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This work presents an output-based anisotropic mesh optimization algorithm
that builds on previous work of Yano.! The distinguishing new feature is a simple
error sampling approach for determining the convergence rate tensor of the error
on a single element in a finite-element discretization. This approach does not re-
quire refinement of the element, nor any additional solves or residual evaluations.
Instead, all calculations take place on the original mesh, using fine-space adjoint
projections that reflect the extra resolution introduced by a sampled refinement
option. The sampling is efficient and relatively simple to implement as it does
not require mesh manipulation. Results for various cases demonstrate that the
mesh optimization adds resolution and creates anisotropy as expected, and that it
performs well compared to uniform refinement strategies and heuristic anisotropy
detection methods.

I. Introduction

Unstructured meshes offer flexibility in mesh generation and in adaptation, since resolution
can be placed only where necessary. Resolution refers to the size and shape of an element, as
both of these affect the approximation power of the mesh. This information can be encoded in a
metric field®?3 over the computational domain. Qur goal is to relate this metric field to a practical
objective, such as minimizing error or computational cost.

Previous works have derived metric fields from consideration of such objectives through heuris-
8-11 and more recently, rigorous' ways. In this paper we consider a modified
version of the existing rigorous output-based approach of Yano! for determining the metric that
gives the best possible mesh. Our modification is in the form of an element-local error sampling
technique that simplifies the implementation by not requiring mesh refinement, nor solves on refined
subsets of the original mesh, nor information from neighbors.

In a solution-adaptive setting, we compare the performance of the proposed mesh optimization
approach to uniform refinement and other adaptive approaches, including output-based methods
with heuristic anisotropy detection. We show that the present method not only improves accuracy
at fixed costs but also improves solver robustness.

The outline for the remainder of this paper is as follows. We briefly review our chosen discretiza-
tion, a high-order discontinuous Galerkin finite-element method, in Section II. We then present
output-error estimates in a variational setting in Section III. Section IV describes the iterative
mesh optimization approach, which relies on error and cost models. Section V presents the new
error sampling approach that is used in determining the error convergence rate tensor. We finish
with results in Section VI and conclusions in Section VII.

tic,* " semi-heuristic,
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II. Discretization

We present the mesh optimization method in the context of a discontinuous Galerkin (DG) finite
element discretization.'> 14 We consider a system of partial differential equations in conservative
form,

du+V-F(u,Vu) +S(u,Vu) = 0, (1)

where u € R? is the s-component state vector, F € RS is the flux vector, d is the spatial dimension,
and S is a source term, e.g. associated with turbulence modeling closure equations.

We assume a subdivision, T}, of the computational domain, €2, into N, non-overlapping ele-
ments, €2, and on each element we approximate the state by an order p polynomial. Specifically,
the state approximation is uj € V} = [V]°, where

VP ={u € La(Q) : uq, € PP VQ. € T}, }. (2)

The subscript h indicates a specific domain subdivision, i.e. the collective size/shape distribution
of all of the elements, and PP is the set of order-p polynomials 2.

Multiplying Eqn. 1 by test functions VZ € Vz, integrating by parts on each element, and
using the Roe!® convective flux and the second form of Bassi and Rebay (BR2)!¢ for the viscous

treatment, we obtain the following semilinear weak form:
RY(ul vD) = 0. 3)

Much of the DG discretization is standard; the sections below outline a few practical details.

III. Owutput Error Estimation

We use an adjoint-based output error estimate to drive the mesh optimization. Theoretical
details can be found in previous works.!” ' For a scalar output, J (uﬁ), the discrete adjoint field
b € V) is the linearized sensitivity of J to residual source perturbations, dR(-) : V; — R added
to the left-hand side of Eqn. 3,

0T = 0R(}), (4)

where the equality assumes infinitesimal perturbations. We obtain the adjoint field by solving the
following linear equation,

R (v ) + T[] (vh) = 0, W eV, (5)

where the prime denotes Fréchét linearization with respect to the argument in square brackets.

Output error estimation relies on a finer discretization space, which in this work is VfLH: order
p+ 1 approximation on elements of the same domain subdivision, 7}. The original (coarse) primal
state uZ does not generally satisfy the fine-space weak form; instead it satisfies a perturbed weak
form, with a residual source of dR(:) = —Rﬁ“(uﬁ, -). If we have a fine-space adjoint, zpﬁ“, we
can then estimate the error in J due to using the coarse primal instead of the (never calculated)
fine-space primal,

output error =07 = J(u}) — j(uﬁ“) ~ —Rﬁ“(u’;,@bzﬂ). (6)

2The polynomials are defined in reference space and for curved elements they may not remain order p polynomials
after the mapping to physical space.
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The approximation sign indicates that the adjoint-weighted residual (last term) is an estimate of
the error between the spaces when the equations or output are not linear, since we are using linear
sensitivities with non-infinitesimal perturbations. The calculation in Eqn. 6 is also only an estimate
of the true numerical error, i.e. compared to the exact solution, since it uses an approximate, finite-
dimensional, fine space. The richer the fine space, the better the error estimate. We rely on this
observation when formulating the element-local error sampling procedure in Section V. Finally, we
note that Eqn. 6 can be localized to elemental contributions,

Ne
6T ~ Y Ry R o) &= IR e )l ®

e=1

E. > 0 in the above equation is the error indicator for element e.

IV. Mesh Optimization

Our goal is to optimize the computational mesh, 7}, in order to minimize the output error at
a prescribed computational cost. We follow the approach introduced by Yano,! which iteratively
determines the optimal change in the mesh metric field given a prescribed metric-cost relationship
and a sampling-inferred metric-error relationship. In this section we briefly review the key elements
of this method, and in Section V we present a modification to the error sampling procedure.

IV.A. Metric-Based Meshing

A Riemannian metric field, M(Z), is a field of symmetric positive definite (SPD) tensors that can
be used to encode information about the desired size and stretching of a computational mesh. At
each point in physical space, ¥, the metric tensor M (Z) provides a “yardstick” for measuring the
distance from Z to another point infinitesimally far away, & + éZ. This distance is

50 = V33T M6Z. (8)

After choosing a Cartesian coordinate system and basis for physical space, M can be represented
as a d x d SPD matrix. The set of points at unit metric distance from Z is an ellipse: eigenvectors of
M give directions along the principal axes, while the length of each axis (stretching) is the inverse
square root of the corresponding eigenvalue.

A mesh that conforms to a metric field is one in which each edge has the same length, to
some tolerance, when measured with the metric according to Eqn. 8, which can be integrated
to obtain the distance between points that are not infinitesimally close together. An example of
a two-dimensional metric-conforming mesher is the Bi-dimensional Anisotropic Mesh Generator
(BAMG),? and this is used to obtain the results in the present work.

BAMG generates a mesh given a metric field, which is specified at nodes of a background mesh
— the current mesh in an adaptive setting. The optimization will determine changes to the current,
mesh-implied, metric, M(Z), which is obtained on each simplex element of the background mesh
by solving a linear system for the d(d 4 1)/2 independent entries of M (Z); the equations in this
system enforce that each of the d(d 4+ 1)/2 edges has unit metric measure. The element-based
mesh-implied metrics are then averaged to the nodes using an affine-invariant? algorithm.3

Affine-invariant changes to the metric field are made via a symmetric step matriz, S € R4,
according to

M = M2 exp(S) M. )

PFor example, just averaging matrix entries would be coordinate-system dependent and hence not affine invariant.
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Note that S = 0 leaves the metric unchanged, while diagonal values in S of £21log2 halve/double
the metric stretching sizes.

IV.B. Error Convergence Model

The mesh optimization algorithm requires a model for how the error changes as the metric changes.
We consider one element, 2., with a current error &, the absolute value of the element’s contri-
bution to Eqn. 7, and a proposed metric step matrix of S.. What will the new error be over
Q, following refinement with this step matrix? A typical a priori model may predict & /Ep =
(h/ho)" = exp|rlog(h/ho)], where h/hg is some measure of element size change and r is the error
convergence rate. A generalization to anisotropic metric tensors, for which the error may con-
verge differently depending on the direction of change, is that S, plays the role of log(h/hy) and a
symmetric rate tensor R. replaces the scalar r:

0€,
28,

Note, we include a linearization with respect to S for use in Section IV.D. The total error over the
mesh is the sum of the elemental errors, £ = Zé\ﬁl &.. During optimization we will want to keep £
small, and we will be able to change the step matrices at the mesh vertices, S,. The rate tensor,
Re, will be determined separately for each element through the sampling procedure described in
Section V.

Ee =Epexp [tr(ReSe)] = ERe. (10)

IV.C. Cost Model

To measure the cost of refinement, we use degrees of freedom, dof, which on each element just
depends on the approximation order p, assumed constant over the elements. By Eqn. 9 and prop-
erties of the metric tensor, when the step matrix S, is applied to the metric of element e, the area
of the element decreases by exp [%tr(Se)]. Equivalently, the number of new elements, and hence
degrees of freedom, occupying the original area 2. increases by this factor. So the elemental cost
model is

ac. 1
dS. 2 (11)

1
Ce = Cepexp [2tr(56)] =

where Cgyp = dofg is the current number of degrees of freedom on element e, and Z is the identity
tensor. Again we include a linearization with respect to S¢ for use in Section IV.D. The total cost
over the mesh is the sum of the elemental costs, C = Zé\ﬁl Ce.

IV.D. Metric Optimization Algorithm

Given a current mesh with its mesh-implied metric (Mg(Z)), elemental error indicators &g, and
elemental rate tensor estimates, R., the goal of the metric optimization algorithm is to determine
the step matrix field, S(Z), that minimizes the error at a fixed cost.

The step matrix field is approximated by values at the mesh vertices, S,, which are arithmetically-
averaged to adjacent elements®:

1
S, = S, 12
P (12)

UGVe

where V¢ is the set of vertices (|Ve| is the number of them) adjacent to element e. The optimization
problem is to determine S, such that the total error £ is minimized at a prescribed total cost C.

“There is no need for an affine-invariant average because entries of S are coordinate system independent.
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First-order optimality conditions require derivatives of the error and cost with respect to S,.
From the equations in Sections IV.B and IV.C, and using Eqn. 12, these are

o€ o€, 0S8, ¢ — 0. S,
oS, S, 9S,’ oS, Z oS, 9S,’ (13)
e€ly ~~ eEl, ~ ~~
Eqn. 10 1/|V.| Eqn. 11 1/|Ve|

where F, is the set of elements adjacent to vertex v. We note that the cost only depends on the
trace of the step matrix; i.e. the trace-free part of S, stretches an element but does not alter its
area. We therefore separate the vertex step matrices into trace (s,Z) and trace-free (S,) parts,

Sy = T + Sy (14)
Derivatives of the error with respect to s, and va are

85_tr(85> 06 0E  OET

s, aS, 95, 08, 0s,d

(15)

The optimization algorithm is then the same as presented by Yano:!

1. Given a mesh, solution, and adjoint, calculate &, C., R, for each element e.
2. Set 65 = 0Smax/Nstep, Sy = 0.
3. Begin loop: ¢ = 1... ngtep

(a) Calculate S, from Eqn. 12, g%i from Eqn. 10, and ggz from Eqn. 11.

(b) Calculate derivatives of £ and C with respect to s, and S, using Eqn. 15.

(c) At each vertex form the ratio A, = gg?gz: and

e Refine the metric for 30% of the vertices with the largest [\,|: S, = Sy + dsZ
e Coarsen the metric for 30% of the vertices with the smallest |\,|: S, =S, — 0sZ

(d) Update the trace-free part of S, to enforce stationarity with respect to shape changes
at fixed area: S, =S, + ds(0E/9S,)/(0E /Dsy).
(e) Rescale S, — S, + Z, where f3 is a global constant calculated from Eqn. 11 to constrain

the total cost to the desired dof value: § = %log %, where Ciarget is the target cost.
Note, A, is a Lagrange multiplier in the optimization. It is the ratio of the marginal error to
marginal cost of a step matrix trace increase (i.e. mesh refinement). The above algorithm iteratively
equidistributes A, globally so that, at optimum, all elements have the same marginal error to
cost ratio. Constant values that work generally well in the above algorithm are ngyep = 20 and
O0Smax = 21og 2.

In practice, the mesh optimization and flow/adjoint solution are performed several times at a
given target cost, Ciarget, until the error stops changing. Then the target cost is increased to reduce
the error further if desired. Figure 1 illustrates this process. For reporting the final error and cost
at each adaptive iteration, the values are averaged over the last few solution iterations at each
target cost.

V. Element-Local Error Sampling

The mesh optimization algorithm requires that the error convergence rate tensor, R, be known
for each element e. We estimate this rate tensor a posteriori by sampling a small number of element
refinements (cuts) for each element and performing a regression. This is also the approach taken by
Yano,! and our work differs in that we do not solve any primal or adjoint problems on the refined
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log(error) increase dof log(dof)

0 10 20 solution iterafion

Figure 1. Illustration of the typical error (left axis) and cost/dof (right axis) history during mesh optimization.
At each solution iteration, the primal and adjoint problems are solved and the mesh optimization algorithm
is applied to determine the metric for the mesh for the next solution iteration. The target cost is held fixed
for multiple (e.g. 10) solution iterations, during which the error eventually stabilizes as each mesh “hovers”
about the optimum. Following an allowable cost increase, the error drops over a few solution/optimization
iterations and settles to a lower value. Note that the primal and adjoint solutions can be transferred from one
mesh to the next, making the solves at each iteration much cheaper compared to solving from scratch (e.g.
using the freestream state).

AN

Original Option 1 Option 2 Option 3 Option 4

Figure 2. Four refinement options for a triangle. Each one is considered implicitly during error sampling,
though the elements are never actually refined.

elements. Indeed, we never actually modify the mesh when considering the refinement samples,
and this simplifies data structure handling in the implementation, especially in parallel.

For a triangular element, we consider four refinement options, as shown in Figure 2. We would
like to know how much the error would decrease under each refinement option. One expensive
option is to refine the element with the proposed cut, re-solve the primal and fine-space adjoint
problems globally, and re-compute the error estimate. Though accurate, this would be impractically
expensive. Another option is to only solve the primal/adjoint problems on a subset of the original
mesh: the current element and its neighbors. This approach, taken by Yano, is less accurate but still
performs very well as globally-exact primal/adjoint states are not necessary to estimate the error
rate tensor. In this work we further simplify the estimation by not solving additional problems,
even on a local patch of elements. Instead, our proposed algorithm uses element-local projections
of the fine-space adjoint to semi-refined spaces associated with each refinement option.

Consider one element, {2.. The fine space adjoint wﬁﬂ‘ge gives, via Eqn. 7, an estimate of the
output error in the current order p solution, as measured relative to a “truth” order p+ 1 solution:
this is &. If the fine-space adjoint were of order p + 2, we would have an estimate of the error
relative to an even finer space. Now, suppose that we are looking at refinement option ¢ in Figure 2.
Refining an element with such an option creates a solution space that is finer than the original,
though (we assume) not as fine as increasing the order to p + 1 — we still use p + 1 as the “truth”
space. Suppose we have an order p adjoint on this refined space; call it 1,[% ‘ 0. where the ¢ indicates
that we are considering refinement option . With this adjoint we can compute an error indicator
A&,;: this estimates the error between the coarse solution and that on refinement option ¢. The
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remaining error associated with refinement option ¢ is then given by the difference,
gei = Ce0 — Agei- (16)

Calculating A&,; requires an adjoint-weighted residual evaluation on the element refined under
option 7. We bypass this complication with an additional simplification: we project "bﬁi‘g into the
p + 1 space on the original element and evaluate the adjoint weighted residual there. That is, we

perform
1 ~
Al = ’RI;JLJF (u’ﬁw&be)\, (17)

where Q,Zzl is 1&21. projected from order p on refinement option ¢ into order p + 1 on the original
element. The final simplification is to not actually calculate szi }Qe for refinement option 7. Instead,
we simply project the known fine-space order p 4+ 1 adjoint onto order p in refinement option .

In summary, the error uncovered by refinement option i, A&, is estimated by the adjoint-
weighted residual in Eqn. 17, with all calculations occurring at order p + 1 on the original element.
Figure 3 breaks down the key computation of ¢}, into individual projections. Using least-squares

ENGIPNIO N

wp-ﬁ-l

7P
h1l
Figure 3. Projection of the fine-space adjoint, 1/Jfb+ , down to the space created by refinement option i = 1, and

then back up to order p + 1 on the original element. This sequence of projections is encapsulated in a single
transfer matrix in Eqn. 18.

projections in reference space, the combination of the steps depicted in Figure 3 can be encapsulated
into one transfer matrix that converts 'l,bp 1 into 't,bﬁi, both represented in the order p + 1 space on
the original element:

o = Tiph (18)
T - [Mo<¢g+1,¢s“>}‘1im, (19)
Ty = Mu(8™, 68) [Mi(d, ¢8)] " My(e?, g2T) | My (62T, o2 *1Mk<¢z“,¢>€“>. (20)

In these equations, n; is the number of sub-elements in refinement option ¢, k£ is an index over these
sub-elements, ¢z, d)iﬂ are order p and p + 1 basis functions on sub-element k, d)ﬁ , (bgﬂ are order
p and p + 1 basis functions on the original element, and components of the mass-like matrices are
defined as

My (o1, dm) = /¢l¢>md9, Mo(¢1, dm) = /¢z¢md97 (21)
O O

where ), is sub-element k and €2 is the original element. Note that the transfer matrix 7; can be
calculated for each refinement option 7 once in reference space and then used for all elements, so
that the calculation of A&,; consumes minimal additional cost — and most importantly, no solves
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or residual evaluations are needed on the refined element, as these generally require cumbersome
data management and transfer.

Finally, after calculating &;, the errors remaining after each refinement option i according to
Eqn. 16, we use least-squares regression to estimate the rate tensor R.. Note that for triangles, we
have 4 refinement options and 3 independent entries in the symmetric R, tensor. Using Eqn. 10,
we formulate the regression to minimize the following error, summed over refinement options,

Z [log % - tr(ReSei)] 2 : (22)

e0

In this equation, S,; is the step matrix associated with refinement option 4, given by (from Eqn. 9),

). (23)

where M, is the affine-invariant metric average of the mesh-implied metrics of all sub-elements in
refinement option i. Differentiating Eqn. 22 with respect to the independent components of R.
yields a linear system for these components.

=

_1 _
S.; = log <M0 2 MM,

VI. Results

We demonstrate the mesh optimization algorithm with the new local error sampling technique
on four test cases, using the compressible Euler, Navier-Stokes, and Reynolds-averaged Navier-
Stokes equations.

VI.A. NACA 0012 Airfoil in Inviscid Flow

We first consider inviscid flow over a NACA 0012 airfoil at My, = 0.5 and o = 2°. The output of
interest is the drag coefficient. Figure 4 shows the Mach number contours and the initial coarse
mesh for this case. Curved elements of geometry order ¢ = 4 are used adjacent to the airfoil to
represent the geometry, and the farfield boundary is over 2000 chord-lengths away.

NAVAVAN

/

(a) Mach number contours (b) Initial mesh (356 triangles)

Figure 4. NACA 0012, M = 0.5, o = 2°, inviscid: Mach number contours and the initial coarse mesh for
metric-based mesh optimization.

Starting from the coarse mesh, adaptive runs were performed using approximation orders p =
1,2,3, and at four dof targets: 2000, 4000, 8000, and 16000. Note that for a given dof target, we
expect coarser meshes (fewer elements) at higher p, when each element consumes more dof. At each
dof target, ten solution iterations were performed before moving to the next dof target. Figure 5
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shows a sample run using p = 2. Note how quickly the error drops in the first ~ 3 iterations after
increasing the dof target and after starting from the coarse mesh. Since the 356-element initial
mesh has 2136 dof at p = 2, the dof plot shows little change in the first ten iterations, when the
target is 2000 dof, even though the error drops as the ~ 350 elements are resized and repositioned
to an optimal configuration for drag prediction.

Drag coefficient error

—
o

10 20 - 30 _ 40 50 60
Solution iteration

|
(=2

o

3 \ 1 \ \ \
0 10 20 - 30 _ 40 50 60
Solution iteration

Figure 5. NACA 0012, M = 0.5, a = 2°, inviscid: output error and degrees of freedom histories for mesh
optimization with p = 2 approximation and 15 solution iterations at each target dof value.

Degrees of freedom
=

Figure 6 compares the convergence of the error in the drag coefficient with a measure of the
mesh size, dof /2, when using the presented mesh optimization algorithm and when using uniform
refinement of the initial mesh. The uniform refinement results exhibit stagnating convergence, even
at high order, due to the presence of singular solution features (e.g. at the trailing edge) which limit
the attainable rate. Indeed there is little benefit in using p = 3 compared to p = 2 on the uniform
refinement sequence. On the other hand, the adaptive results with the presented optimization
algorithm show greatly-improved convergence. Orders of magnitude error reductions are achieved
compared to uniform refinement, and there is a clear benefit of higher-order approximation. Note
that Figure 6 presents data points for every solution iteration in the mesh optimization, with larger
symbols denoting the output and dof averaged over the five iterations at each dof target. As
shown, the 2000 initial dof target required refinement of the initial mesh for p = 1 and coarsening
of the initial mesh at p = 3; at p = 2 the total number of elements remained virtually unchanged
at this target.

Figures 7, 8, 9 show the adapted meshes for p = 1,2,3 approximation, at the four target dof
values. The differences in the number of elements among the various meshes are evident: the p =1
adapted meshes are the finest, whereas the p = 3 ones are the coarsest. The adaptation adds mesh
resolution to the most interesting areas in the flowfield: the leading and trailing edges of the airfoil.
Especially at the trailing edge, small elements persist even at p = 3, in order to resolve the strong
singularity.
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Figure 6. NACA 0012, Mo, = 0.5, a = 2°, inviscid: comparison of output error convergence with dof for uniform
refinement and mesh optimization at orders p = 1,2,3. In the optimization results, the smaller symbols denote
the output at each solution iteration, whereas the larger symbols show the average over the last five iterations
at each target dof.
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(c) dof = 8000 (d) dof = 16000

Figure 7. NACA 0012, Mo = 0.5, a = 2°, inviscid: optimized meshes (last in sequence for each target dof) for
p=1.
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Figure 8. NACA 0012, Mo = 0.5, a = 2°, inviscid: optimized meshes (last in sequence for each target dof) for
p=2.
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Figure 9. NACA 0012, Mo = 0.5, a = 2°, inviscid: optimized meshes (last in sequence for each target dof) for
p=3.
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VI.B. Flat Plate in Laminar Flow at Re = 10°

The case of interest is laminar flow over a flat plate at M, = 0.5, = 0, Rey, = 10%. This case was
considered as part of the most recent workshop on high-order methods in CFD, held at the ATAA
2015 SciTech conference. The compressible Navier-Stokes equations are solved over the domain
shown in Figure 10(a), where Ly = Ly = L = 1. The Prandtl number is Pr = 0.72 and the ratio
of specific heats is v = 1.4. The output of interest is the drag coefficient on the flat plate.

1

09r-

X 0.8
Pressure Exit

071

0.6

051

L 04l
Subsonic| ¥ Pr::ss_utre
Inflow X1 03r
02F
N 0.1
Lu Adiabatic Wall
S 0 — — — ===
ymmetry -1 -08 06 -04 -02 0 0.2 0.4 0.6 0.8 1
(a) Domain and boundary conditions (b) Initial mesh: 336 triangles

Figure 10. Laminar flat-plate boundary layer: case setup and initial mesh for uniform refinement and opti-
mization runs.

Figure 10(b) shows the initial mesh used for uniform refinement and mesh optimization runs.
This mesh was obtained from subdivision of elements in an initially structured quadrilateral mesh
that was generated with extra refinement in the boundary layer and leading-edge of the flat plate.
In the uniform refinement runs, each triangular element was subdivided isotropically into four new
elements to obtain the next mes. In addition, “quasi-uniform” refinement was considered in which
a hand-generated fine mesh, also with stretched spacing, was coarsened by removal of every other
grid line. The resulting mesh sequence was no longer nested but did a better job at resolving the
boundary layer and leading-edge regions.

Figure 11 shows the results of the uniform refinement and adaptive runs for approximation
orders p = 1,2,3. Note that among the uniform refinement runs, increasing the order does decrease
the error, but that no higher-order convergence rate is observed due to insufficient resolution of the
singular region of the flow (i.e. the leading edge of the flat plate). The quasi-uniform meshes show
better results because they are not nested and the finer meshes intentionally have high resolution at
the leading edge and in the boundary layer. The meshes optimized using the proposed method show,
for a given order, the best results. Note that in this case four cost (dof) values were considered:
2000, 4000, 8000, 16000. For each cost value, fifteen iterations of mesh optimization were performed,
and errors from the last five were averaged to produce the large symbols shown in Figure 11. The
stall in convergence around error values of 10719 is likely due to the residual tolerance used (eight
orders of magnitude drop).

Figures 12 and 13 show the optimized meshes for p2 and p = 3, respectively. The meshes are
shown over the entire computational domain and zoomed-in with a stretched vertical axis to see
refinement in the boundary layer. Comparing p = 2 and p = 3, we see coarser meshes for p = 3
since the number of degrees of freedom is the same for both orders, and p = 3 consumes, with
full-order approximation, 10 degrees of freedom compared to 6 for p = 2.

From the un-zoomed figures, we see that the optimized meshes show no sign of the initial-
mesh refinement pattern: not much resolution is required away from the boundary layer. In the
zoomed-in figures we see very high resolution in the leading-edge region, and in an arc-shaped
region extending from the leading edge to the trailing edge. The boundary layer of course does not
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Figure 11. Laminar flat-plate boundary layer: drag error convergence histories for uniform refinement and
mesh optimization. The light lines in the optimized mesh plots show the drag error for each iteration of the
optimization at a fixed cost.

disappear to zero height at the trailing edge, but errors made away from the wall this far down
the plate have little impact on the drag. The adaptive algorithm picks up on this. In addition,
we see reasonably-high anisotropy of the elements in the boundary layer region — note that the
ratio of horizontal to vertical axis scaling is 100-to-1 in the zoomed-in figures. This anisotropy is
detected automatically by the error sampling procedure that yields the rate tensor for each element,
as described in Section V.

VI.C. NACA 0012 Airfoil in Laminar Flow

In this case we consider viscous flow over a NACA 0012 airfoil at Mo, = 0.5, a = 2°, and Re = 5000.
The output of interest is the drag coefficient. Figure 14 shows the Mach number contours and the
initial coarse mesh for this case. Curved elements of geometry order ¢ = 4 are used adjacent to the
airfoil to represent the geometry, and the farfield boundary is over 2000 chord-lengths away.

Starting from the coarse mesh, adaptive runs were performed using approximation orders p =
1,2,3 and four dof targets: 2000, 4000, 8000, and 16000. Figure 15 shows drag error and dof
histories for a sample run using p = 2. Compared to the inviscid case the error does not drop
as quickly after each dof target increase, but it does plateau after 10-15 solution iterations. The
output and dof values reported are again averages over the last 5 solution iterations at each target
dof.

Figure 16 compares convergence of the error in the drag coefficient with a measure of the
mesh size, dof /2, when using the presented mesh optimization algorithm, when using uniform
refinement of the initial mesh, and when using an alternative adaptation algorithm: one in which
the output error indicator is used to set the mesh size while the anisotropy comes from the Hessian
matrix associated with the Mach number. 1% As in the inviscid case, the uniform refinement results
exhibit stagnating convergence, even at high order, due to the presence of singular solution features
— there is little benefit to high order in this scenario. On the other hand, the adaptive results
show greatly-improved convergence, especially with the presented optimization algorithm. Using
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the Mach number Hessian in lieu of the metric optimization yields reasonable results for p = 1
and p = 2, but stalls out for p = 3. This should not come as a surprise, since: (1) the Hessian
matrix approach was derived for linear (p = 1) solution approximation; and (2) the use of the Mach
number Hessian is a heuristic that is not guaranteed to provide optimal meshes for the prediction
of an output.

Figures 17 and 18 show the adapted meshes for p = 2 and p = 3 approximation, respectively,
at the four target dof values. The adaptation algorithm adds resolution in the boundary layer,
wake, and in the vicinity of the leading-edge stagnation streamline. The two sets of meshes, one
optimized using the error sampling procedure and the other generated using the Mach number
Hessian, show resolution of similar regions but with different anisotropy. In the boundary layer and
in the edges of the wake, using the Mach number Hessian leads to elements with somewhat larger
anisotropy. However, on the leading-edge stagnation streamline, the sampling-based meshes exhibit
flow-aligned anisotropy, a result of features in the adjoint solution that the Mach Hessian cannot
identify. In general, the Mach number Hessian is a reasonable heuristic for identifying anisotropy,
but it is not perfect, as the output convergence results show that the sampling-based optimized
meshes are more efficient.
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Figure 12. Laminar flat-plate boundary layer: optimized meshes for p = 2 solution approximation. Note the
unequal axis scaling in the zoomed figures.
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Figure 13. Laminar boundary layer: optimized meshes for p = 3 solution approximation. Note the unequal axis
scaling in the zoomed figures.
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Figure 14. NACA 0012, M = 0.5, o = 2°, Re = 5000: Mach number contours and the initial coarse mesh for
metric-based mesh optimization.

0
5 10 : ! :
© : : :
- 2 1 1 1
& 107 : : :
S ' ' :
° : E E
810+ : : :
c’ 1 1 1]
m 1 1 1
0 197" I , I ; | , \ P
0 10 20 30 _ 40 50 60
Adaptive iteration
10°

I
1
i
1
1
i
]
1
i
1
1
1
1
i
1
i

Degrees of freedom
=

3 \ \

|
0 10 20 30 _ 40 50 60
Adaptive iteration

Figure 15. NACA 0012, M = 0.5, o = 2°, Re = 5000: output error and degrees of freedom histories for mesh
optimization with p = 2 approximation and 15 solution iterations at each target dof value.
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Figure 16. NACA 0012, M, = 0.5, a = 2°, Re = 5000: comparison of output error convergence with dof for
uniform refinement, adaptation using the Mach number Hessian to determine anisotropy, and adaptation using
the mesh optimization algorithm described in this section. The approximation orders are p = 1,2,3. In the
adaptive results, the smaller symbols denote the output at each solution iteration, whereas the larger symbols
show the average over the last five iterations at each target dof.
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Figure 17. NACA 0012, My, = 0.5, o = 2°, Re = 5000: adapted meshes (last in sequence for each target dof) for
p = 2 using mesh optimization and, for comparison, the Mach number Hessian to set anisotropy.
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Figure 18. NACA 0012, My, = 0.5, o = 2°, Re = 5000: adapted meshes (last in sequence for each target dof) for
p = 3 using mesh optimization and, for comparison, the Mach number Hessian to set anisotropy.
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VI.D. RAE 2822 Airfoil in Transonic Turbulent Flow

The final case is an RAE 2822 airfoil in transonic turbulent flow: M, = 0.734, a = 2.79°,
Re = 6.5 x 10°. The Spalart-Allmaras?® closure is used to model the turbulent flow, and element-
constant artificial viscosity?! is used to capture shocks. The output of interest is the drag coefficient.
Figure 19 shows the Mach number contours and the initial coarse mesh for this case. Note that the
initial mesh is much coarser in the boundary layer than required for accuracy. Curved elements of
geometry order ¢ = 4 are used adjacent to the airfoil to represent the geometry, and the farfield
boundary is over 500 chord-lengths away. A linear elasticity analogy is used to deform anisotropic
linear meshes to curve them to the ¢ = 4 boundary geometry approximation.

PRPEE

A

(a) Mach number contours (b) Initial mesh (758 triangles)

Figure 19. RAE 2822, My, = 0.734, a = 2.79°, Re = 6.5 x 105: Mach number contours and the initial coarse mesh
for metric-based mesh optimization.

Starting from the coarse mesh, adaptive runs were performed using approximation orders p =
1,2,3, and at four dof targets: 5000, 10000, 20000, and 40000. At each dof target, fifteen solution
iterations were performed before moving to the next dof target. Figure 20 shows a sample run
using p = 2. The error drops more slowly in this case compared to the inviscid and laminar cases,
and the behavior of the error from mesh to mesh is more oscillatory. This is likely due to the
highly nonlinear nature of the RANS equations and the sensitivity of the output to anisotropy in
the boundary layer.

Figure 21 shows the convergence of the drag coefficient error with respect to the mesh size,
dof /2, when using the presented mesh optimization algorithm, and when using uniform refine-
ment. Here we see a dramatic benefit from the optimized meshes. Uniform refinement of the coarse
mesh does not appear to consistently reduce the error at any of the orders — the refined meshes
are still not fine enough to resolve the boundary layer. On the other hand, the adapted meshes
show excellent error reduction: almost four orders of magnitude lower error on the finest meshes
compared to the error on the initial mesh. The differences in the adapted results among the three
orders are minor, with slight efficiency gains for p = 2 and p = 3 at the lower error levels.

Finally, Figures 22, 23, 24 show the adapted meshes for the different orders and dof targets.
These meshes are much different from the initial one: we observe high levels of anisotropy in the
thin boundary layer adjacent to the airfoil, and in the wake and leading-edge stagnation streamline
resolution. We also see some refinement in the foot of the shock on the upper surface, and resolution
of the “\” feature of the adjoint solution above the airfoil. Note that resolution of the entire shock
is not needed for accurate drag calculation: the important regions are the foot of the shock and
the characteristics that connect to the shock-boundary layer junction.
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Figure 20. RAE 2822, M., = 0.734, a = 2.79°, Re = 6.5 x 10%: output error and degrees of freedom histories for
mesh optimization with p = 2 approximation and 15 solution iterations at each target dof value.
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Figure 21. RAE 2822, M., = 0.734, a = 2.79°, Re = 6.5 x 10%: comparison of output error convergence with dof
for uniform refinement and adaptation using the mesh optimization algorithm described in this section. The
approximation orders are p = 1,2,3. In the adaptive results, the smaller symbols denote the output at each
solution iteration, whereas the larger symbols show the average over the last five iterations at each target dof.
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Figure 22. RAE 2822, Mo, = 0.734, o = 2.79°, Re = 6.5 x 10%: optimized meshes (last in sequence for each target
dof) for p=1.
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Figure 23. RAE 2822, Mo, = 0.734, o = 2.79°, Re = 6.5 x 10%: optimized meshes (last in sequence for each target
dof) for p = 2.
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Figure 24. RAE 2822, Mo, = 0.734, o = 2.79°, Re = 6.5 x 10%: optimized meshes (last in sequence for each target
dof) for p = 3.

VII. Conclusions

This paper presents a mesh optimization algorithm that builds on the work of Yano.! The
new contribution is a local adjoint projection approach to sampling errors associated with different
element refinement options. The advantage of this approach is that the mesh does not actually need
to be refined in order to obtain an estimate of the error after refinement. That is, no primal solves,
adjoint solves, or residual evaluations are required on refined meshes. Instead, all calculations take
place on the original mesh, in the p+ 1 fine space. A single projection operator for each refinement
option maps the fine-space adjoint to an adjoint that reflects the extra resolution introduced by
a refinement option. This improves efficiency and simplifies the implementation and mesh/data
handling. Results for a variety of test cases demonstrate that the mesh optimization performs
well qualitatively, in creating resolution and anisotropy where expected, and quantitatively, in
comparison to uniform refinement and Hessian-based strategies.
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