontinuities that can occur between linear patches.

A sufficiently high-order flow discretization will resolve these discontinuities, leading to sin-

gularities in the solution. Physically, such singularities are expected because flow around

an infinitely-sharp corner requires a point of infinite acceleration, which produces a pres-

sure spike. Bassi and Rebay demonstrate this problem for a two-dimensional boundary-

conforming DG method [5]. Specifically, they find that a linear geometry representation

with p > 0 produces a non-physical entropy wake for flow around a cylinder. This wake

disappears for higher-order geometry representations, in which the slope discontinuities are

greatly diminished.

For cut-cell computations using linear patches, the magnitudes of the geometry slope

discontinuities can be controlled independently of the computational mesh. Specifically,

slope discontinuities can be diminished by refining the surface triangulation. From experi-

ence, when the magnitude of the slope discontinuities drops below a certain level relative

to the resolution of the computational mesh, the spurious corner singularities are no longer

resolved. For example, a standard boundary-conforming technique for curving boundary

elements relies on isoparametric or superparametric elements in which additional geometry

nodes are placed on the exact geometry but in which slope continuity is not necessarily

enforced between neighboring boundary elements. As shown by Bassi and Rebay [5], the

solutions obtained on such meshes, which effectively contain slope discontinuities, do not

possess spurious features and exhibit optimal accuracy convergence. Therefore the effect

of a slope discontinuity on the solution depends on the computational mesh resolution, i.e.

mesh refinement and interpolation order, in the vicinity of the discontinuity.

Experiments in 2D have shown that using linear patches for high-order computations

requires a prohibitively large number of patches to sufficiently resolve the surface in terms

of maximum allowed slope discontinuity. As demonstrated in Appendix F, this effect is

due to the first-order slope error convergence for linear patches: increasing the number of

linear patches with refinement only linearly affects the slope discontinuities. To alleviate

this problem, an alternate intermediate representation is proposed in this work: quadratic

patches. Quadratic patches differ from linear patches by adding extra nodes on the geometry

at the midpoints of the surface triangle edges. Quadratic interpolation is then used to

represent the surface on each patch. An example of two adjacent quadratic patches is

shown in Figure 5-1b. Also illustrated in the figure is a local node numbering for one of the

patches. The surface representation on each quadratic patch can be written as a mapping

105

X

Y

X = 1

Y = 1

1 6 2

5 4

3

(a) Reference triangle

1

6

2

5

4
3

x

y

z

(b) Two adjacent patches

Figure 5-1: Patch reference triangle (a) and an example of two adjacent patches (b). The
first three nodes in the numbering are the “linear nodes”, whereas the latter three are the
“high-order nodes.”

from a unit reference triangle, shown in Figure 5-1a, via

x =
6∑

j=1

φj(X)xj . (5.1)

In this equation, x = [x, y, z]T is a vector of the three-dimensional coordinates of the

patch in physical space, X = [X,Y]T is a vector of the two-dimensional coordinates in

reference space, and the xj vectors are physical-space coordinates of the six patch nodes.

The convention for the ordering in physical space is such that the vector obtained via the

right-hand rule in traversing nodes 1,2,3 (i.e. ~12× ~13) points into the computational domain.

In practice, the six nodes are placed on the exact geometry. The φj(X) are quadratic

Lagrange interpolating functions in reference space, with nodes as shown in Figure 5-1a.

For completeness, they are:

φ1 = 1 − 3X − 3Y + 2X2 + 4XY + 2Y 2, φ2 = −X + 2X2,

φ3 = −Y + 2Y 2, φ4 = 4XY,

φ5 = 4Y − 4XY − 4Y 2, φ6 = 4X − 4X2 − 4XY.

Letting R = [X,Y, 1]T , each interpolating function can be expressed compactly in matrix

form as φj = RTPjR, where the Pj are 3×3, symmetric coefficient matrices obtained from

106

the above equations. For example, φ1(X) can be written as

φ1(X) =
[

X Y 1
]

︸ ︷︷ ︸
RT





2 2 −3/2

2 2 −3/2

−3/2 −3/2 1





︸ ︷︷ ︸
P0





X

Y

1





︸ ︷︷ ︸
R

.

Quadratic patches are watertight because the interpolation of an edge depends only

on the locations of the three nodes on that edge, so that the surface interpolations from

two adjacent patches always match. An example of a patch representation of a portion

of a sphere is shown in Figure 5-2. While the nodes of the patches lie exactly on the

surface of the sphere, the quadratically-interpolated coordinates on the patch interiors and

edges do not. An illustration of the interpolation error on a typical quadratic patch is

provided in Appendix F. Thus, quadratic patches serve only as an approximation to the true

geometry. However, compared to linear patches, quadratic patches are much more efficient

Figure 5-2: Example of a quadratic-patch representation of a portion of a sphere.

at minimizing the magnitudes of surface slope discontinuities. This point is illustrated

in both two and three dimensions in Appendix F. The increased efficiency of quadratic

patches means that many fewer surface patches are required for an adequate geometry

representation.

Quadratic patches are not necessarily the ideal solution. Slope discontinuities are still

present, which means that an adaptive method will likely require surface re-tessellation in

areas where the volume mesh becomes highly-resolved. A more accurate or even exact ge-

ometry representation with tractable cut-cell intersection and integration algorithms would

likely perform better and is an area of possible future work. Rather than seeking the most

accurate technique from the start, the goal of this work is to demonstrate that a cut-cell

107

method based on quadratic patches is possible and that it performs well for moderate orders

of interpolation. The following sections describe in detail the mechanics of such a method.

5.1.2 Cutting Algorithm

The three-dimensional cutting algorithm takes as input a quadratic-patch surface rep-

resentation of the geometry of interest and a linear, tetrahedral volume mesh of the back-

ground domain. As in two dimensions, the background domain consists of the computa-

tional domain and the interior of the geometry. An example of a quadratic-patch surface

representation of a wing-body-nacelle geometry is shown in Figure 5-3a. Due to symmetry,

only half of the geometry is modeled. Shown in Figure 5-3b is one possible choice for the

background domain. In this case, it is a box; on five sides of the box, farfield boundary con-

ditions are imposed, and the remaining side is a symmetry plane. For improved robustness

of the cutting algorithm near the symmetry plane-body intersection, more than half of the

geometry is provided. That is, the geometry extends a small distance past the symmetry

plane, out of the background domain to prevent degeneracies in cutting. The flow solution

is not affected by this extension because the cutting algorithm discards geometry outside

the background domain.

(a) Quadratic patches (b) Sample background domain

Figure 5-3: Quadratic patch surface representation of a wing-body-nacelle geometry (a)
and one possible choice for the background domain (b). The shaded side of the background
domain indicates a symmetry boundary condition. Farfield boundary conditions are applied
on the other sides.

108

The output of the cutting algorithm is a cut-cell mesh of the computational domain

obtained from the original background mesh by removing elements completely contained

in the geometry and by appropriately cutting elements that intersect the geometry. The

resulting cut cells are portions of the original tetrahedra that lie inside the computational

domain. For example, Figure 5-4a shows an intersection between a background-mesh tetra-

hedron and a quadratic patch surface. The upper portion of the tetrahedron lies inside the

computational domain and forms a cut cell. Ultimately, for use in the solver, integration

rules are required on the interior and on the 2D boundary of such a cut cell. However,

generating these rules first requires identification and description of the intersections that

produce the cut cells.

Quadratic-patch surface

Tetrahedron

(a)

e
Q

P

σ

(b)

Figure 5-4: A background-mesh tetrahedron intersecting a quadratic-patch surface (a). The
upper portion of the tetrahedron lies inside the computational domain. A wire-frame of the
resulting cut-cell (b) is obtained by joining various intersection points (e.g. P and Q) into
1D structures (e.g. e). Loops of 1D structures enclose 2D structures, such as the shaded
one labeled by σ.

Figure 5-4b illustrates the basic intersection features for the cut cell at hand. As shown,

the cut cell is enclosed in a wire-frame of edges, or “1D structures.” Each 1D structure

is a possibly-curved line segment joining two intersection points. These intersection points

consist of tetrahedron vertices lying inside the computational domain, intersections between

tetrahedron edges and patches (e.g. point P in the figure), and intersections between patch

edges and tetrahedron faces (e.g. point Q in the figure). The 1D structure labeled e

connects points P and Q. Loops of 1D structures enclose “2D structures,” which effectively

become faces of the new cut cell. These “2D structures” consist of portions of the patches

109

lying inside the tetrahedron as well as portions of the tetrahedron faces lying inside the

computational domain.

An algorithm for constructing cut-cells must identify and connect the intersection points,

1D structures, and 2D structures. Before presenting the algorithm developed in this work,

a key component is first described in detail: that of an intersection between a tetrahedron

face and a quadratic patch.

Face-Patch Intersections as Conic Sections

A key component of the cutting algorithm is the intersection between a linear tetra-

hedron face and a quadratic patch. Figure 5-5 shows an example of one quadratic patch

intersecting a tetrahedron. In this case, the quadratic patch intersects the interior of the

tetrahedron and protrudes out of faces 1, 3, and 4 of the tetrahedron. Note, the local

number of a tetrahedron face is the local number of the vertex not on that face. In the

figure, the portion of the patch inside the tetrahedron is hidden from view. Intersections

between the patch and the faces of the tetrahedron produce 1D structures required in de-

scribing the cut cell. Because the patch coordinates vary quadratically, the patch surface is

a highly-nonlinear function of the physical coordinates. As such, intersections are difficult

to perform in physical space. A more tractable approach is to work in the reference space

of the quadratic patch, in which analytical intersections are possible.

Consider a single face of a tetrahedron. The coordinates of a point, x, lying inside the

tetrahedron or on its surface must satisfy

(x− qf) · nf ≤ 0, (5.2)

Face 3

Face 4

Face 1

Figure 5-5: Intersection of a quadratic patch with a tetrahedron.

110

where qf is an arbitrary point on the tetrahedron face, in practice taken to be one of the

nodes on the face, and nf is the outward-pointing normal associated with the face. A point,

x, satisfying this condition for all four faces necessarily lies inside the tetrahedron or on

its surface. If the inequality is not satisfied for one or more faces, then x lies outside the

tetrahedron. This test can be applied to points on the quadratic patch. From (5.1), the

coordinates of points on the patch can be expressed as

x =

6∑

j=1

φj(X)xj =

6∑

j=1

(
RTPjR

)
xj ,

where the matrix representation for φj(X) was introduced in Section 5.1.1. Substituting

this expression into the inside/outside condition for each face, (5.2), results in

RT




6∑

j=1

(xj · nf)Pj



R− qf · nf ≤ 0.

Defining E1 = [0, 0, 0; 0, 0, 0; 0, 0, 1] and using the fact that R = [X,Y, 1]T , the above

inequality can be expressed as a quadratic form,

RTSfR ≤ 0, (5.3)

Sf ≡
6∑

j=1

(xj · nf)Pj − (qf · nf)E1.

A quadratic form in this case is a polynomial of degree 2 in X and Y . (5.3) must be satisfied

for all four faces of the tetrahedron in order for a patch reference point, entering the equation

through R = [X,Y, 1]T , to map to the interior or to the surface of the tetrahedron.

In reference space, the set of points X,Y satisfying the quadratic form RTSfR = 0, if

not null, defines a conic section, or just “conic” for short. A more familiar expression for a

conic is

RTSfR = 0 ⇔ AX2 + BXY + CY 2 + DX + EY + F = 0, (5.4)

obtained by writing Sf as

Sf =





A B/2 D/2

B/2 C E/2

D/2 E/2 F



 .

111

The set of points (X,Y) satisfying (5.4), if not null, defines one conic: an ellipse, a hyperbola,

a parabola, a pair of lines, a single line, or a point. Figure 5-6 shows the set of conics

associated with faces 1, 3, and 4 resulting from the tetrahedron-patch intersection in Figure

5-5. This figure is in the quadratic patch reference space, so that the unit right triangle

denotes the extent of the patch. In this case, the conics associated with faces 1 and 3 are

both hyperbolas, while the conic associated with face 4 is a pair of lines. The second line

as well as the other halves of the hyperbolas are not shown as they do not intersect the

reference triangle.

Face 4

Face 1

Face 3

Figure 5-6: Intersection of the quadratic patch and tetrahedron from Figure 5-5, shown
in the reference space of the patch. The plane of each tetrahedron face yields a conic in
reference space. The arrows on the conics indicate the tetrahedron-interior direction on the
patch. The shaded area is the patch region of validity and corresponds to the portion of
the patch lying inside the tetrahedron.

As (5.3) is an inequality, points X,Y to one side of each conic will be valid, meaning

that mapped into physical space, they will lie on the tetrahedron-interior side of the face

corresponding to the conic. In Figure 5-6, the arrows indicate these directions of validity.

The shaded area represents the boolean intersection of these regions inside the reference

triangle. This area will be referred to as the region of validity of the patch with respect to

the tetrahedron. Note, any point outside the reference triangle is no longer on the patch.

Construction of Cut Cells

The fact that the intersection between a tetrahedron face and a quadratic patch can

be expressed as a conic in the patch reference space is an enabling feature that makes the

cutting algorithm tractable. This section presents an overview of the cutting algorithm

geared for these conic intersections. Details on intersection and parametrization methods

112

are given in the next sections.

The cutting algorithm proceeds by looping over all tetrahedra in the background mesh.

For each tetrahedron, bounding-box checks are performed to determine which patches, if

any, can intersect the tetrahedron. A patch whose bounding box does not intersect the

bounding box of the tetrahedron is not considered for intersection. The remaining patches

are intersected with the tetrahedron according to the algorithm below.

Cutting algorithm for one tetrahedron

• Initialize Iedge, Iface, and F to null, where:

Iedge = for each edge of the tetrahedron, the set of intersection points between the

edge and the patches.

Iface = for each face of the tetrahedron, the set of intersection points between the face

and patch edges.

F = set of 2D structures that will become the faces of the new cut cells.

• Loop over patches whose intersection with the tetrahedron is not precluded by the

bounding-box test. For each patch:

– Intersect patch with each of the four faces of the tetrahedron, yielding four conics,

written in matrix form as S1,S2,S3, and S4.

– Determine 1D structures enclosing patch regions of validity:

∗ Identify all (X,Y) intersections among the four conics and the three patch

reference triangle edges. These include conic-conic intersections, conic-edge

intersections, and edge-edge intersections (i.e. triangle vertices). For exam-

ple, in Figure 5-6, eleven such intersections are shown.

∗ Discard intersections lying outside the tetrahedron or not on the patch. An

intersection, R = [X,Y, 1]T , lies outside the tetrahedron if RTSfR > 0 for

one of the conics, Sf , not part of the intersection. An intersection is not on

the patch if (X,Y) is outside the unit reference triangle. For example, in

Figure 5-6, five intersections are valid: one conic-conic intersection and four

conic-line intersections. These intersections are circled in Figure 5-7. An

example of an intersection that was discarded is the conic-conic intersection

corresponding to faces 1 and 3, as it lies outside the reference triangle.

∗ Check if any of the Sf are ellipses completely contained within the patch, as

demonstrated in Figure 5-8. Such cases are identified by picking a point on

each ellipse with zero intersections and checking if it lies inside the patch ref-

erence triangle. For data storage and integration purposes, the completely-

113

o

o
o

o
o

Figure 5-7: Valid intersections in patch reference space for the set of conics and patch edges
shown in Figure 5-6. These five intersections (circled) consist of four conic-line intersections
and one conic-conic intersection.

(a) Physical space (b) Patch reference space

Figure 5-8: Intersection of a tetrahedron face with a curved patch resulting in an ellipse
completely contained in the reference triangle. The validity region, shown shaded on the
right, consists of the area inside the ellipse. Mapped into physical space, the associated
embedded face is the portion of the patch inside the tetrahedron.

contained ellipses are divided in half by adding two artificial intersections on

the major-axis extrema of the ellipse.

∗ If no valid intersections exist, the patch does not intersect the tetrahedron;

continue to the next patch. Otherwise, store the valid intersections in Ipatch.

∗ Parametrize each conic and assign a parameter value to every valid intersec-

tion on the conic. Similarly, parametrize each patch edge (e.g. 0 to 1) and

assign a parameter to every intersection on the patch edge. For each conic

and patch edge, arrange the intersections in order of increasing parameter.

114

∗ Using conic normals and tangents, determine the direction of validity of each

intersection with respect to the associated conic or edge. Store valid portions

of each conic and edge in Epatch, which is the list of 1D structures specific

to the patch.

∗ Map conic-conic intersections from Ipatch into physical space. These points

lie on the patch and on both faces associated with the conics. Hence, they

represent cuts on the tetrahedron’s edges. Add each such intersection to the

appropriate list, Iedge, and store the direction of validity and information on

the adjacent patch 1D structures from Epatch.

∗ Add intersections between conics and patch triangle edges (from Ipatch) to

the appropriate list, Iface. Mapped into physical space, these intersections lie

on the faces of the tetrahedron and connect conics associated with different

patches. Note, patch-to-patch connectivity is required to enable such con-

nections. In practice, this connectivity is provided implicitly, by requiring

neighboring patches to point to a unique set of linear node numbers when

specifying the embedded geometry.

– Tie together the patch 1D structures in Epatch into regions of validity using the

algorithm presented in Section 4.1.2. The intersections in Ipatch provide the

connectivity information. Multiple disjoint regions bounded by distinct loops of

1D structures are possible and occur when a patch enters an element more than

once. Each disjoint region of validity on a patch, mapped into physical space, is

labeled as an embedded face.

– Add the embedded faces to the list of 2D structures, F . For each enclosing 1D

structure in Epatch, store the index of the adjacent embedded face, to be used

for tying the 2D structures together.

• On each cut tetrahedron edge, order the intersections in Iedge according to distance

along the edge. Note, these intersections were obtained from the mapped conic-

conic intersections, as described above. Using validity directions at the intersections,

identify portions of each edge lying inside the computational domain, and store these

1D structures in the list Eedge. In the process, flag the four vertices of the tetrahedron

as lying inside or outside the computational domain.

• Construct regions of validity on each face of the tetrahedron. Begin by looping over

the four faces:

– Assemble Eface = list of relevant 1D structures associated with the face. This

115

list includes members of Eedge for each edge adjacent to the face, as well as those

conics in Epatch arising from patch-face intersections with this face. Note, 1D

structures from contained ellipses are included in this list.

– Tie together the 1D structures in Eface using the algorithm presented in Section

4.1.2. Tetrahedron vertices provide connectivity among 1D structures from Eedge.

Intersections in Iedge provide connectivity between members of Eedge and Epatch.

Finally, intersections in Iface provide connectivity among the conic 1D structures

in Epatch. Note, each 1D structure stores several indices for its endpoints to keep

track of all of this connectivity information. Each disjoint region of validity is

labeled as a cut face.

– Add the cut faces to the list of 2D structures, F . Store the index of each cut face

with the adjacent 1D structures from Eface to be used for tying the 2D structures

together.

– If the face is an interior face of the background mesh, store information about

the newly-created cut face(s) to provide connectivity between adjacent cut cells.

• Tie together the 2D structures in F , resulting in one or more sets of connected 2D

structures. These sets constitute bounded volumes that are the new cut cells. The

algorithm for performing this tying proceeds similarly to the one in Section 4.1.2,

except that 1D structures in Epatch and Eedge, as opposed to intersection points, now

provide the connectivity information.

An example demonstrating the key points of the above algorithm is illustrated in Figure

5-9 for the cut cell introduced in Figure 5-4. An intersection between each patch and the

tetrahedron yields patch edge 1D structures and conic 1D structures enclosing embedded

faces. Note, at least one embedded face is created for each intersecting patch. In this

example, there are six intersecting patches and six embedded faces. Three of the patches

contain valid conic-conic intersections that map to cuts on the edges of the tetrahedron.

These cuts are used to construct the three tetrahedron-edge 1D structures. Three of the

four faces of the tetrahedron are cut, yielding, in this case, three cut faces. Altogether, the

six embedded faces and the three cut faces enclose one cut cell.

Another cutting example is illustrated in Figure 5-10, where a tetrahedron is cut by two

quadratic patches. While the tetrahedron in the previous example produced one cut cell,

two cut cells are created in this example. In the figure, portions of the tetrahedron inside

the computational domain are the two right-hand-side corners, each cut by a single patch.

The resulting twelve 1D structures are shown in Figure 5-10b: six come from mapped

116

B

C

A

A B

Embedded face

C
Intersection

edge in I

Intersection
 in Iface

 structure in E
Patch edge 1D

 in E
1D structure

edge patch

 in Epatch

Conic 1D structure

Figure 5-9: Detailed intersections for the cut cell introduced in Figure 5-4. On the right is
a top-view of the portion of the quadratic-patch surface contained within the tetrahedron.
Various intersection points and 1D structures are indicated. One out of the six embedded
faces is highlighted.

conics, and the other six come from cut portions of the tetrahedron’s edges. These 1D

structures bound eight 2D structures: two embedded faces and six cut faces. Tying these

2D structures results in two disjoint sets, bounding the resulting two cut cells. As in two

dimensions, multiple cut cells arising in this fashion are treated separately, each one with

its own solution approximation.

(a) Patch intersections

1D Structures
1 2

3 4

(b) Resulting 1D structures

Figure 5-10: Two cut cells arising from the cutting of one tetrahedron. The two corners
adjacent to nodes 2 and 4 of the original tetrahedron lie inside the computational domain. In
addition, two of the original tetrahedron’s faces are cut into multiple (two) disjoint regions.

117

Background mesh tetrahedra completely contained in the embedded geometry are iden-

tified and removed from the computational mesh structure. The identification process is

similar to that used in two dimensions. During the cutting, nodes lying outside the compu-

tational domain are identified when ordering the edge cuts. For example, nodes 1 and 3 in

Figure 5-10 lie outside the computational domain. This information is propagated to other

nodes by traversing uncut tetrahedra in the background mesh and setting the inside/outside

flag to the same value for all the nodes of each uncut tetrahedron. Uncut tetrahedra with

adjacent nodes outside the computational domain must lie outside the computational do-

main, and hence are removed. Similarly, uncut background-mesh faces with adjacent nodes

outside the computational domain are also removed.

Intersections Involving Conics

Crucial to the cutting algorithm is the ability to robustly intersect conics with the

reference triangle edges and with each other. As discussed in the presentation of the cutting

algorithm, these intersections are required for constructing the 1D structures enclosing

the patch regions of validity in reference space. First, intersecting a conic with a line

segment is straightforward. The line segment can be written in parametric form, X(t) =

X1 + t(X2 −X1), Y (t) = Y1 + t(Y2−Y1), where (X1, Y1) and (X2, Y2) are the line endpoints,

and t ∈ [0, 1] is the parameter. Substituting these expressions for X and Y into the quadratic

form RTSfR = 0 yields a quadratic equation for t. Solving this equation gives at most

two possible values for t, each of which corresponds to an ordered pair (X,Y). Solutions

t < 0 and t > 1 are discarded as they do not lie on the segment. The quadratic equation

obtained in this fashion is suitable for numerical computation in that double roots for

t always correspond to tangency conic-line intersections. Such numerical consideration

becomes increasingly important for conic-conic intersections.

Compared to a conic-line intersection, robustly intersecting two conics is more involved.

Consider two conics arising from RTS1R = 0 and RTS2R = 0. The task is to find all points

(X,Y) that lie on both of the conics. One possible analytical solution strategy, not used

in this work, begins by determining the linear combination S3 = aS1 + bS2 that eliminates

(for example) the X2 term. The equation RTS3R = 0 is then solved to obtain X as an

at-most second-degree polynomial in Y , and this equation for X is substituted back into

either of the original quadratic forms, yielding a quartic equation in Y . While this approach

is mathematically correct, it is not robust in finite precision arithmetic. For example, for

multiple non-tangency intersections sharing the same Y coordinate, the quartic equation

exhibits a double-root tangency, which could easily be missed due to machine-precision

118

errors in calculating the quartic coefficients.

An alternate conic-conic intersection strategy, used in this work, is based on the idea

of finding one or more degenerate conic sections that are linear combinations of S1 and S2

[37]. The method proceeds by finding t values that result in the matrix S3 = tS1 +(1− t)S2

having zero determinant. Writing out the determinant of the 3 × 3 matrix S3 results in a

cubic equation for t, guaranteeing at least one real root. Up to a multiplicative constant,

the only linear combination of S1 and S2 not represented by the above form for finite t

is S3 = S1 − S2. Hence, this matrix is also checked for zero determinant. Each resulting

zero-determinant S3 represents a degenerate conic (i.e. one or more lines). This can be

verified analytically by rotating the coordinates to a frame where the coefficient of XY

in S3 is zero, as will be demonstrated in (5.6), writing out the determinant of S3, and

considering each possible degeneracy in turn: a pair of horizontal lines, a pair of vertical

lines, or a pair of crossing lines. Each possible zero-determinant case can be paired with

one of the degenerate conics. Intersecting the lines from the degenerate conic with either of

the conics S1 or S2 yields exactly the required intersections. This is because if, for a given

(X,Y), both RTS1R = 0 and RTS2R = 0, then necessarily RTS3R = 0, as S3 is a linear

combination of S1 and S2. Thus, intersections between S1 and S2 also lie on S3. Similarly

if RTS3R = 0 and RTS1R = 0, then RTS2R = 0, and vice-versa. Hence, no extraneous

intersections are possible. In practice, the lines from S3 are intersected with both S1 and S2,

and the numerically best-conditioned set of intersections is chosen. Numerical conditioning

of a set of intersections is determined by the smallest intersection angle in the set, where the

intersection angle is the acute angle between the tangent vectors of two intersecting curves.

A large intersection angle is better-conditioned compared to a small intersection angle, as

illustrated in Figure 5-11. The conic-conic intersection strategy based on line degeneracies

has been found to be much more robust than the quartic solving technique discussed above.

To improve accuracy of the obtained intersection points, a Newton-Raphson method is

applied to the equations RTS1R = 0 and RTS2R = 0.

Conic Parametrization

The cutting algorithm requires ordering intersections on a conic in terms of a single

parameter for identifying 1D structures in patch reference space. This ordering requires the

parametrization of each conic. Specifically, of interest is the parametrization of an ellipse,

a parabola, and a hyperbola. As shown in (5.4), the equations for these conics in patch

reference space can be written as

AX2 + BXY + CY 2 + DX + EY + F = 0. (5.5)

119

θ

(a) Large intersection angle

θ

(b) Small intersection angle

Figure 5-11: Numerical calculation of the intersection between two curves is better condi-
tioned for a large intersection angle, θ, (a) compared to a small intersection angle (b). In
(b), the set of points a distance ǫ apart between the two curves has diameter >> ǫ, and
hence the precise location of the intersection is more difficult to identify.

Each conic is classified as either a parabola, hyperbola, ellipse, or a degenerate form based

on the value of the discriminant, δ = B2 − 4AC. The conic is a hyperbola if δ > 0, a

parabola if δ = 0, and an ellipse (or degenerate) if δ < 0. As degenerate forms are lines,

their parametrization is straightforward. For parametrization of the non-degenerate conics,

the coordinates are rotated to eliminate the cross term, XY . In particular, setting

[
X

Y

]

=

[
cos(α) sin(α)

− sin(α) cos(α)

][
X ′

Y ′

]

, α = tan−1

(
B

C − A

)
, (5.6)

the conic equation (5.4) becomes

A′X ′2 + C ′Y ′2 + D′X ′ + E′Y ′ + F ′ = 0, (5.7)

where

A′ = A cos2(α) − B sin(α) cos(α) + C sin2(α),

C ′ = A sin2(α) + B sin(α) cos(α) + C cos2(α),

D′ = D cos(α) − E sin(α),

E′ = D sin(α) + E cos(α),

F ′ = F.

120

In this rotated coordinate system, all of the non-degenerate conics can be parametrized by

angle, θ, from a single point, (X ′
f , Y

′
f), according to

[
X ′

Y ′

]

=

[
X ′
f + r(θ) cos(θ)

Y ′
f + r(θ) sin(θ)

]

, (5.8)

where r(θ) is the distance to the conic from (X ′
f , Y

′
f), with the angle measured in standard

fashion counterclockwise from the horizontal. The parametrization of each of the conics

is presented in Appendix E. In general, a conic focus is used for (X ′
f , Y

′
f), except for

custom cases in which the focus is too far from the region of interest to allow for a well-

conditioned parametrization. This custom parametrization is also outlined in the Appendix.

Parametrization of periodic conics (i.e. contained ellipses) does not pose a problem because

these conics are split and each half is parametrized separately.

5.1.3 Integration

As in two dimensions, irregularly-shaped cut cells require a modified integration tech-

nique since tetrahedral-based quadrature rules are no longer valid. Fortunately, the basic

idea developed for two-dimensional cut cells, involving sampling point “speckling” and the

divergence theorem, extends naturally to volume integration in three dimensions. The

two-dimensional integration technique is in fact also used directly in three dimensions for

deriving surface integration rules on embedded faces and cut faces. The following sections

describe the derivation of the volume and surface integration rules, paying careful attention

to numerical conditioning, which becomes particularly important in three dimensions.

Conics

Deriving volume integration rules on the cut cells requires the ability to integrate on the

bounding 2D structures. As the 2D structures are themselves irregular shapes, integration

rules must also be derived on them, thus requiring the ability to integrate on the bounding

1D structures. As discussed in Section 5.1.2, 1D structures arise either from segments of

straight lines or from segments of possibly-curved conics. High-order accurate integration on

these structures is achieved by mapping each one to a reference interval and using Gaussian

quadrature on the interval. While this mapping is trivial for straight segments, mapping a

curved conic segment requires a well-conditioned parametrization.

Parametrization of a conic for integration need not be the same as the one presented

in the previous section for use in ordering intersections in the cutting algorithm. For an

ideal integration parametrization, the integrand should vary smoothly with the parameter,

121

so that numerical integration with a fixed number of Gauss points is accurate. For example,

parametrization by arc length along the conic is not suitable, as insufficient points may be

placed in areas of high curvature – note, conic integrations will involve the conic normal,

which varies greatly in these areas.

From experience, the conic parametrization used in the cutting algorithm is reasonably

well-suited for integration. That is, in general, the conic normal vector varies relatively

smoothly with the angle from a focus (or from a custom parametrization point). Therefore,

this parametrization is used for integration in this work. An example of a situation when

this parametrization may begin to lose accuracy is illustrated in Figure 5-12. The high-

lighted patch validity region is bounded by (portions of) the edges of the reference triangle

and a conic which is one half of a hyperbola. The localized region of high curvature on

the conic makes parametrization by arc length, shown in Figure 5-12a, highly inaccurate.

Parametrization by angle from a focus, shown in Figure 5-12b, captures the region of high

curvature, but places few points on the outer portions of the hyperbola legs. As the in-

tegrand in this area is sampled with fewer points, degradation in integration accuracy is

possible. However, for the orders tested, and with a large number of 1D quadrature points

(the default is 20), no associated accuracy problems have been observed thus far. More

accurate integration parametrizations are certainly possible and could be the subject of

future work.

(a) By arc length

Focus

(b) By angle from focus

Figure 5-12: Parametrization of a conic with a localized region of high curvature. Possible
integration points are shown for two cases. Points obtained from a parametrization by arc
length (a) fail to adequately capture the area of high curvature. Points from a parametriza-
tion by angle from a focus (b) capture the curvature; however, fewer sampling points away
from the region of high curvature could lead to loss of accuracy for high-order integrands.

122

 validity
 region

r d

dr

θ

θ+ θd

θ

ds

r(θ)

r(θ)0

1

θ0 P0

1P

X

Y
θ
1

Patch

Figure 5-13: Integration along a curved conic segment adjacent to a patch validity region
is performed by parametrizing the conic and using Gaussian quadrature on the parameter
interval. Shown in this figure is a parametrization by angle from a point (e.g. a focus of
the conic).

Integration using the angle parametrization proceeds as follows. For each curved conic

segment adjacent to a patch validity region, the two intersection points bounding the conic

segment are labeled P0 and P1, as shown in Figure 5-13. The X,Y coordinates of P0 and

P1 are converted to polar form according to the parametrization, yielding a mapping from

a θ interval, [θ0, θ1] to the curved conic. An integral from P0 to P1 along the conic segment

of an arbitrary function, f(X,n), can therefore be written as

∫ P1

P0

f(X,n)ds =

∫ θ1

θ0

f (X(θ),n(θ))

∣∣∣∣
ds

dθ

∣∣∣∣ dθ,

∣∣∣∣
ds

dθ

∣∣∣∣ =

√(
dr

dθ

)2

+ r2,

where the differential arc length is illustrated in the inset in Figure 5-13. Numerical integra-

tion is achieved in standard fashion via Gauss quadrature on the [θ0, θ1] interval. dr/dθ is

computed by differentiating the parametrization, r(θ). The outward-pointing normal vector

on the conic, n, is obtained directly by taking the gradient of the Cartesian representation

in (5.4). This gradient is outward-pointing as the set of points for which RTSR is positive

lies outside the region of validity. An example of the quadrature points and normals on the

1D structures adjacent to the validity region in Figure 5-6 is shown in Figure 5-14a.

Embedded Faces

The integration rules for 1D structures derived in the previous section allow for the ap-

plication of the two-dimensional integration technique (Section 4.1.3) to the validity region

in reference space. Recalling that the validity region represents the portion of a patch within

123

Face 3

Face 0

Face 2

Ray

Sample Point

(a) 1D integration points and normals

Face 3

Face 0

Face 2

(b) 2D integration points

Figure 5-14: Patch reference space: quadrature points and normals on 1D structures ad-
jacent to validity region (a) and embedded face quadrature points obtained by ray-casting
(b). The outward-pointing normals in (a) are illustrated by line segments whose length is
weighted by the Gauss quadrature weights and by the mapping Jacobian |ds/dθ|.

a given tetrahedron, these rules will allow for integration on the surface of the embedded

geometry inside the computational domain. As mentioned in the previous section, each

validity region mapped to physical space becomes an individual embedded face. A typical

integral on an embedded face, σf , transforms to an integral on the reference validity region,

E, as follows:

∫

σf

f(x,n)dA =

∫

E
f(x(X),n(X)) |J(X)| dE, (5.9)

J(X) =
dx

dX
× dx

dY
, n(X) = − J(X)

|J(X)| .

The derivatives dx/dX and dx/dY used in the mapping Jacobian, J(X), are obtained

readily from the patch surface description, (5.1). By the patch node ordering convention

introduced in Section 5.1.1, the vector J(X) points into the computational domain. Hence,

the normal vector pointing out of the computational domain, n(X), is defined in the direc-

tion of −J(X). The mapping of E to σf is illustrated in Figure 5-15, where the three patch

vertices are labeled in both the reference space and the physical space. The normal vector,

n, points out of the computational domain.

By the transformation in (5.9), integration on curved embedded faces reduces to inte-

gration on the planar validity regions in patch reference space. The integration technique

124

E

1 2

3

X

Y

(a) Patch validity region

n

σ
f

3 2

1

x

y

z

(b) Embedded face

Figure 5-15: Relation between patch validity region, E, in reference space (X,Y), and the
mapped embedded face, σf , in physical space (x, y, z).

developed for two-dimensional cut cells applies directly in this case. Specifically, an inte-

gration basis is defined on a fitted bounding box of the reference validity region, and the

divergence theorem is used to convert interior area integrals into boundary integrals on the

1D structures. Random sampling points in the interior of each validity region are obtained

by ray casting from randomly-chosen 1D quadrature points, as illustrated in Figure 5-14a.

In order to avoid clustering in areas near short 1D segments, the probability of choosing a

starting quadrature point is weighted by the length of its 1D segment. Determining the exit

point of each ray out of the validity region requires solving conic-line intersection problems,

as described in Section 5.1.1. A typical set of resulting sampling points inside the validity

region is shown in Figure 5-14b.

Cut Faces

The two-dimensional integration technique of Section 4.1.3 is also used to derive inte-

gration rules on faces cut by the patch geometry. As these cut faces are already planar,

no reference-space transformation, such as that used for embedded faces, is necessary. An

integration basis is defined on a fitted bounding box of each cut face. Integration on the 1D

structures enclosing the cut faces requires care for curved conic segments. Since the face

validity region lies in physical space, the conic segment quadrature weights are modified to

include the mapping from reference space to physical space. Outward-pointing normal vec-

tors along the curved conic segments are obtained by projecting the physical patch normals

125

onto the plane of the face. By virtue of the existence of the intersection, the physical patch

normal must have a component in the plane of the face pointing into the computational do-

main. The outward-pointing normal is then taken in the negative direction of this projected

component. Sampling point selection is performed in the coordinates of the plane contain-

ing the face, using ray-casting with length-weighted selection of the starting 1D quadrature

points. Since an analytical representation of the conic 1D structures in physical space is not

readily available, testing for the point of exit of each ray requires performing intersections

in physical space between the ray and the patches intersecting the element. Intersecting a

line with a patch in three-dimensional space amounts to solving a conic-conic intersection

problem in the patch reference space. Specifically, expressing the line as x = x0+(∆x)t and

substituting into (5.1) yields three equations (one for each coordinate) in three unknowns:

t,X, Y . As t appears linearly, it can be eliminated, leaving two quadratic forms in X and Y .

The solution is then found using the conic-conic intersection method described in Section

5.1.2.

Figure 5-16 illustrates a cut face resulting from cutting the tetrahedron in Figure 5-

4. This cut face is bounded by five 1D structures: two from Eedge (CD and BD), and

three from Epatch (between B and C). Sampling points for this cut face, generated by ray-

casting, are also shown in the figure. During ray-casting, the point of exit is determined by

performing patch-line intersections with each of the three intersecting patches in addition

to line-line intersections with the original face edges.

Cut Cells

Integration on three-dimensional cut-cell interiors is performed using an extension of the

two-dimensional method. That is, for each element, κ, sampling points, xq, and weights,

wq are found for integrating arbitrary f(x) up to a specified order of accuracy, according to

∫

κ
f(x)dx ≈

∑

q

wqf(xq).

The derivation of quadrature weights presented in Section 4.1.3 for two dimensions (d = 2)

is also valid for three dimensions (d = 3). In particular, for a given set of sampling points

xq, the wq are given by (4.4), where ζi(x) = ∂kGik, and the Gik(x) are defined as in (4.3).

The bounding box used in defining the Gik(x) is now three-dimensional, and the Φi(x)

are tensor products of three one-dimensional Lagrange basis functions. The order of these

functions determines the accuracy of the integration. For the 3D compressible Navier-

Stokes equations, in which the integrands are generally not polynomial, an integration

126

D

BC

B

C

D

Ray

1D integration
 point

Sampling
 point

Figure 5-16: Three cut faces result from the intersection depicted in Figure 5-4. This figure
highlights one of these cut faces. Sampling points generated by ray-casting in the plane of
the cut face are also shown.

order of 2p + 1, where p is the solution interpolation order, has been found to be sufficient.

Integrands of the Gik(x) on the element boundary, required for the computation of the

weights, are performed using the 2D integration rules derived in the previous sections for

cut faces and embedded faces.

Sampling points, xq, inside κ are found using ray-casting from the element boundary

surface integration points. The surface points for the ray origins are chosen at random,

using an area-weighted selection method giving preference to larger areas. As in two di-

mensions, this area-weighting prevents clustering of points cast from quadrature points on

very small cut or embedded faces. The rays are cast into the element along inward-pointing

normal directions, perturbed randomly by up to 15o. The point of first exit of these rays is

determined by intersecting them with the faces of the original, background tetrahedron and

with the intersecting patches. The line-patch intersection problem is solved as described

in the previous section on cut-face integration. For each ray, a random sampling point is

chosen between the ray origin and the point of first exit out of the element. Figure 5-17

shows an example of a set of interior sampling points generated by this process.

Numerical conditioning plays an important role in the creation of the 3D element-interior

integration rules. Specifically, the weight calculation can become ill-conditioned when the

cut-element bounding box used for defining the Gik(x) functions does not tightly fit the

element. An example of such a situation is shown in Figure 5-18a. The ill-conditioning

127

Figure 5-17: Interior, volume-integration sampling points for the cut tetrahedron depicted
in Figure 5-5. These points were generated by ray casting from embedded-face and cut-face
integration points.

y
z

x

(a) Axis-aligned bounding box.

x’y’

z’

(b) Oriented bounding box.

Figure 5-18: Numerical conditioning improvement of element-interior integration via
bounding-box rotation for the case of a sliver element.

128

in such a case arises from the fact that many of the tensor-product Lagrange functions,

Φi(x), are associated with nodes far away from the element and hence appear very similar

(near zero) over the element. This effect was observed in 2D, although in 3D it is more

pronounced, appearing at lower interpolation orders and on cut cells that are not severely

anisotropic. As in 2D, the solution to this conditioning problem consists of using a fitted,

oriented, bounding box, such as the one shown in Figure 5-18b.

An oriented bounding box for a 3D cut cell is created based on the set of surface

integration points, according to the following procedure. First, two points of maximum

separation distance are chosen from the surface integration points, which include the points

on the cut faces and on the embedded boundaries. The first direction of the oriented

bounding box, x̂′, is chosen along the line connecting these two points. Next, all the

points are projected to the plane orthogonal to x̂′. From the set of projected points, two

of maximum separation distance are chosen, defining the second direction of the oriented

bounding box, ŷ′. Finally, the third direction, ẑ′, is orthogonal to both x̂′ and ŷ′. Applying

this method to the sliver element of Figure 5-18a yields the oriented bounding box shown

in Figure 5-18b.

The oriented bounding-box is used in the integration-rule derivation for all cut cells. For

thin sliver elements, it greatly improves the numerical conditioning of the integration weight

calculation, yielding much more accurate integration rules. However, for some elements,

even with an oriented bounding box, the weight calculation may become ill-conditioned

as the desired integration order increases. This problem is not unexpected, since even an

oriented bounding box may not provide a tight fit to highly curved and/or anisotropic cut

cells. In practice, the ill-conditioning has been observed for some cut-cell meshes when the

integration accuracy exceeds fifth order, which corresponds to a compressible Navier-Stokes

calculation using interpolation order p ≥ 3. Improving the integration conditioning for

higher orders is a possible area of future research.

5.1.4 Implementation

The three-dimensional cut-cell method was implemented in the same discontinuous

Galerkin finite element code used for the two-dimensional cut-cell method. While the

cutting algorithm is fundamentally different and more complex in three dimensions, this

complexity is isolated to a pre-processing step and effectively hidden from other parts of

the code. In particular, the output of the 3D cutting algorithm consists of quadrature

points for cut volume and area integrations, and connectivity between embedded faces and

adjacent cut cells. This information is used implicitly by higher-level functions in place of

129

the standard reference quadrature rules and mesh connectivities. The data structures for

storing the 3D cut-cell information are the same as the ones in the 2D implementation.

Solution interpolation functions on cut cells are defined on shadow tetrahedra, taken to be

the right tetrahedra associated with the oriented cut-cell bounding boxes.

In a 3D cut-cell adaptive run, the user specifies the initial background volume mesh and

a quadratic-patch representation of the embedded geometry. The quadratic-patch repre-

sentation consists of the patch node coordinates and a list consisting of six node indices per

patch. Patch connectivity is determined by the linear nodes, which are the first three nodes

in Figure 5-1. Thus, these nodes should not be repeated in the node list. The background

volume mesh consists of linear tetrahedra enclosing the computational domain. Note, as

mentioned in Section 5.1.2, the embedded geometry is not required to lie completely inside

the background domain (e.g. for symmetry boundary conditions).

Output error estimation remains fundamentally unchanged from the 2D implementation.

Minor modifications to the patch reconstruction algorithm were made to generalize it to

three dimensions. Re-meshing of the computational domain occurs at every adaptation

iteration, and, as in 2D, the metric for adaptation is specified on the background mesh.

A grid-implied metric (Section 3.2.2) is used on background mesh elements completely

contained within the embedded geometry. Adaptive meshing of the background mesh is

performed using the TetGen mesh-generation package discussed in Section 3.2.3. Currently,

this package supports isotropic refinement, in which metric definition amounts to specifying

element volumes. L2 projection is used to transfer the solution to the adapted mesh, with

p = 0 restriction on cut cells.

5.2 Results

The 3D cut-cell method is applied to several representative aerodynamic cases. The goals

of this section are to demonstrate the accuracy of the 3D cut-cell method and to verify con-

vergence of the adaptive method. Boundary-conforming adaptive results are not shown due

to the unavailability of a robust and automated three-dimensional mesher for curved geome-

tries. In particular, the approach of post-processing linear boundary-conforming meshes to

introduce surface curvature is prone to failure, even for isotropic meshes.

Comparisons of the adapted meshes and the error convergence histories are given in

terms of degrees of freedom for the cut-cell method using interpolation orders p = 0 to p = 2.

As in the 2D results, the DOF count does not include the equation-specific multiplier, such

as 5 for the 3D Euler equations. Computational work estimates are also given with the DOF

results. As described in Section 4.2, the work estimate is of the form W ∼ Ne(n(p))a =

130

DOF(n(p))a−1, where Ne is the number of elements, n(p) is the degrees of freedom per

element, and a is a measure of the computational complexity. In three dimensions, n(0) = 1,

n(1) = 4, and n(2) = 10. Thus, assuming again that a ∼ 2, p = 1 is expected to be four

times more expensive than p = 0 and p = 2 is expected to be two and a half times more

expensive than p = 1.

5.2.1 Channel Flow Over a Gaussian Perturbation, M = 0.3

This case considers inviscid flow through a channel, the floor of which has a Gaussian

perturbation in the streamwise (x) direction. The output of interest for the adaptive runs

is the drag, which is the x-component of the force on the channel floor. Refinement is

expected primarily in the vicinity of the bump, as the only contribution to the drag is

pressure exerted on portions of the geometry that have a non-zero x-component to their

normal. The true value of the drag for this flow is not exactly zero due to the proximity

of the inflow and outflow boundaries. Thus, the true value is computed using p = 3

interpolation on a structured, 18432-element, boundary-conforming mesh, shown in Figure

5-19. This mesh was generated manually, and elements with faces or edges on the bottom

surface were curved to cubic order, q = 3 [24]. Comparing the adapted cut-cell results to a

boundary-conforming true value tests the accuracy of the cut-cell method.

x

y

z

Figure 5-19: Gaussian bump channel: M = 0.3. Manually-generated, 18432-element,
boundary-conforming mesh, with q = 3 curved elements on the bottom wall. The drag
from a p = 3 solution on this mesh serves as the true value for the cut-cell adaptive runs.

131

The floor of the channel, which is the embedded surface in this case, is represented with

144 quadratic patches. 24 intervals are used in the x direction and 3 intervals are used

in the y direction. The distribution is logarithmic in the x direction, with approximately

12 patches lengthwise across the bump. An initial background mesh for the adaptation

was generated manually by subdividing rectangular parallelepipeds of a structured mesh.

Figure 5-20 shows the initial 576-element background mesh as well as the curved embedded

surface. The embedded surface is made slightly larger than necessary so that it protrudes

out of the background domain. As discussed in Section 5.1.2, while the geometry outside

the background domain is discarded during the cutting algorithm, extending the geometry

in this manner prevents degeneracies when locating intersections.

(a) 144 surface patches (b) 576-element initial mesh

Figure 5-20: Gaussian bump channel: M = 0.3. Quadratic patch representation of the
bump surface (a) and the initial background mesh (b).

Adaptive runs were performed for p = 0, 1, 2, using 0.15 counts for the drag tolerance.

The drag coefficient was computed using the floor planform as the reference area. Figure

5-21 shows the results of the adaptation runs. Adaptation for p = 0 was not continued

down to the drag tolerance as computational costs became prohibitive. However, assuming

that the p = 0 convergence rate continues, over 1010 DOF would be necessary to reach the

error tolerance. On the other hand, both p = 1 and p = 2 converge to the desired error

tolerance, at which point p = 2 requires an order of magnitude fewer degrees of freedom

than p = 1. In terms of estimated work at the error tolerance, p = 2 is cheapest by a factor

of four compared to p = 1 and by over four orders of magnitude compared to p = 0.

The final adapted meshes for p = 1 and p = 2 are shown in Figure 5-22. These are the

background meshes prior to cutting. As such, tetrahedra outside the computational domain

132

10
3

10
4

10
5

10
−2

10
−1

10
0

10
1

10
2

10
3

DOF

C
D

 e
rr

or
 (

co
un

ts
)

p = 0
p = 1
p = 2

Figure 5-21: Gaussian bump channel: M = 0.3. Drag output error vs degrees of freedom.
Dashed line indicates prescribed tolerance of e0 = 0.15 counts.

(a) p = 1: 51264 elements (b) p = 2: 1787 elements

Figure 5-22: Gaussian bump channel: M = 0.3. Final adapted meshes for p = 1 and p = 2.

are still shown. As expected, refinement is concentrated in the vicinity of the bump, inside

the computational domain. The p = 2 mesh is much coarser than the p = 1 mesh, requiring

only 1787 elements as opposed to 51264 elements for p = 1. For comparison, the finest

p = 0 mesh contains 377042 elements and yields an error of over 20 counts. Mach number

contours for solutions on the adapted p = 1 and p = 2 meshes are shown in Figure 5-23.

The plots are shown for a planar cut parallel to the x−z plane taken down the middle of the

channel. Since the solution is on a cut-cell mesh, some of the contours extend through the

133

geometry. This is a by-product of the visualization, as the solution is rendered on tetrahedra

of the background mesh. For the flow solver, the solution is only physically valid inside the

computational domain. The contours are similar for p = 1 and p = 2. The p = 2 contours

appear slightly more rugged, although this is in part due to the fact that the p = 2 solution

is plotted using linear rendering on a uniformly-refined mesh.

0.32

0.30
0.34

0.36

0.38

0.28 0.28

0.3
0

(a) p = 1

0.32

0.34

0.36

0.38

0.28 0.28

0.30 0.3
0

(b) p = 2

Figure 5-23: Gaussian bump channel: M = 0.3. Mach number contours on the final adapted
meshes for p = 1 and p = 2. The planar cut is parallel to the x−z plane and is taken down
the middle of the channel.

5.2.2 M = 0.3 Flow Over a Body of Revolution

This case considers inviscid flow over a body of revolution. The geometry surface is

described analytically by

r = 0.3x(1 − x), y = r cos(θ), z = r sin(θ), 0 ≤ x ≤ 1, 0 ≤ θ ≤ π.

M = 0.3 freestream flow is imposed in the positive x direction, leading to an axi-symmetric,

three-dimensional flow around the body of revolution. For the adaptive runs, drag serves

as the output of interest. The true value of the drag, again nonzero due to proximity of

the boundaries, is computed using a p = 2 solution on an adapted cut-cell mesh with over

60000 elements.

By symmetry, the simulation of flow around any finite wedge, ∆θ, of the body of revo-

lution is sufficient. For this case, half of the body of revolution, ∆θ = 180o, was used. A

quadratic patch representation of the half body of revolution is shown in Figure 5-24a. 256

patches are used to represent the surface, with 8 divisions in θ and 16 divisions in x. An

134

(a) 256 surface patches (b) 2883-element initial mesh

Figure 5-24: Body of revolution: M = 0.3. Quadratic patch representation of the geometry
(a) and the initial background mesh (b).

initial background mesh for adaptation was generated via TetGen by adapting a uniform

mesh of the background domain box to the geometry. The farfield position of the box was

located roughly five chord lengths from the body of revolution. A plot of the mesh on the

symmetry (z = 0) plane is shown in Figure 5-24b. As in the Gaussian-bump channel case,

the embedded geometry extends out of the background domain to prevent degeneracies

during the cutting.

Adaptive runs were performed for p = 0, 1, 2, using 1 count for the drag tolerance. The

drag coefficient was computed using the frontal cross-section as the reference area. Figure

5-25 shows the results of the runs. As in the Gaussian bump case, adaptation for p = 0 was

not continued down to the drag tolerance because computational costs became prohibitive.

Comparing p = 2 and p = 1 at the error tolerance, p = 2 requires about a factor of 8 fewer

degrees of freedom than p = 1. In terms of the estimated work, p = 2 is therefore about

3 times less expensive than p = 1 and at least several orders of magnitude less expensive

than p = 0.

Symmetry-plane plots of the adapted meshes for p = 1 and p = 2 are shown in Figure 5-

26. Compared to the final p = 1 mesh, the final p = 2 mesh achieves a lower error level with

about a factor of twenty fewer elements. As expected, both meshes are refined primarily

at the nose and tail of the body of revolution. Mach number contours for the solutions on

these final adapted meshes are shown in Figure 5-27. The planar cut for these contours was

taken slightly above the symmetry plane, at z = .03. The solutions are similar for p = 1

and p = 2. In both cases, the contours are smooth and no dissipation wake is observed.

135

10
4

10
5

10
6

10
−1

10
0

10
1

10
2

10
3

10
4

DOF

C
D

 e
rr

or
 (

co
un

ts
)

p = 0
p = 1
p = 2

Figure 5-25: Body of revolution: M = 0.3. Drag output error versus degrees of freedom.
Dashed line indicates prescribed tolerance of e0 = 1 count.

(a) p = 1: 322894 elements (b) p = 2: 13669 elements

Figure 5-26: Body of revolution: M = 0.3. Final adapted meshes for p = 1 and p = 2.

136

0.31

0
.3

0

0.29 0.29

0
.3

0
(a) p = 1

0.31

0.29 0.29

0
.3

0

0
.3

0

(b) p = 2

Figure 5-27: Body of revolution: M = 0.3. Mach number contours on the final meshes for
p = 1 and p = 2. The cut is parallel to the x−y plane at a height z = .03.

5.2.3 M = 0.1, α = 0o Flow Over a NACA 0012, AR = 2 Wing

In this case, inviscid flow is modeled over a rectangular, untwisted wing with aspect ratio

(AR) of 2 and with a constant, NACA 0012 airfoil section. At the wing tip, the symmetric

airfoil is rotated to form half a body of revolution, effectively removing any sharp corners

from the geometry. Since the wing is symmetric about the root, only half of the wing is

modeled. For the adaptive runs, drag is used as the output of interest. This drag is nonzero

due to the proximity of the farfield, which consists of a rectangular box about five chord

lengths away from the wing. The true value for this drag is computed from a p = 2 solution

on an adapted cut-cell mesh with over 60000 elements.

Figure 5-28a shows the quadratic patch representation of the wing geometry. 868 patches

are used, spaced evenly along the span, and with curvature-based spacing along the chord

to sufficiently resolve the leading edge. An initial background mesh was constructed using

TetGen by adapting a uniform mesh of the farfield box to the geometry. The resulting 4419-

element mesh is depicted along the symmetry plane in Figure 5-28b. As in the previous

cases, the surface geometry extends slightly out of the background domain to prevent cutting

degeneracies.

Adaptive runs were performed for p = 0, 1, 2 using 2 drag counts for the tolerance.

The drag coefficient was computed using the wing planform area. Figure 5-29 shows the

convergence of the output error versus degrees of freedom. Again, convergence with p = 0

is very slow, and both the degree of freedom count and the computational work can be

estimated to be several orders of magnitude greater than for p = 1 and p = 2. Both p = 1

137

and p = 2 achieve the error tolerance, at which point p = 1 requires about 3.5 more DOF.

In terms of estimated work at the error tolerance, p = 2 is only slightly advantageous over

p = 1, although the steeper slope for p = 2 suggests that it will become increasingly more

favorable for stricter error tolerances.

The symmetry-plane plots of the final adapted meshes for p = 1 and p = 2 are shown in

Figure 5-30. Noticeable in the p = 1 mesh is the high refinement at the leading and trailing

edges. For comparison, the finest p = 0 mesh contains 457229 elements and achieves an

error of about 100 counts. Mach number contours for the solutions on these final adapted

meshes are shown in Figure 5-31. The planar cut for the figure is taken at 60% of the

half-span of the wing. The p = 1 and p = 2 solutions appear similar: the contours are

slightly rugged, and a slight wake is present due to numerical dissipation.

5.2.4 M = 0.1, α = 0o Flow Over a Wing-body Configuration

The previous results demonstrated the performance of 3D cut-cells and output-based

adaptation for several curved geometries. Also of interest, however, is the robustness of

the cut-cell, adaptive method for practical problems of interest. To verify this robustness,

cut-cell adaptation was applied to the wing-body geometry shown in Figure 5-32. This

geometry was used in the third Drag Prediction Workshop. The geometry is represented

with 9368 quadratic patches that are spaced to minimize geometry interpolation error in

areas of high curvature.

(a) 868 surface patches (b) 4419-element initial mesh

Figure 5-28: NACA 0012 wing: AR=2, M = 0.1, α = 0o. Quadratic patch representation
of the geometry (a) and the initial background mesh (b).

138

10
4

10
5

10
6

10
−1

10
0

10
1

10
2

10
3

10
4

DOF

C
D

 e
rr

or
 (

co
un

ts
)

p = 0
p = 1
p = 2

Figure 5-29: NACA 0012 wing: AR=2, M = 0.1, α = 0o. Drag output error versus degrees
of freedom. Dashed line indicates prescribed tolerance of e0 = 2 counts.

(a) p = 1: 133110 elements (b) p = 2: 18407 elements

Figure 5-30: NACA 0012 wing: AR=2, M = 0.1, α = 0o. Final adapted meshes for p = 1
and p = 2.

139

0.080

0.090

0.080

(a) p = 1

0.080

0.090

0.080

(b) p = 2

Figure 5-31: NACA 0012 wing: AR=2, M = 0.1, α = 0o. Mach number contours on the
final meshes for p = 1 and p = 2. The cut is parallel to the x−z plane and is situated at
60% of the half-span.

Figure 5-32: Wing-body: M = 0.1, α = 0o. Surface representation with 9368 quadratic
patches.

A coarse, geometry-adapted mesh of 20447 elements served as the initial mesh for adap-

tive runs at orders p = 0, 1, 2. Adaptation was based on drag, with 1 error count as the

tolerance. The wing planform area was used to non-dimensionalize the drag. Figure 5-33

shows the convergence of the drag coefficient for the three orders. For this geometry, no

“true” drag value was available due to computational limitations. Nevertheless, Figure 5-33

140

10
4

10
5

10
6

10
7

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

DOF

C
D

p = 0
p = 1
p = 2

Figure 5-33: Wing-body: M = 0.1, α = 0o. Drag output versus degrees of freedom.

indicates that p = 0 is converging much more slowly compared to p = 1 and p = 2. After the

initial adaptation iterations, p = 2 appears to be converging more quickly than p = 1. More

importantly, the successful application of cut cells and adaptation in this case demonstrates

the robustness and automation possible for a practical geometry configuration.

Figure 5-34 compares the finest p = 1 and p = 2 meshes. The meshes are plotted on

the symmetry plane, and the quadratic-patch surface is overlaid. As expected, areas of

refinement on the symmetry plane include the nose and the tail. Away from the symmetry

plane, the leading and trailing edges of the wing also exhibit high refinement. Finally, Figure

5-35 shows the Mach number contours for the finest p = 1 and p = 2 mesh solutions, at a

section of the wing 50% along the half-span. Both contour plots exhibit a slight dissipation

wake off the trailing edge, indicating that the flow is not very highly resolved. The p = 1 and

p = 2 contours are very similar, with p = 2 exhibiting slightly smoother features compared

to p = 1.

141

(a) p = 1: 320245 elements (b) p = 2: 83193 elements

Figure 5-34: Wing-body: M = 0.1, α = 0o. Finest adapted meshes for p = 1 and p = 2.

M = 0.10

M = 0.11

M = 0.11

(a) p = 1

M = 0.11

M = 0.11

M = 0.10

(b) p = 2

Figure 5-35: Wing-body: M = 0.1, α = 0o. Mach number contours on the finest meshes
for p = 1 and p = 2. The cut is parallel to the x−z plane and is situated at 50% of the
half-span.

142

Chapter 6

Conclusions and Future Work

6.1 Summary

This thesis presents a complete output-based mesh adaptation procedure for high-order

discontinuous Galerkin discretizations in two and three dimensions. The key components

of this method are anisotropic, output-based mesh adaptation for high-order solutions and

simplex, cut-cell meshing. Together, these ideas address two shortcomings in current CFD

practices: insufficient automation and insufficient robustness in the geometry-to-solution

process. Output-based mesh adaptation allows for an automated, goal-oriented solution

method in which an output error is driven to a prescribed user tolerance. The accompanying

error estimate additionally provides engineering confidence in the final results. As the

adaptive process involves changing the computational mesh, automation and robustness of

the mesher are important ingredients. To this end, a simplex, cut-cell meshing technique

is introduced as an alternative to standard, boundary-conforming mesh generation, which

currently lacks sufficient robustness and automation for complex, curved geometries. The

cut-cell meshing technique is similar to existing Cartesian cut-cell techniques, except that

simplices, triangles in two dimensions and tetrahedra in three dimensions, are used instead

of lattice-bound rectangles or hexahedra. These simplices permit anisotropic stretching in

general directions to efficiently resolve thin boundary and shear layers. The fact that the

cut-cell meshes do not have to conform to the geometry boundary is an enabling feature

that greatly improves the automation and robustness of mesh generation.

Output error estimation is performed by solving a linear adjoint problem associated

with the output of interest. The adjoint serves as a Green’s function relating local residuals

to errors in the output, properly accounting for propagation effects inherent to hyperbolic

problems. Together with estimates of the interpolation error, which are obtained by H1

patch-reconstruction of the solution, the adjoint yields an estimate of the output error. This

143

estimate is not a bound, although its validity improves as the discrete solution approaches

the exact solution. Localized to the elements, the output error serves as an indicator

for mesh adaptation. In isotropic adaptation, this indicator is translated directly into a

requested mesh size for each element. In anisotropic adaptation, the indicator provides an

absolute mesh size that is used in combination with relative sizing obtained from directional

interpolation error estimates. A high-order extension of the Hessian-matrix approach is

proposed for calculating these relative sizes. The final mesh size request for each element

is the result of an optimization process, the objective of which is to meet the user-specified

error tolerance while equidistributing the error over the elements. For the purposes of

re-meshing, the mesh size request is expressed as a Riemannian metric for each element.

Simplex cut-cell meshes are produced by intersecting an embedded geometry with a

volume-filling background mesh. The embedded geometry is represented by cubic splines in

2D and quadratic patches in 3D. The 2D cutting algorithm involves solving cubic equations,

while the 3D cutting algorithm requires intersections between conic sections. Since the

resulting cut cells and cut faces may be irregular in shape, a technique is proposed for

integrating functions over arbitrarily-shaped areas and volumes. This technique is based

on projecting the integrand onto a high-order tensor product space using least-squares

minimization with randomly chosen sampling points inside the cut cell. The basis for

the tensor product space is constructed by taking the divergence of appropriately-chosen

vector-valued functions of one degree higher than the desired order of integration. By the

divergence theorem, integrals of the basis functions over the cut cells can be expressed as

integrals over the cut-cell boundaries. For 2D cut cells, the 1D boundary integrals are

evaluated using Gauss quadrature. For 3D cut cells, a similar approach is first used to

derive integration rules on the irregular cut and embedded faces, which are then used in

deriving the volume integration rules.

The integration rules over cut cells and cut faces consist of sampling points and associ-

ated weights that are derived in a pre-processing step before solution iteration. These rules

are reconstructed every time the grid changes, which currently occurs at every adaptation

iteration. Metric-driven meshing of the computational domain is performed using exist-

ing mesh generation packages. With the boundary-conforming constraint removed, mesh

generation is simple and robust. Thus, given a geometry, an initial coarse mesh of the

background domain, and a requested output error tolerance, the adaptive solution process

is fully automated.

144

6.2 Conclusions

From the two-dimensional results, several conclusions can be drawn about the perfor-

mance of the adaptation algorithm. First, the output-based error estimate, while not a

bound on the error, successfully drives the adaptation for nearly all of the cases tested to

produce solutions that meet the prescribed error tolerance on the output. This conclusion

is qualified by the fact that several of the cases required a reasonable starting mesh to pro-

duce an accurate initial error estimate. Second, based on adaptation runs using a variety of

initial meshes, the final meshes appear relatively insensitive to the starting meshes, given a

sufficiently-low error tolerance. Third, adaptation on p = 2 and p = 3 is observed to pro-

duce final meshes that more efficiently use degrees of freedom compared to p = 1 meshes.

The difference in degrees of freedom is especially significant for the smooth, inviscid test

case and for the high Reynolds number and high Peclet number boundary-layer cases. The

advantage of p = 3 and p = 2 holds even when accounting, in an approximate fashion, for

the additional computational work per degree of freedom required for high-order solutions.

Fourth, the cut-cell method produces results similar to those obtained with boundary con-

forming meshes. Moreover, the cut-cell method is observed to be robust, even for very

highly-anisotropic boundary-layer meshes.

In the three-dimensional results, comparisons to boundary-conforming adaptive results

are not presented due to the present unavailability of robust, three-dimensional meshing.

Nevertheless, accuracy of the cut-cell method is verified for the channel-flow case by compar-

ing to a boundary-conforming result on a manually-generated mesh. The cut-cell adaptive

runs illustrate that, for the error tolerances tested, efficiency in use of degrees of freedom

improves with increasing interpolation order, at least up to p = 2. As in two-dimensions,

this advantage also holds for the approximate work estimate. More importantly, the fact

that the cut-cell meshing and adaptation remain robust for arbitrary, three-dimensional

geometries demonstrates the applicability of cut cells to practical simulations. Of course, as

much of this work is for proof-of-concept, the techniques used exhibit certain shortcomings

and inefficiencies that are addressed in the following section in the context of ideas for future

work.

6.3 Future Work

During the course of this work, several ideas for potential future work were identified.

These ideas, listed below, range from improvements or extensions of current methods to

new directions.

145

1. Improved sampling point selection for cut cells.

Sampling points for integration on cut cells are currently chosen randomly via ray-

casting from enclosing boundaries. While oversampling is used to mitigate effects

of randomly-occurring clusters, ill-conditioned sets of points are still possible. Fur-

thermore, oversampling increases the computational cost of integration on cut cells

and cut faces. A more sophisticated sampling point selection process, for example,

based on an electric-charge analogy, may significantly reduce the required number of

sampling points. In addition, elements cut in a prototypical fashion may be mapped

to a set of reference elements with pre-computed optimal quadrature rules, further

reducing the computational cost.

2. Alternate geometry representation in three dimensions.

Although quadratic patches are reasonably efficient at minimizing the interpolation

and slope errors in the geometry representation, they do not exactly model general

CAD geometries, and they still permit finite slope discontinuities between the patches.

If sufficiently resolved, these slope discontinuities can lead to solution singularities.

In an adaptive setting, an alternate option to using a static patch representation is

to employ a callback to the true CAD geometry to re-tessellate the surface at every

adaptation iteration using the background mesh sizing as an indicator of the required

refinement level. Another idea is to employ higher-order patches or an exact geometry

representation, although the cutting algorithm would likely be more complex.

3. More general adaptive criteria.

Currently, an adjoint-based error estimate for a single output is translated into an

absolute mesh size magnitude via a priori output error convergence predictions while

interpolation errors in the Mach number yield the directional relative sizes. Choosing

the Mach number for anisotropy detection works well in practice, but has little rig-

orous foundation. More general adaptation could conceivably incorporate anisotropy

directly into the output error estimates, as done for certain equation sets by Formaggia

et al [26]. In addition, multiple outputs could be incorporated into the error estima-

tion, metric definition, and mesh optimization, as done by Hartmann and Houston

[35], with the goal of obtaining a single, multi-purpose solution.

4. Use of curved elements in the background mesh.

A thin boundary layer on a curved geometry exhibits strong variation normal to the

boundary, but relatively little variation in the curved, streamwise direction. Linear, as

146

opposed to curved (i.e. q > 1), simplex elements are relatively inefficient at resolving

such features. As such, in the presence of curvature, a large number of elements is

required in the streamwise direction to maintain adequate resolution in the normal

direction. This issue is identical to that of using linear patches to represent a curved

geometry. As discussed in Appendix F, quadratic patches can dramatically reduce the

patch count for a desired low geometry interpolation error. Similarly, q = 2 or higher-

order curved elements can significantly reduce the element count for thin boundary

layers. However, issues that need to be addressed for this method to be successful

include robust background mesh generation and accurate geometry intersection with

curved elements.

5. Development of an hp-adaptive algorithm.

The adaptation strategy used in this work consists of h-adaptation at a constant order,

p. As discussed in Section 3.2, a more efficient strategy is one that incorporates p-

adaptation as well. The mesh optimization algorithm in this case would need to choose

between h and p adaptation for each element via some form of regularity estimation.

While such an hp-adaptive algorithm would certainly be more complex, the potential

computational savings in more efficient use of degrees of freedom could be significant.

6. Extension to other equation sets.

While the target application in this work is aerodynamics, the adaptation method and

the cut-cell algorithm are readily extendable to different equation sets. Specifically,

the adaptive method only requires an output with a well-posed adjoint problem, while

the cut-cell method offers potential robustness and automation advantages for any

computations on complex geometries, especially in the presence of highly-anisotropic

boundary-layer features. Of particular interest is the extension of the cut-cell method

to unsteady simulations with grid motion; a challenging task in which efficiency of the

cutting algorithm would be of paramount importance.

147

148

Appendix A

Compressible Navier-Stokes

Boundary Conditions

This appendix describes how boundary conditions are imposed for the compressible

Navier-Stokes equations. This description is taken primarily from [58], and is included here

for completeness.

Full State

In this case, all K components of the boundary state vector, ubH , are specified. The

inviscid flux is computed using the Roe-averaged flux function, F̂ki(u
+
H ,ubH). The viscous

fluxes are computed as indicated in Table 2.1 for the Dirichlet case.

Inflow/Outflow

For an inflow or outflow, the boundary state vector, ubH , is constructed from the outgoing

Riemann invariants and from the specified boundary data. Specifically, for a subsonic

inflow, the total temperature, total pressure, and flow direction are prescribed, whereas the

J+ Riemann invariant is taken from the interior state. For a subsonic outflow, the static

pressure is prescribed, whereas the J+ Riemann invariant, the entropy, and the tangential

velocity are taken from the interior state.

The inviscid flux is then computed using the analytical flux evaluated with ubH : Fki(u
b
H).

Note, the Roe-averaged flux is not used in this case. The viscous fluxes are evaluated as in

Table 2.1 for the Dirichlet case, using the constructed boundary state ubH .

149

Adiabatic No-Slip Wall

For an adiabatic no-slip wall, the boundary state, ubH , is constructed using density and

energy from the interior state and with the d velocities set to zero. The inviscid flux is

computed using the analytical flux evaluated with ubH : Fki(u
b
H). Again, the Roe-averaged

flux is not used. The viscous fluxes are evaluated based on the Dirichlet case in Table 2.1,

with the exception that the the viscous energy flux, Q̂(d+2)ini, is set to zero to satisfy the

adiabatic wall condition.

150

Appendix B

Adapting for p > 1 Interpolation

The following example shows the problem of using the Hessian matrix for measuring

high-order anisotropy. Consider the following function u(x, y) on a unit square domain,

[0, 1] × [0, 1]:

u = 1.0 + (x2 + 16y2) + ǫ(64x3 + y3), (B.1)

where ǫ << 1. The Hessian matrix is

H =

[
2 0

0 32

]

+ O(ǫ). (B.2)

Ignoring O(ǫ) terms, the required element aspect ratio is calculated to be

AR ≡ ∆x

∆y
=

√
32

2
= 4.0.

To test how interpolation accuracy varies with grid AR, a sequence of three grids, AR =

0.25, AR = 1.0, and AR = 4.0 was constructed, each with 32 elements (Figure B-1).

AR = 0.25 AR = 1 AR = 4

Figure B-1: Three grids used for the interpolation of the function u in (B.1). Hessian-based
analysis predicts AR = 4.0 as the ideal for interpolation.

151

Table B.1: L2 norm of interpolation error on each grid for p = 1 and p = 2.

p = 1 p = 2

AR = 0.25 2.31E-1 2.19E-7
AR = 1.0 5.91E-2 1.42E-6
AR = 4.0 2.37E-2 1.14E-5

The L2 norm of the interpolation error on each grid was calculated for p = 1 and

p = 2 interpolation. ǫ = 10−4 was used for the calculations. Table B.1 shows the results.

As expected from the Hessian matrix analysis, for p = 1, the grid with AR = 4.0 shows

the smallest interpolation error. For p = 2, however, AR = 0.25 produces the smallest

interpolation error per degree of freedom, out of the three cases tested. AR = 4.0 produces

an error 50 times larger. Thus, blindly using the results from the Hessian matrix for high-

order interpolation can produce a clearly sub-optimal grid.

Considering the third order derivatives in (B.1) gives insight into the AR expected for

p = 2 interpolation. Specifically, uxxx = 384ǫ and uyyy = 6ǫ. For this problem, these

values happen to be the maximum and minimum third-order derivatives, and they also

happen to occur in orthogonal directions (x and y). Thus, elements that equidistribute the

interpolation error in these directions should have

uxxx(∆x)3 = uyyy(∆y)3 ⇒ AR =
∆x

∆y
=

(
uyyy
uxxx

)1/3

=

(
6ǫ

384ǫ

)1/3

= 0.25.

This is the AR that produced the smallest p = 2 interpolation error out of the three cases

tested (c.f. Table B.1).

152

Appendix C

Refinement Prediction Example

One drawback of Zienkiewich and Zhu’s standard refinement prediction method lies in

its error equidistribution capability. In particular, the method may lead to over-refinement

of elements with large error indicators and under-refinement of elements with small error

indicators. This problem occurs due to the use of error equidistribution on the current mesh

rather than on some reasonable prediction of the final mesh.

To illustrate the significance of this problem, consider a two-element, one-dimensional

mesh, with error indicators ǫ1 = 1 and ǫ2 = 16, and a global error target of e0 = 1.0.

Assume that the error indicators are additive (e.g. L1 norm of error), and that the a priori

error estimate is ǫk ∼ h1
k.

Using the refinement prediction method with two elements (N = 2), the permissible

error on each element is ē0 = e0/N = 1.0/2 = 0.5. Calculation of the new hk, via (3.19),

leads to element 1 being split into 2 children and element 2 being split into 32 children,

for a total of 34 elements in the new grid (lower left in Figure C-1). Assuming the a

priori estimate is exact, the global error target is met, since each of the areas covered by

the original two elements contributes 0.5 to the global error. However, the error is not

equidistributed on the new grid. Each child of element 1 has an error of 0.5/2 = 0.25, while

each child of element 2 has an error of 0.5/32 = 0.015625. Element 2 has been over-refined

while element 1 has not been refined enough to satisfy error equidistribution on the resulting

mesh.

Now consider an alternate refinement in which element 1 is split into 5 elements while

element 2 is split into 20 elements, for a total of 25 elements in the new mesh (lower

right in Figure C-1). Altogether, the children of element 1 now contribute 1/5 to the

global error, so each contributes 1/52 = 1/25. Also, the children of element 2 contribute

a cumulative 16/20 = 4/5 to the global error, so each contributes (4/5)/20 = 1/25. The

global error target is met (1/5 + 4/5 = 1.0), and the error is equidistributed on the final

153

Original Grid

Standard Ref. Pred. Modified Ref. Pred.

ε
1
 = 1.0 ε

2
 = 16.0

Figure C-1: Example of global mesh modification on a 1D mesh using standard refinement
prediction (lower left) and using an alternate goal-oriented error equidistribution method
(lower right).

mesh. Finally, the number of elements in this mesh is fewer than the 34 obtained from

refinement prediction.

The optimal mesh can be deduced systematically by solving the equations representing

the global error requirement and error equidistribution on the adapted mesh. In the example

presented, assume elements 1 and 2 are divided into n1 and n2 elements, respectively. To

satisfy the global error requirement,

1

n1
+

16

n2
= e0 = 1. (C.1)

To satisfy error equidistribution among the children elements,

1

n1

1

n1
=

1

n2

16

n2
. (C.2)

The a priori error estimate was used in deriving both of these equations. Solving these

two equations for n1 and n2 yields n1 = 5 and n2 = 20. This is an example of the discrete

systematic approach discussed in Section 3.2.2.

154

Appendix D

Cubic Spline Intersection

The intersections between a cubic spline segment and an ordinary line can be found

analytically. Consider a spline segment between two knots (labeled 1 and 2), as shown in

Figure D-1.

�
�
�
�

��
��
��
��

knot 2:
S
X , Y
XS , YS

2

2 2

2 2

knot 1:
S
X , Y
XS , YS

1

1 1

1 1

ax+by+c = 0

Figure D-1: Intersection between a spline segment and a line. A root-finding formula is
used to determine where a spline segment cuts an interior face.

The spline information consists of, at each knot, the knot coordinates and the derivatives

of each coordinate with respect to the arc-length parameter, s. In practice, these derivatives

are computed by a splining algorithm, given a set of knot coordinates. The quantities

associated with knot 1 are S1,X1, Y1,XS1, YS1, where XS ≡ dx/ds, YS ≡ dy/ds, and

similarly for knot 2. The (x, y) coordinates along the curved spline segment can be written

as

x(t) = tX2 + (1 − t)X1 + (t − t2)
[
(1 − t)CX1 − tCX2

]
, (D.1)

y(t) = tY2 + (1 − t)Y1 + (t − t2)
[
(1 − t)CY1 − tCY2

]
,

155

where ∆s = S2 − S1, t = (s − S1)/∆s, and

CX1 = XS1∆s − (X2 − X1),

CX2 = XS2∆s − (X2 − X1).

CY1 and CY2 are defined similarly. The line segment is defined as those x, y pairs that

satisfy ax + by + c = 0. Thus, an intersection must satisfy

0 = ax(t) + by(t) + c

=
[
a(CX1 + CX2) + b(CY1 + CY2)

]
t3 +

[
a(−2CX1 − CX2) + b(−2CY1 − CY2)

]
t2

+
[
a(X2 − X1 + CX1) + b(Y2 − Y1 + CY1)

]
t +

[
aX1 + bY1 + c

]

≡ a3t
3 + a2t

2 + a1t + a0. (D.2)

Thus, an intersections is a solution to a cubic polynomial. Analytical formulas for cubic

solutions exist. However, one must be careful of special cases and numerical conditioning.

The cubic-root formula used in this work is given as follows. Consider a cubic equation in

t with leading coefficient of 1,

t3 + b2t
2 + b1t + b0 = 0. (D.3)

Define Q, R, and D by

Q ≡ 3b1 − b2
2

9
, R ≡ 9b2b1 − 27b0 − 2b3

2

54
, D ≡ Q3 + R2. (D.4)

The number and type of roots are dictated by the value of D. In particular, the three

possible cases D = 0, D > 0, and D < 0 are treated separately:

• D = 0: All roots are real, and at least two are the same:

t0 = −b2/3 + 2R1/3,

t1 = t2 = −b2/3 − R1/3.

Note, a triple root occurs in this case when R = 0.

• D > 0: One real root:

t0 = −b2/3 +
(
R +

√
D
)1/3

.

156

• D < 0: Note this implies Q < 0. Let θ ≡ cos−1
[
R/(−Q)3/2

]
. Three distinct roots:

t0 = 2
√

−Q cos(θ/3) − b2/3,

t1 = 2
√

−Q cos((θ + 2π)/3) − b2/3,

t3 = 2
√

−Q cos((θ + 4π)/3) − b2/3.

While the cubic formula is valid for a leading coefficient of 1, a3 in (D.2) could be

arbitrary. A straightforward division by a3 may not be well-conditioned when a3 is small,

which is the case when a spline segment is close to linear. Ideally, the bi coefficients should

be neither much smaller nor much larger than unity to enable accurate calculation of Q,

R, and D in (D.4). A transformation that has worked in practice is to solve for r = a
1/3
3 t.

Substituting for t in (D.2) yields

r3 + a2a
−2/3
3 r2 + a1a

−1/3
3 r + a0 = 0.

t is then obtained as t = a
−1/3
3 r. The special case of |a3| close to machine zero reduces the

equation to a quadratic (at most), which is solved via the quadratic formula with a similar

conditioning scaling.

Valid solutions consist of those t that are between 0 and 1 and for which the associated

(x, y) lie within the line segment bounding box (intersections are generally sought for finite

line segments, not for infinite lines). Double roots, or tangency intersections are not counted

as intersections, while triple roots are. Node intersections near spline-segment endpoints

have to be handled carefully, especially for near-tangency intersections. Specifically, if the

cubic solution yields t close to 0 or 1, the equation residual, (D.2), is compared to the

residual evaluated with t = 0 and t = 1. The value of t that yields the lowest residual is

used.

157

158

Appendix E

Conic Parametrization

This appendix presents the parametrization of a conic in coordinates (X ′, Y ′) that have

been rotated to eliminate the cross term, X ′Y ′. That is, the conic to be parametrized is

given by

A′X ′2 + C ′Y ′2 + D′X ′ + E′Y ′ + F ′ = 0. (E.1)

For the parabola, ellipse, and hyperbola, a common parametrization will be used, of the

form

r =
l

1 − e cos(θ − θ0)
, (E.2)

where l, e, and θ0 are specific to each conic.

Parabola

A horizontal parabola can be written as 2l(X ′ − X ′
0) = (Y ′ − Y ′

0), where

l =
−D′

2C ′
, X ′

0 =
E′2

4C ′D′
− F

D′
, Y ′

0 = − E′

2C ′
.

The focus of the parabola is given by X ′
f = X ′

0 + l/2, Y ′
f = Y ′

0 , and the eccentricity, e = 1.

If l > 0, θ0 is set to 0; otherwise, l is set to −l and θ0 is set to π. These values can now

be used to parametrize the parabola according to (E.2). A vertical parabola is handled in

a similar fashion.

159

Ellipse

Degeneracies excluded, (5.7) can be re-written by completing squares as,

A′′(X ′ − X ′
0)

2 + C ′′(Y ′ − Y ′
0)

2 = 1, (E.3)

where

A′′ =
−A′

F ′′
, C ′′ =

−C ′

F ′′
, F ′′ = F ′ − D′2

4A′
− E′2

4C ′
,

X ′
0 =

−D′

2A′
, Y ′

0 =
−E′

2C ′
.

For an ellipse, A′′ > 0 and C ′′ > 0. a = max
(√

1/A′′,
√

1/C ′′

)
and b = min

(√
1/A′′,

√
1/C ′′

)

are the semi-major and semi-minor axes of the ellipse, respectively. The eccentricity is

e =
√

1 − b2/a2 and l for the parametrization is b2/a. θ0 is 0 if
√

1/A′′ >
√

1/C ′′ and π

otherwise. The foci are located at ±ea along the semi-major axis from (X ′
0, Y

′
0) and the

focus closest to the origin is used.

Hyperbola

Parametrization of a hyperbola also makes use of (E.3), in which now A′′ and C ′′ must

be of opposite sign. Assuming A′′ > 0 and C ′′ < 0, define a =
√

1/A′′, b =
√

−1/C ′′,

c =
√

a2 + b2. Then the eccentricity is e = c/a, l = b2/a, and θ0 = 0. The foci are located

at X ′
f = X ′

0 ± c, Y ′
f = Y ′

0 , where X ′
0 and Y ′

0 are defined as for the ellipse. Again, the focus

closest to the origin is used. The case when A′′ < 0 and C ′′ > 0 is handled similarly.

Custom case

If the coordinates of the focus, X ′
f , Y

′
f , are far from the origin, the polar parametrization

in (E.2) may become numerically ill-conditioned for representing 1D structures close to the

origin. This is because X ′ and/or Y ′ will be obtained as a difference of two large numbers

(e.g. X ′
f and r(θ) cos(θ)). As 1D structures must always lie on or inside the reference

triangle in X,Y space, they will be close to the origin in X ′, Y ′ space, and hence susceptible

to this ill-conditioning problem. This situation is alleviated by introducing a new “custom”

parametrization specifically for those cases when (X ′
f , Y

′
f) is far from origin, as determined

by comparing the distance to a maximum distance, df,max, with default value df,max = 1000.

The custom parametrization is based on a general polar representation of a conic, de-

160

scribed in detail in [54], given by

1

r(θ)
= T0 sin(θ) + T1 cos(θ) ±

√
T2 sin(2θ) + T3 cos(2θ) + T4, (E.4)

where the Ti are

T0 =
−E′

2F ′
, T1 =

−D′

2F ′
, T2 =

D′E′

4F ′2
,

T3 =
D′2 − E′2 + 4C ′F ′ − 4A′F ′

8F ′2
, T4 =

D′2 + E′2 − 4C ′F ′ − 4A′F ′

8F ′2
. (E.5)

The key in making this parametrization successful is choosing a well-conditioned origin

for the polar representation, ideally close to (X ′, Y ′) = (0, 0) but not too close to the conic.

For example, if the conic intersects the chosen origin, the resulting polar parametrization

would be singular due to F ′ = 0 in (E.5). In this work, the origin is chosen as the point

furthest away from the conic out of a set that includes all vertices of the reference triangle

vertices as well as its centroid.

161

162

Appendix F

Geometry Interpolation Properties

of Quadratic Patches

This appendix compares two geometry representation techniques in both two and three

dimensions: linear panels/patches and quadratic panels/patches. The question of interest

is how accurately these techniques represent a curved geometry. In two dimensions, a linear

panel representation is compared to a quadratic panel representation for a circle. In three

dimensions, a linear patch representation is compared to a quadratic patch representation

for a sphere.

Two dimensions

A section of a linear paneling of a circle of radius 1 is shown in Figure F-1a. The panels

are placed at angle intervals of ∆θ. Two error values between the geometry and the paneling

are of interest: the interpolation error, einterp, which is the maximum distance between the

panels and the true geometry; and the slope error, eslope, which is the deviation of the angle

between two panels from π. For a linear panel, assuming the panel endpoints are placed on

the geometry, the maximum interpolation error occurs at angle ∆θ/2,

einterp = 1 − cos ∆θ/2 ≈ ∆θ2

4
, for small ∆θ. (F.1)

The slope error is simply the interval angle,

eslope = ∆θ. (F.2)

Compared to a linear panel, a quadratic panel contains an additional node. Figure F-1b

163

π

r = 1

∆θ

einterp

+eslope

(a) Linear panels

π

∆θ/2
einterp

r = 1

s=1

s=-1

s=0

+eslope

(b) Quadratic panels

Figure F-1: Interpolation and slope error definitions for an arc of a circle in two dimensions.
Nodes of the panels are assumed to be positioned on the true geometry.

depicts a standard quadratic panel with the additional node placed at ∆θ/2. The quadratic

panel coordinates can be written as

x =

3∑

j=1

φj(s)xj , (F.3)

where xj are coordinates of the three nodes associated with the panel, φj(s) are quadratic

Lagrange interpolant functions, and s ∈ [−1, 1] is the interpolating parameter. The inter-

polation and slope errors for quadratic panels are calculated numerically in this example.

Consider a typical quadratic paneling using ∆θ = π/12, which corresponds to 12 panels

(25 degrees of freedom, DOF) for a semi-circle. The result of a numerical calculation of

einterp along a panel is shown in Figure F-2. As expected, the interpolation error is zero

at the three on-geometry locations (s = −1, s = 0, s = 1). The maximum interpolation is

einterp = 9.1×10−6. The required ∆θ for a linear paneling to produce the same interpolation

error is calculated from (F.1) to be ∆θ = .006rad, which corresponds to about 520 linear

panels (521 DOF) for a semi-circle. Thus, to produce the same einterp, a linear paneling

requires over 40 times more patches (20 times more DOF).

For the same quadratic paneling with ∆θ = π/12, the slope error is calculated to be

.0011rad. From (F.2), a linear paneling with the same slope error requires π/.0011 = 2800

panels. This is a factor of 230 increase in the number of panels, and a factor of 110 increase

in the DOF.

164

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
x 10

−5

s

ein
te

rp

Figure F-2: Geometry interpolation error along a quadratic panel for ∆θ = π/12. The
maximum interpolation error is 9.1 × 10−6.

Three dimensions

In three dimensions, linear triangular patches are compared to quadratic triangular

patches, introduced in Chapter 5, for representing a sphere. For analysis, one equilateral

triangle patch is considered, as illustrated in Figure F-3. The side length of the triangle

is d, and the radius of the sphere is set to 1. Thus, the patch count for a hemi-sphere is

approximately

Npatch ≈ 2π

Atriangle
=

2π

d2
√

3/4
=

8π

d2
√

3
. (F.4)

n (patch)n (true)

d
einterp

Figure F-3: Measurement of interpolation error and slope error for a linear patch (dark
gray) on a sphere surface (light gray).

For a linear patch, placing the vertices on the geometry results in a maximum interpo-

165

lation error at the centroid of the equilateral triangle:

einterp = 1 −
√

1 − d2

3
. (F.5)

The slope error is measured as twice the maximum angle between the patch normal and

the true normal along an edge of the patch. For a linear patch, in which the patch normal

npatch is constant (and exact at the centroid), a straightforward calculation yields that the

maximum slope error occurs at the patch vertices, where

eslope =
2d√

3
rad. (F.6)

Quadratic patches require the placement of three additional nodes at the midpoints of

the triangle edges. In this analysis, these high-order nodes are obtained by projecting the

edge midpoints radially outward to the surface of the sphere. The resulting patch coordi-

nates are given by (5.1), which is used to numerically evaluate the maximum interpolation

and slope errors.

Consider a quadratic patch representation of a hemi-sphere using dquad = π/12, which

corresponds to about 12 patches along each half great-circle. The total number of patches

is found by (F.4) to be Npatch = 210. The interpolation error over one quadratic patch

is plotted in Figure F-4a. As expected, the patch vertices and edge midpoints are pinned

to zero interpolation error, and the maximum deviation occurs at the centroid. In this

case einterp = 5.0 × 10−5. Using (F.5), the linear patch length, dlin, required for the same

interpolation error is found to be dlin = .0173, so that the linear-to-quadratic patch number

ratio is given by d2
quad/d2

lin = 230. Thus, for the hemisphere, 48000 linear patches are

required compared to 210 quadratic patches for the same geometry interpolation error.

A DOF comparison is obtained by noting that the number of vertices is approximately

half the number of patches, while the number of edges is approximately 1.5 times the number

of patches. Thus, a quadratic patch representation, with DOF not only on vertices but

also on edges, requires approximately 2Npatch DOF, whereas a linear patch representation

requires approximately Npatch/2 DOF. 210 quadratic patches therefore translates to 420

DOF, while 48000 linear patches translates to 24000 DOF – still a very substantial increase.

As in two dimensions, the slope error becomes even more restrictive. A plot of the

slope error along an edge of a quadratic patch is given in Figure F-4b. The slope error

is greatest at the edge midpoint, where eslope = .00326rad in this case. Using (F.6), the

linear patch length required for the same slope error is dlin = .00282, which corresponds

to a patch number ratio of d2
quad/d2

lin = 8600. Therefore, for the hemisphere, a linear

166

0

0.2

0.4

0.6

0.8

1
0

0.2
0.4

0.6
0.8

1

0

1

2

3

4

5

6

x 10
−5

Y

X

∆
r

(a) Interpolation error over patch

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.6

0.8

1

1.2

1.4

1.6

1.8
x 10

−3

s

A
ng

le
 e

rr
or

 (
ra

di
an

s)

(b) Slope error along edge

Figure F-4: Interpolation and slope errors for a quadratic patch. The interpolation error
(a) is shown over the entire patch in patch reference space. The slope error (b) is shown
along one edge.

patch representation requires over 1.8 million patches to achieve the same slope error (0.9

million DOF). Such a high number of linear patches required to keep the slope error low

suggests that a linear geometry representation may be overly expensive for p > 1 methods,

which become increasingly sensitive to slope errors (i.e. geometry corners) as the order

increases. Of course, as p and the slope accuracy requirement increase, even higher-order

panels/patches will become more efficient. Nevertheless, for moderate solution interpolation

orders, quadratic panels and patches will often be suitable and certainly more efficient than

linear representations.

167

168

Bibliography

[1] M. J. Aftosmis. Solution adaptive Cartesian grid methods for aerodynamic flows with

complex geometries. In von Karman Institute for Fluid Dynamics, Lecture Series

1997-02. Rhode-Saint-Genése, Belgium, Mar. 3-7, 1997.

[2] M. J. Aftosmis, M. J. Berger, and J. M. Melton. Adaptive Cartesian mesh genera-

tion. In J. F. Thompson, B. K. Soni, and N. P. Weatherill, editors, Handbook of Grid

Generation. CRC Press, 1998.

[3] M. J. Aftosmis, M. J. Berger, and J. J. Alonso. Applications of a Cartesian mesh

boundary-layer approach for complex configurations. AIAA Paper 2006-0652, 2006.

[4] T. Barth, and M. Larson. A posteriori error estimates for higher order Godunov finite

volume methods on unstructured meshes. In R. Herban, and D. Kröner, editors, Finite

Volumes for Complex Applications III, London, 2002. Hermes Penton.

[5] F. Bassi, and S. Rebay. High-order accurate discontinuous finite element solution of

the 2-D Euler equations. Journal of Computational Physics, 138:251–285, 1997.

[6] F. Bassi, and S. Rebay. GMRES discontinuous Galerkin solution of the compressible

Navier-Stokes equations. In K. Cockburn, and Shu, editors, Discontinuous Galerkin

Methods: Theory, Computation and Applications, pages 197–208. Springer, Berlin,

2000.

[7] F. Bassi, and S. Rebay. Numerical evaluation of two discontinuous Galerkin methods

for the compressible Navier-Stokes equations. Int J Numer Meth Fluids, 40:197–207,

2002.

[8] R. Becker, and R. Rannacher. A feed-back approach to error control in finite element

methods: Basic analysis and examples. East-West J. Numer. Math, 4:237–264, 1996.

[9] R. Becker, and R. Rannacher. An optimal control approach to a posteriori error

estimation in finite element methods. In A. Iserles, editor, Acta Numerica. Cambridge

University Press, 2001.

169

[10] M. J. Berger, and R. J. Leveque. An adaptive Cartesian mesh algorithm for the Euler

equations in arbitrary geometries. AIAA Paper 1989-1930, 1989.

[11] K. S. Bey, and J. T. Oden. hp-version discontinuous Galerkin methods for hyperbolic

conservation laws. Comput. Methods. Appl. Mech. Engrg., 133:259–286, 1996.

[12] H. Borouchaki, P. George, F. Hecht, P. Laug, and E. Saltel. Mailleur bidimensionnel

de Delaunay gouverné par une carte de métriques. Partie I: Algorithmes. INRIA-

Rocquencourt, France. Tech Report No. 2741, 1995.

[13] A. Brandt. Guide to Multigrid Development. Springer-Verlag, 1982.

[14] F. Brezzi, L. Marini, and E. Süli. Discontinuous Galerkin methods for first-order

hyperbolic problems. Math. Models Methods Appl. Sci., 14:1893–1903, 2004.

[15] O. Brodersen, and A. Stürmer. Drag prediction of engine-airframe interference effects

using unstructured Navier-Stokes calculations. AIAA Paper 2001-2414, 2001.

[16] D. Calhoun, and R. J. LeVeque. A Cartesian grid finite-volume method for the

advection-diffusion equation in irregular geometries. Journal of Computational Physics,

157:143–180, 2000.

[17] M. J. Castro-Diaz, F. Hecht, B. Mohammadi, and O. Pironneau. Anisotropic un-

structured mesh adaptation for flow simulations. International Journal for Numerical

Methods in Fluids, 25:475–491, 1997.

[18] D. K. Clarke, M. D. Salas, and H. A. Hassan. Euler calculations for multielement

airfoils using Cartesian grids. AIAA Journal, 24(3):353, 1986.

[19] B. Cockburn, and C.-W. Shu. Runge-Kutta discontinuous Galerkin methods for

convection-dominated problems. Journal of Scientific Computing, pages 173–261, 2001.

[20] W. J. Coirier, and K. G. Powell. Solution-adaptive cut-cell approach for viscous and

inviscid flows. AIAA Journal, 34(5):938–945, 1996.

[21] W. N. Dawes, P. C. Dhanasekaran, A. A. J. Demargne, W. P. Kellar, and A. M.

Savill. Reducing bottlenecks in the CAD-to-mesh-to-solution cycle time to allow CFD

to participate in design. Journal of Turbomachinery, 123(11):552–557, 2001.

[22] D. De Zeeuw, and K. G. Powell. An adaptively refined Cartesian mesh solver for the

Euler equations. Journal of Computational Physics, 104:56–68, 1993.

170

[23] L. Diosady, and D. Darmofal. Discontinuous Galerkin solutions of the Navier-Stokes

equations using linear multigrid preconditioning. AIAA Paper 2007-3942, 2007.

[24] K. J. Fidkowski. A high-order discontinuous Galerkin multigrid solver for aerodynamic

applications. MS thesis, M.I.T., Department of Aeronautics and Astronautics, June

2004.

[25] K. J. Fidkowski, and D. L. Darmofal. Output-based adaptive meshing using triangular

cut cells. M.I.T. Aerospace Computational Design Laboratory Report. ACDL TR-06-2,

2006.

[26] L. Formaggia, S. Micheletti, and S. Perotto. Anisotropic mesh adaptation with applica-

tions to CFD problems. In H. A. Mang, F. G. Rammerstorfer, and J. Eberhardsteiner,

editors, Fifth World Congress on Computational Mechanics, Vienna, Austria, July 7-12

2002.

[27] H. Forrer, and R. Jeltsch. A higher-order boundary treatment for Cartesian-grid meth-

ods. Journal of Computational Physics, 140:259–277, 1998.

[28] N. T. Frink. Test case results from the 3rd AIAA drag prediction work-

shop. NASA Langley, 2007. http://aaac.larc.nasa.gov/tsab/cfdlarc/aiaa-dpw/

Workshop3/final results jm.tar.gz.

[29] R. L. Gaffney, M. D. Salas, and H. A. Hassan. Euler calculations for wings using

Cartesian grids. AIAA Paper 1987-0356, 1987.

[30] M. Giles, and N. Pierce. Adjoint error correction for integral outputs. In Lecture Notes

in Computational Science and Engineering: Error Estimation and Adaptive Discretiza-

tion Methods in Computational Fluid Dynamics, volume 25. Springer, Berlin, 2002.

[31] M. B. Giles, and E. Süli. Adjoint methods for PDEs: a posteriori error analysis and

postprocessing by duality. In Acta Numerica, volume 11, pages 145–236, 2002.

[32] W. G. Habashi, J. Dompierre, Y. Bourgault, D. Ait-Ali-Yahia, M. Fortin, and M.-G.

Vallet. Anisotropic mesh adaptation: towards user-independent, mesh-independent

and solver-independent CFD. part I: general principles. Int. J. Numer. Meth. Fluids,

32:725–744, 2000.

[33] R. Haimes. CAPRI: Computational analysis programming interface, a solid modeling

based infra-structure for engineering analysis and design. CAPRI user’s guide, MIT,

Revision 1.00, 2000.

171

[34] K. Harriman, P. Houston, B. Senior, and E. Süli. hp-version discontinuous Galerkin

methods with interior penalty for partial differential equations with nonnegative char-

acteristic form. Technical Report Technical Report NA 02/21, Oxford University Com-

puting Lab Numerical Analysis Group, 2002.

[35] R. Hartmann, and P. Houston. Goal-oriented a posteriori error estimation for multiple

target functionals. In T. Hou, and E. Tadmor, editors, Hyperbolic Problems: Theory,

Numerics, Applications, pages 579–588. Springer-Verlag, 2003.

[36] R. Hartmann, and P. Houston. Adaptive discontinuous Galerkin finite element methods

for the compressible Euler equations. Journal of Computational Physics, 183(2):508–

532, 2002.

[37] K. J. Hill. Matrix-based ellipse geometry. In A. W. Paeth, editor, Graphics Gems V,

pages 72–77. Academic Press, San Diego, CA, 1995.

[38] P. Houston, R. Hartmann, and E. Süli. Adaptive discontinuous Galerkin finite element

methods for compressible fluid flows. In M. Baines, editor, Numerical Methods for

Fluid Dynamics VII, volume 8, page 341, 2001.

[39] P. Houston, and E. Süli. Error estimation and adaptive discretization methods in

computational fluid dynamics. In T. Barth, and H. Deconinck, editors, Error Esti-

mation and Adaptive Discretization Methods in Computational Fluid Dynamics, pages

269–344. Springer-Verlag, Heidelberg, Lecture Notes in Computational Science and

Engineering Vol 25, 2002.

[40] P. Houston, and E. Süli. A note on the design of hp-adaptive finite element methods for

elliptic partial differential equations. Comput. Methods Appl. Mech. Engrg, 194:229–

243, 2005.

[41] S. L. Karman. SPLITFLOW: A 3d unstructured Cartesian/prismatic grid CFD code

for complex geometries. AIAA Paper 1995-0343, 1995.

[42] K. R. Laflin, J. C. Vassberg, R. A. Wahls, J. H. Morrison, O. Brodersen, M. Rakowitz,

E. N. Tinoco, and J.-L. Godard. Summary of data from the second AIAA CFD drag

prediction workshop. AIAA Paper 2004-0555, 2004.

[43] P. R. Lahur, and Y. Nakamura. A new method for thin body problem in Cartesian

grid generation. AIAA Paper 99-0919, 1999.

[44] P. R. Lahur, and Y. Nakamura. Anisotropic Cartesian grid adaptation. AIAA Paper

2000-2243, 2000.

172

[45] R. J. LeVeque. A large time step generalization of godunov’s method for systems of

conservation laws. SIAM J.Numer. Anal., 22(6):1051–1073, 1985.

[46] R. J. LeVeque. High resolution finite volume methods on arbitrary grids via wave

propagation. Journal of Computational Physics, 78:36–63, 1988.

[47] D. W. Levy, T. Zickuhr, J. Vassberg, S. Agrawal, R. A. Wahls, S. Pirzadeh, and M. J.

Hemsch. Data summary from the First AIAA Computational Fluid Dynamics Drag

Prediction Workshop. Journal of Aircraft, 40(5):875–882, 2003.

[48] J. Lu. An a Posteriori Error Control Framework for Adaptive Precision Optimiza-

tion Using Discontinuous Galerkin Finite Element Method. PhD thesis, Massachusetts

Institute of Technology, Cambridge, Massachusetts, 2005.

[49] L. Machiels, J. Peraire, and A. Patera. A posteriori finite-element output bounds

for the incompressible Navier-Stokes equations: Application to a natural convection

problem. Journal of Computational Physics, 172:401–425, 2001.

[50] D. J. Mavriplis. An assessment of linear versus nonlinear multigrid methods for un-

structured mesh solvers. Journal of Computational Physics, 175:302–325, 2001.

[51] D. J. Mavriplis. Results from the 3rd drag prediction workshop using the NSU3D

unstructured mesh solver. AIAA Paper 2007-256, 2007.

[52] J. E. Melton, F. Y. Enomoto, and M. J. Berger. 3D automatic Cartesian grid generation

for Euler flow. AIAA Paper 1993-3386-CP, 1993.

[53] J. H. Morrison, and M. J. Hemsch. Statistical analysis of CFD solutions from the third

AIAA drag prediction workshop. AIAA Paper 2007-254, 2007.

[54] F. R. Moulton. An Introduction to Celestial Mechanics. 2nd rev. ed. Dover, New York,

1970.

[55] S. M. Murman, M. J. Aftosmis, and S. E. Rogers. Characterization of space shuttle

ascent debris aerodynamics using CFD methods. AIAA Paper 2005-1223, 2005.

[56] M. Nemec, M. J. Aftosmis, and T. H. Pulliam. CAD-based aerodynamic design of com-

plex configurations using a Cartesian method. Technical Report NAS-04-001, NASA,

2004.

[57] M. Nemec, M. Aftosmis, S. Murman, and T. Pulliam. Adjoint formulation for an

embedded-boundary Cartesian method. AIAA Paper 2005-0877, 2005.

173

[58] T. A. Oliver. Multigrid solution for high-order discontinuous Galerkin discretizations

of the compressible Navier-Stokes equations. MS thesis, M.I.T., Department of Aero-

nautics and Astronautics, August 2004.

[59] R. Pember, J. B. Bell, P. Colella, W. Y. Crutchfield, and M. L. Welcome. An adaptive

Cartesian grid method for unsteady compressible flow in irregular regions. Journal of

Computational Physics, 120:278–304, 1995.

[60] J. Peraire, M. Vahdati, K. Morgan, and O. C. Zienkiewicz. Adaptive remeshing for

compressible flow computations. Journal of Computational Physics, 72:449–466, 1987.

[61] N. A. Pierce, and M. B. Giles. Adjoint recovery of superconvergent functionals from

PDE approximations. SIAM Review, 42(2):247–264, 2000.

[62] J. W. Purvis, and J. E. Burkhalter. Prediction of critical Mach number for store

configurations. AIAA Journal, 17(11):1170–1177, 1979.

[63] J. Quirk. An alternative to unstructured grids for computing gas dynamic flows around

arbitrarily complex two dimensional bodies. Technical Report 92-7, ICASE, 1992.

[64] R. Rannacher. Adaptive Galerkin finite element methods for partial differential equa-

tions. Journal of Computational and Applied Mathematics, 128:205–233, 2001.

[65] P. L. Roe. Approximate Riemann solvers, parametric vectors, and difference schemes.

Journal of Computational Physics, 43:357–372, 1981.

[66] P. E. Rubbert, J. E. Bussoletti, F. T. Johnson, K. W. Sidwell, W. S. Rowe, S. S.

Samant, G. SenGupta, W. H. Weatherill, R. H. Burkhart, B. L. Everson, D. P. Young,

and A. C. Woo. A new approach to the solution of boundary value problems involving

complex configurations. In A. K. Noor, editor, Computational Mechanics – Advances

and Trends, pages 49–84, 1986.

[67] H. Si. Tetgen: A quality tetrahedral mesh generator and three-dimensional Delau-

nay triangulator. Weierstrass Institute for Applied Analysis and Stochastics, 2005.

http://tetgen.berlios.de.

[68] P. Soĺın, and L. Demkowicz. Goal-oriented hp-adaptivity for elliptic problems. Comput.

Methods Appl. Mech. Engrg., 193:449–468, 2004.

[69] G. Strang, and G. J. Fix. An Analysis of the Finite Element Method. Wellesley-

Cambridge Press, 1988.

174

[70] B. A. Szabo. Estimation and control of error based on p convergence. In I. Babuska,

O. C. Zienkiewicz, J. Gago, and E. R. de Oliveira, editors, Accuracy Estimates and

Adaptive Refinements in Finite Element Computations, pages 61–78. John wiley &

Sons Ltd., 1986.

[71] J. C. Vassberg, M. A. DeHaan, and T. J. Sclafani. Grid generation requirements for

accurate drag predictions based on OVERFLOW calculations. AIAA Paper 2003-4124,

2003.

[72] D. A. Venditti. Grid Adaptation for Functional Outputs of Compressible Flow Simula-

tions. PhD thesis, Massachusetts Institute of Technology, Cambridge, Massachusetts,

2002.

[73] D. A. Venditti, and D. L. Darmofal. Grid adaptation for functional outputs: application

to two-dimensional inviscid flows. Journal of Computational Physics, 176(1):40–39,

2002.

[74] D. A. Venditti, and D. L. Darmofal. Anisotropic grid adaptation for functional out-

puts: application to two-dimensional viscous flows. Journal of Computational Physics,

187(1):22–46, 2003.

[75] V. Venkatakrishnan, S. R. Allmaras, D. S. Kamenetskii, and F. T. Johnson. Higher

order schemes for the compressible Navier-Stokes equations. AIAA Paper 2003-3987,

2003.

[76] B. Wedan, and J. C. South. A method for solving the transonic full-potential equation

for general configurations. AIAA Paper 1983-1889, 1983.

[77] F. M. White. Viscous Fluid Flow. McGraw-Hill, Inc., 1974.

[78] D. P. Young, R. G. Melvin, M. B. Bieterman, F. T. Johnson, S. S. Samant, and J. E.

Bussoletti. A higher-order boundary treatment for Cartesian-grid methods. Journal of

Computational Physics, 92:1–66, 1991.

[79] X. D. Zhang, M.-G. Vallet, J. Dompierre, P. Labbe, D. Pelletier, J.-Y. Trepanier,

R. Camarero, J. V. Lassaline, L. M. Manzano, and D. W. Zingg. Mesh adaptation

using different error indicators for the Euler equations. AIAA Paper 2001-2549, 2001.

[80] O. C. Zienkiewicz, and J. Z. Zhu. Adaptivity and mesh generation. International

Journal for Numerical Methods in Engineering, 32:783–810, 1991.

175

