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This paper presents a method for optimizing computational meshes for the pre-
diction of scalar output quantities when using the embedded discontinuous Galerkin
(EDG) discretization. EDG offers memory and computational time advantages
compared to the standard discontinuous Galerkin (DG) method through its de-
coupling of elemental degrees of freedom and the introduction of continuous face
degrees of freedom that become the only globally-coupled unknowns. However, the
additional equations of weak flux continuity on each interior face introduce new
residuals that augment output error estimates and complicate existing element-
centric mesh optimization methods. This work presents a technique for converting
face-based error estimates to elements and sampling their reduction with refinement
in order to determine element-specific anisotropic convergence rate tensors. The
sampling uses fine-space adjoint projections and does not require any additional
solves on subelements. Together with a degree-of-freedom cost model, this EDG
error model drives metric-based unstructured mesh optimization. Adaptive results
for inviscid and viscous two-dimensional flow problems demonstrate (1) improve-
ment of EDG mesh optimality when using the new error model compared to one
that does not incorporate face errors, and (2) degree of freedom and computational-
time benefits of EDG relative to DG.

I. Introduction

Although discontinuous Galerkin (DG) methods1,2 have enabled high-order accurate computa-
tional fluid dynamics simulations, their memory footprint and computational costs remain large.
Two approaches for reducing the expense of DG are (1) modifying the discretization; and (2) opti-
mizing the computational mesh. In this work we pursue both approaches and compare their relative
benefits.

Hybridization of DG3–7 is an approach that modifies the high-order discretization to reduce
its expense for a given mesh. The high cost of DG arises from the large number of degrees of
freedom required to approximate an element-wise discontinuous high-order polynomial solution.
Furthermore, these degrees of freedom are globally-coupled, increasing the memory requirements
for solvers that require storage of the residual Jacobian matrix, even with an element-compact
stencil. Hybridized discontinuous Galerkin (HDG) methods reduce the number of globally-coupled
degrees of freedom by decoupling element solution approximations and stitching them together
through weak flux continuity enforcement. HDG methods introduce face unknowns that become
the only globally-coupled degrees of freedom in the system. Since the number of face unknowns
scales as pdim−1 compared to the pdim scaling for elements, HDG methods can be computationally
cheaper and use less memory compared to DG. The embedded discontinuous Galerkin (EDG)
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method6,8 is a particular type of HDG method in which the approximation space of face unknowns
is continuous, further reducing the number of globally-coupled degrees of freedom.

Another approach to reducing the cost of high-order simulations is mesh optimization. In finite-
element discretizations, the number of elements affects the cost and accuracy of the simulations.
A mesh is considered optimal if it delivers the highest possible accuracy with the fewest possible
elements. Much work has been done in this area, including heuristic,9–12 semi-heuristic,13–16 and
more recently, rigorous17 techniques. Of particular interest in engineering applications are methods
which directly address accuracy of scalar outputs, and such output-based methods have also been
extensively studied in the context of CFD.13,18–25

This work introduces a mesh optimization approach for EDG discretizations, effectively combin-
ing the two cost-reduction approaches. In addition to reducing computational costs, the resulting
adaptive method improves (1) robustness of the solution through quantitative error estimates, and
(2) robustness of the solver through a mesh size continuation approach in which the problem is
solved on successively finer meshes.

The outline for the remainder of this paper is as follows. Section II presents the DG and
EDG discretizations. Section III derives adjoint-based error estimates, which drive discretization-
specific mesh optimization techniques that are presented in Section IV. Section V demonstrates
the adaptive method for selected two-dimensional flows, and Section VI concludes with a summary
and a discussion of future directions.

II. Discretization

We simulate the compressible Navier-Stokes equations,

∂u

∂t
+∇ · ~H(u,∇u) = 0, (1)

where u ∈ Rs = [ρ, ρ~v, ρE]T is the conservative state vector of rank s, and ~H(u,∇u) = ~F(u) +
~G(u,∇u) is the total flux, consisting of the convective and viscous components. The viscous flux
is assumed linear in the state gradients, Gi(u,∇u) = −Kij(u) ∂ju. Presently we consider the
steady-state equations, ∂u

∂t = 0.

II.A. Discontinuous Galerkin (DG)

Denote by Th the set of Nelem elements in a non-overlapping tessellation of the domain Ω. As
shown in Figure 1(b), in DG, the state is approximated by polynomials of order p on each element,
with no continuity constraints imposed on the approximations on adjacent elements. Formally,
uh ∈ Vh = [Vh]s, where Vh = {u ∈ L2(Ω) : u|Ωe ∈ Pp ∀Ωe ∈ Th} , and Pp denotes polynomials of
order p on the reference space of element Ωe. The weak form of Eqn. 1 follows from multiplying
the equation by test functions in the same approximation space, integrating by parts, and coupling
elements via unique fluxes,

−
∫
Ωe

∇wT
h · ~H dΩ +

∫
∂Ωe

wT
h Ĥ · ~n ds−

∫
∂Ωe

∂iw
+T
h K+

ij

(
u+
h − ûh

)
nj ds = 0 ∀wh ∈ Vh, (2)

where (·)T denotes transpose, and on the element boundary ∂Ωe, (·)+, (·)− denote quantities taken
from the element or its neighbor, respectively. The last term symmetrizes the semilinear form for
adjoint consistency. The unique state on an interior face is ûh = (u+

h + u−h )/2.

Ĥ·~n denotes the unique normal flux on faces. We use the Roe approximate Riemann solver26 for
the convective flux, and the second form of Bassi and Rebay (BR2)27 for the viscous flux. Choosing
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Figure 1. Schematic description of the solution approximation using various high-order methods.

a basis for the test and trial spaces yields a system of nonlinear equations,

R(U) = 0, (3)

where U ∈ RNh is the discrete state vector of basis function coefficients, Nh is the number of
unknowns, and R is the discrete steady residual vector.

II.B. Embedded Discontinuous Galerkin (EDG)

The starting point for the EDG discretization is the conversion of Eqn. 1 to a system of first-order
equations,

~q−∇u = ~0, (4)

∂u

∂t
+∇ · ~H(u, ~q) = 0, (5)

where ~q is an approximation of the state gradient. Multiplying these two equations by test functions
~v ∈ [Vh]dim,w ∈ Vh and integrating by parts over an element Ωe yields the weak form: we seek
uh ∈ Vh, and ~q ∈ [Vh]dim, such that∫

Ωe

~vTh · ~qh dΩ +

∫
Ωe

∇ · ~vThuh dΩ−
∫
∂Ωe

~vTh · ~n ûh ds = 0 ∀~vh ∈ [Vh]dim, (6)

∫
Ωe

wT
h

∂uh
∂t

dΩ−
∫
Ωe

∇wT
h · ~H dΩ +

∫
∂Ωe

wT
h Ĥ · ~n ds = 0 ∀wh ∈ Vh, (7)

where û is a new independent unknown: the state approximated on faces of the mesh. Note
that through Eqn. 7, element degrees of freedom are coupled to the face degrees of freedom, but
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not to each other. The additional unknowns call for additional equations, which arise from weak
enforcement of flux continuity across faces,∫

σf

µT
{

Ĥ · ~n
∣∣
L

+ Ĥ · ~n
∣∣
R

}
ds = 0 ∀µ ∈Mh. (8)

In this equation, Mh denotes the order-p approximation space on the faces σf ∈ Fh of the mesh:
Mh = [Mh]s, where Mh =

{
u ∈ L2(σf ) : u|σf ∈ Pp ∀σf ∈ Fh

}
, and the subscripts L and R refer

to the left and right sides of a face. As shown in Figure 1, both HDG and EDG introduce ûh, with
the key difference that in EDG, the approximation space Mh is continuous at mesh nodes (and
edges in three dimensions). This leads to a large reduction in the number of degrees of freedom for
face approximations in EDG versus HDG.

The fluxes in Eqn. 7 are one-sided, meaning that they depend only on the state and gradient
inside the element, and the face state,

Ĥ · ~n = ~H(û, ~q) · ~n+ τ (û,u, ~n), τ =

∣∣∣∣ ∂∂u
(F̂ · ~n)

∣∣∣∣ (u− û) + η~δ · ~n. (9)

Note that τ consists of a Roe-like convective stabilization and a BR2 viscous stabilization,28 where
η is set to the number of faces and ~δ is the BR2 auxiliary variable driven by the state jump u− û.

Choosing bases for the trial/test spaces in Eqns. 6, 7, 8 gives a nonlinear system of equations,

RQ = 0, RU = 0, RΛ = 0, (10)

with the Newton update system[
A B

C D

]∆Q

∆U

∆Λ

+

RQ

RU

RΛ

 =

0

0

0

 , (11)

where Q, U, and Λ are the discrete unknowns in the approximation of ~q, u, and û, respectively.
[A,B; C,D] is the primal Jacobian matrix partitioned into element-interior and interface unknown
blocks. Note that A and B contain both Q and U components. In addition, A is element-wise
block diagonal, and hence easily invertible using element-local operations.

Statically condensing out the element-interior states gives a smaller system for the face degrees
of freedom, (

D−CA−1B
)︸ ︷︷ ︸

K

∆Λ +
(
RΛ −CA−1

[
RQ; RU

])
= 0. (12)

Solving this set of equations constitutes the global solve of the problem. Following the global solve
for ∆Λ, an element-local back-solve yields the updates to Q and U,[

∆Q

∆U

]
= −A−1

([
RQ

RU

]
+ B∆Λ

)
.

II.C. Adjoint Discretization

For a scalar output J , the discrete adjoint Ψ is a vector of sensitivities of J to residual source
perturbations. For DG, these perturbations refer to Eqn. 3, and the associated adjoint equation is(

∂R

∂U

)T
Ψ +

(
∂J

∂U

)T
= 0. (13)
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For EDG, residual perturbations refer to Eqn. 10, and with three sets of residuals, the analog of
Eqn. 13 is

[
AT CT

BT DT

]ΨQ

ΨU

ΨΛ

+

(∂J/∂Q)T

(∂J/∂U)T

(∂J/∂Λ)T

 =

0

0

0

 , (14)

Statically condensing out the element-interior adjoints gives a smaller system for the face adjoints,

(
DT −BTA−TCT

)︸ ︷︷ ︸
KT

ΨΛ +

(
∂J

∂Λ

T

−BTA−T
[
∂J

∂Q

T

;
∂J

∂U

T])
= 0. (15)

Note that the operator appearing in this equation is the transpose of the primal operator in Eqn. 12.
After solving this global system for ΨΛ, ΨQ and ΨU follow from an element-local back-solve.

II.D. Degrees of Freedom and Matrix Sparsity

On a given mesh, the DG, HDG, and EDG discretizations will have different degree of freedom
counts and residual Jacobian sparsity patterns. Figure 2 presents an example of the degree of
freedom placement for p = 2 approximation on a ten-element mesh of triangles.

(a) DG (b) HDG (c) EDG

Figure 2. Element (blue) and face (red) degree of freedom placement for a sample mesh, using various dis-
cretizations.

In HDG and EDG, we do not introduce û on boundary faces, as the flux there is computed in
the same way as in DG. Figure 3 shows the resulting residual Jacobian matrices, with the static
condensation applied to HDG and EDG. The number of nonzeros refers to the globally-coupled
(condensed) matrices. Note that the number of matrix nonzeros for EDG is about a factor of 6
smaller than for DG.

III. Output Error Estimation

III.A. The Adjoint-Weighted Residual

An adjoint solution can be used to estimate the numerical error in the corresponding output of
interest, J , through the adjoint-weighted residual.19,22 Let H denote a coarse/current discretization
space, and h a fine one, e.g. obtained by increasing the approximation order by one, p → p + 1.
Denote by UH

h the state injected from the coarse to the fine space, and similarly for QH
h and ΛH

h

in EDG. Computing the fine-space residuals with these injected states and weighting them by the
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(a) DG, nnz=1080 (b) HDG, nnz=330 (c) EDG, nnz=177

Figure 3. Matrix sparsity patterns for the ten-element mesh in Figure 2. Matrix sizes are shown to scale.

fine-space adjoint gives an estimate of the output error between the coarse and fine spaces,

DG: Jh(UH
h )− Jh(Uh) ≈ −δΨT

hRh(UH
h ) (16)

EDG: Jh(UH
h )− Jh(Uh) ≈ −(δΨQ

h )TRQ
h︸ ︷︷ ︸

δJQ

−(δΨU
h )TRU

h︸ ︷︷ ︸
δJU

−(δΨΛ
h )TRΛ

h︸ ︷︷ ︸
δJΛ

, (17)

where all of the residuals are evaluated using the coarse state injected into the fine space, including
QH
h and ΛH

h for EDG. For the fine space, we increment the approximation order by one on each
element and face and obtain the fine-space adjoint by solving exactly on this fine space. We obtain
δΨh for use in the error estimates by subtracting from the fine-space adjoint an injection of the
coarse-space adjoint. Note that Eqn. 17 separates the error estimate into three components, one
for each residual.

III.B. Error Localization

The error estimates involving element residuals can be localized to element (e) contributions, re-
sulting in the error indicators

DG: Ee ≡
∣∣∣δΨT

h,eRh,e(U
H
h )
∣∣∣, (18)

EDG: EQe ≡
∣∣∣δΨQT

h,e RQ
h,e

∣∣∣, EUe ≡
∣∣∣δΨU T

h,e RU
h,e

∣∣∣. (19)

On the other hand, the error contribution δJΛ is associated with an inner product over faces, in
the space Mh. For HDG, this error could be localized to faces, but for EDG, the localization is
not as simple due to the continuous approximation space Mh.

III.C. EDG Face Error Treatment

The mesh optimization algorithm used in this study works with an element-based error estimate,
as the model for the error is based on the size of the elements. We therefore convert the EDG face
output error contribution, δJΛ, to elements. The starting point for this conversion is writing the
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absolute value of δJΛ as an adjoint-weighted residual integrated over the faces, in variational form,

|δJΛ| =
∣∣∣∑
f

∫
σf

ψΛT
h

{
Ĥ · ~n

∣∣
L

+ Ĥ · ~n
∣∣
R

}
ds
∣∣∣. (20)

Defining δĤ · ~n
∣∣
L
≡ Ĥ · ~n

∣∣
L
− Ĥ · ~n

∣∣
exact

, where “exact” refers to the flux computed from the exact

(no numerical error) solution, and similarly for δĤ · ~n
∣∣
R

, we can bound |δJ |Λ as

|δJΛ| ≤
∣∣∣∑
f

∫
σf

ψΛT
h δĤ · ~n

∣∣
L

∣∣∣+
∣∣∣∑
f

∫
σf

ψΛT
h δĤ · ~n

∣∣
R

∣∣∣ ≤∑
e

∫
∂Ωe

∣∣ψΛT
h δĤ · ~n

∣∣ ds. (21)

Using the divergence theorem, we obtain integrals over element interiors, from which we can define
an element indicator,

|δJΛ| ≤
∑
e

∫
Ωe

∣∣∇ · (ψΛT
h δ ~H) dΩ

∣∣
︸ ︷︷ ︸

EΛ
e

. (22)

IV. Adaptation

Estimates of the output error not only provide information about the accuracy of a solution, but
can also drive mesh adaptation. A fair comparison of DG and EDG requires optimal meshes for each
discretization. In previous work, we presented an output-based mesh optimization algorithm for
DG,29 which built on earlier work of Yano.17 This section describes an extension of this algorithm,
Mesh Optimization through Error Sampling and Synthesis (MOESS), to EDG.

IV.A. Mesh Metrics

A Riemannian metric field, M(~x) ∈ Rdim× dim, can be used to encode information about the size
and stretching of elements in a mesh. A mesh that conforms to a metric field is one in which each
edge has the same length, to some tolerance, when measured with the metric. The Bi-dimensional
Anisotropic Mesh Generator (BAMG)30 supports metric-based re-meshing and is used to obtain
the results in the present work.

The optimization algorithm determines changes to the current, mesh-implied, metric, M0(~x),
which is calculated for each simplex element by requiring unit measure of its edges under the metric.
The element metrics are then averaged to the nodes using an affine-invariant algorithm.31 Changes
to the metric are introduced using a symmetric step matrix, S ∈ Rdim× dim, according to

M =M
1
2
0 exp(S)M

1
2
0 . (23)

IV.B. Error Convergence Models

MOESS requires a model for how the error changes as the metric changes. We use an element-based
model that relates the error indicator on element e to the step matrix Se. For DG, this is17

DG: Ee = Ee0 exp [tr(ReSe)] , (24)

where Re is an element-specific error rate tensor determined through a sampling procedure, as
described in Section IV.E. The total error over the mesh is the sum of the elemental errors, E =∑Ne

e=1 Ee.
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For EDG, each element contributes to the output error in three ways: through the Q, U , and
Λ equations. We define separate models for how the associated three error indicators change with
Se,

EDG: EUe = EUe0etr(RU
e Se), EQe = EQe0e

tr(RQ
e Se), EΛ

e = EΛ
e0e

tr(RΛ
e Se), (25)

where RUe , RQe , and RΛ
e are element-specific error rate tensors, also identified through sampling.

The total error indicator on element e is Ee = EUe + EQe + EΛ
e .

IV.C. Cost Model

Mesh refinement reduces error but increases cost, measured by degrees of freedom. These can be
the globally-coupled degrees of freedom, which are element-specific for DG and face/edge/node-
specific for EDG. Elemental degrees of freedom can also be included in the case of EDG, potentially
with a weighting factor, to account for the cost of static condensation and back-solves. In all of
these cases, assuming a uniform order p and constant factor relationships between the number of
elements and nodes/edges/faces, the total cost is directly proportional to the number of elements,
C = NeC0, where C0 is the cost per element.

When the step matrix Se is applied to the metric of element e, the area of the element decreases
by exp

[
1
2tr(Se)

]
. As the number of new occupying the original area Ωe increases by this factor,

the elemental cost model is

Ce = C0 exp

[
1

2
tr(Se)

]
. (26)

Note that this cost model remains the same between DG and EDG, with the only difference in the
definition of C0.

IV.D. Metric Optimization Algorithm

The goal of mesh optimization is to determine the step matrix field, S(~x), that minimizes the error
at a given cost. The step matrix field is approximated by values at the mesh vertices, Sv, which
are arithmetically-averaged to adjacent elements. The cost only depends on the trace of the step
matrix, and we therefore separate the vertex step matrices into trace (svI) and trace-free (S̃v)
parts, Sv = svI + S̃v.

The optimization algorithm then consists of the following steps:17,29

1. Given a mesh, solution, and adjoint, calculate the error indicator(s) and rate tensor(s) for
each element e.

2. Set δs = δsmax/nstep, Sv = 0.

3. Begin loop: i = 1 . . . nstep

(a) Calculate Se, ∂Ee
∂Se , and ∂Ce

∂Se .

(b) Calculate derivatives of E and C with respect to sv and S̃v.
(c) At each vertex form the ratio λv = ∂E/∂sv

∂C/∂sv and

� Refine the metric for 30% of the vertices with the largest |λv|: Sv = Sv + δsI
� Coarsen the metric for 30% of the vertices with the smallest |λv|: Sv = Sv − δsI

(d) Update the trace-free part of Sv to enforce stationarity with respect to shape changes
at fixed area: Sv = Sv + δs(∂E/∂S̃v)/(∂E/∂sv).

(e) Rescale Sv → Sv +βI, where β is a global constant calculated from Eqn. 26 to constrain

the total cost to the desired dof value: β = 2
d log

Ctarget

C , where Ctarget is the target cost.
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This algorithm iteratively equidistributes λv globally so that, at optimum, all elements have the
same marginal error to cost ratio. User-defined values that work generally well in the above al-
gorithm are nstep = 20 and δsmax = 2 log 2. In practice, the mesh optimization and flow/adjoint
solution are performed several times at a given target cost, Ctarget, until the error stops changing.

IV.E. Error Sampling

The error convergence models in Section IV.B rely on convergence tensors, e.g. Re for DG, for each
element e. We estimate this rate tensor a posteriori by sampling a small number of refinements for
each element, as shown in Figure 4, and performing a regression. However, as described next and
first introduced in our previous work,29 we never actually modify the mesh when considering the
refinement samples, which greatly simplifies the algorithm.

Option 4Option 3Option 2Option 1Original
Figure 4. Four refinement options for a triangle, with face refinements highlighted. Each one is considered
implicitly during error sampling, though the elements are never actually refined.

Each element refinement is also associated with the refinement of a certain number of adjacent
faces. For EDG, these face refinements reduce the error contributions of those faces to the element
error indicator EΛ

e , per Eqn. 21. Therefore, the same refinements shown in Figure 4 can be used
to sample all three error contributions in EDG. To determine how much the error(s) decrease(s)
for each refinement option, we use element and face-local projections of the fine-space adjoints to
semi-refined spaces associated with each element/face refinement option.

Discontinuous Galerkin: Consider first one element, Ωe, in a DG discretization. The fine
space adjoint, Ψh,e, provides an estimate of the output error in the current order p solution, as
measured relative to the p+ 1 solution: this is Ee0. Now, suppose that we are looking at refinement
option i in Figure 4: this creates a solution space that is finer than the original, though we assume
not as fine as increasing the order to p + 1. If we have an order p adjoint on this refined space,
ΨHi, where the i indicates that we are considering refinement option i, we can compute an error
indicator ∆Eei, which estimates the error between the coarse solution and that on refinement option
i. The remaining error associated with refinement option i is then given by the difference,

Eei ≡ Ee0 −∆Eei. (27)

Calculating ∆Eei requires an adjoint-weighted residual evaluation on the element refined under
option i. To simplify this calculation we project ΨHi back into the p + 1 space on the original
element and evaluate the adjoint weighted residual there. That is, we perform

∆Eei ≡ ΨHiT
h,e Rh,e(UH

h ), (28)

where ΨHi
h is ΨHi projected from order p on refinement option i into order p + 1 on the original

element. The final simplification is that we do not solve for ΨHi but instead project the fine-space
(p+ 1) adjoint to order p under refinement option i.

In summary, the error uncovered by refinement option i, ∆Eei, is estimated by the adjoint-
weighted residual in Eqn. 28, with all calculations occurring at order p+ 1 on the original element.
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Using least-squares projections in reference space, the combination of projections can be encapsu-
lated into one transfer matrix that converts Ψh into ΨHi

h , both represented in the order p+1 space
on the original element:

ΨHi
h = TiΨh, (29)

Ti =
[
M0(φp+1

0 , φp+1
0 )

]−1
ni∑
k=1

Tik, (30)

Tik = Mk(φ
p+1
0 , φpk)

[
Mk(φ

p
k, φ

p
k)
]−1

Mk(φ
p
k, φ

p+1
k )

[
Mk(φ

p+1
k , φp+1

k )
]−1

Mk(φ
p+1
k , φp+1

0 ). (31)

In these equations, ni is the number of sub-elements in refinement option i, k is an index over these
sub-elements, φpk, φ

p+1
k are order p and p + 1 basis functions on sub-element k, φp0, φ

p+1
0 are order

p and p+ 1 basis functions on the original element, and components of the mass-like matrices are
defined as

Mk(φl, φm) =

∫
Ωk

φlφmdΩ, M0(φl, φm) =

∫
Ω0

φlφmdΩ, (32)

where Ωk is sub-element k and Ω0 is the original element. Note that the transfer matrix Ti can be
calculated for each refinement option i once in reference space and then used for all elements, so
that the calculation of ∆Eei consumes minimal additional cost – and most importantly, no solves
or residual evaluations are needed on the refined element, as these generally require cumbersome
data management and transfer.

Embedded Discontinuous Galerkin: In EDG, the sampling of error for the calculation of
rate tensors for EUe and EQe proceeds as outlined in the preceding description for DG. For EΛ

e , we
refer to the expressions in Eqn. 21 and Eqn. 22. The elemental error indicator EΛ

e is the sum
of adjoint-weighted flux residuals integrated over the faces of Ωe. Let Ef be the error indicator
associated with one face σf , which from Eqn. 20 is

Ef ≡
∣∣∣ ∫
σf

ψΛT
h

{
Ĥ · ~n

∣∣
L

+ Ĥ · ~n
∣∣
R

}
ds
∣∣.

Just as for elements, we consider all available refinement options j for a face. For each of these
refinement options, we compute Efj , the remaining error associated with refinement option j of
face f , using the same adjoint-projection procedure as presented for elements. This requires the
calculation of face adjoint transfer matrices, Tf

j , which again is performed in reference space.
By nature of the continuous trial and test space over faces, Mh, the fine-space residuals that

are available from the Λ error estimate are not tied to single faces. Rather, they are associated
with nodes, edges, or face interiors. In order to leverage during adaptation the fine-space residuals
available from error estimation, we distribute these residuals to elements as shown in Figure 5.

Performing such a residual distribution for the unrefined element e yields the baseline error
indicator, EΛ

e0. Then, for each element refinement option i, the errors of refined faces are reduced
to Efj using the results of the face sampling procedure. The residual distribution is then performed
again, yielding EΛ

ei.

Regression: After calculating Eei, the errors remaining after each refinement option i according
to Eqn. 27, we use least-squares regression to estimate the rate tensor Re. Note that for triangles,
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Figure 5. Weights for distributing residuals, and adjoint-weighted residuals from globally-coupled EDG degrees
of freedom to elements. Face weights are 1

2
and node weights are the inverse of the node cardinality.

we have 4 refinement options and 3 independent entries in the symmetric Re tensor. Using Eqn. 24,
we formulate the regression to minimize the following error, summed over refinement options,

∑
i

[
log
Eei
Ee0
− tr(ReSei)

]2

. (33)

In this equation, Sei is the step matrix associated with refinement option i, given by (from Eqn. 23),

Sei = log

(
M−

1
2

0 MiM
− 1

2
0

)
, (34)

where Mi is the affine-invariant metric average of the mesh-implied metrics of all sub-elements in
refinement option i. Differentiating Eqn. 33 with respect to the independent components of Re
yields a linear system for these components.

V. Results

This section presents results that compare the performance of the DG and EDG discretizations
in an output-based mesh-optimization framework. MOESS adaptations are performed at various
orders using a target number of element-interior (U) degrees of freedom.

V.A. Invsicid flow

The first test case consists of inviscid flow over a NACA 0012 airfoil at α = 2◦,M = 0.5. The output
of interest is the drag coefficient. Figure 6 shows the initial mesh and Mach number contours. The
mesh is curved to the geometry using a cubic mapping from reference space.

(a) Initial mesh, 326 elements (b) Mach number contours

Figure 6. Inviscid flow test: initial mesh and solution Mach contours.

11 of 20

American Institute of Aeronautics and Astronautics



Figure 7 shows the adaptive convergence of the output with number of elements for the two
discretizations. Two sets of EDG results are shown: one driven by the EUe error indicator only, and
one driven by the complete, edge-based (including EΛ

e ) error indicator (note, “face-based” becomes
“edge-based” in 2D). The mesh optimizations in each case were run for 20 adaptive iterations,
starting with the initial mesh, for each target number of elements. The data points shown are the
average errors and costs over the last six optimization iterations.
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Figure 7. Inviscid flow test: output convergence results versus number of elements.

For p = 1, DG is consistently more accurate than EDG for a given number of elements. In
addition, the difference between the two EDG adaptive indicators is small: both yield errors that
are approximately three times larger than those of DG. At p = 2, the edge-based EDG results close
the gap relative to DG, and the adaptive results are nearly identical. However, the U -only EDG
adaptive indicator lags behind and has larger errors. p = 3 yields similar conclusions, with a slightly
higher gap between edge-based EDG and DG, and differences that diminish for finer meshes.

The comparison versus number of elements does not accurately convey the cost of EDG relative
to DG. The most expensive part of the solver is the inversion of the global Jacobian matrix, and
here EDG has an advantage over DG, as it has fewer globally-coupled degrees of freedom for a given
number of elements. Figure 8 presents the same adaptive convergence data in terms of globally-
coupled degrees of freedom. For a given error level, the EDG simulations are cheaper than DG by
approximately a factor of three in degrees of freedom.
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Figure 8. Inviscid flow test: output convergence results versus globally coupled degrees of freedom.
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Figure 9 shows the final adapted meshes for the various discretizations and orders run. Areas
targeted for refinement consist primarily of the leading and trailing edges in this relatively benign
test case. The meshes are fairly similar, with the exception of the trailing edge refinement. The
EDG U -only error estimate results show less refinement of the trailing edge compared to DG an
EDG with the complete error estimate. This lower degree of refinement is likely responsible for the
larger drag errors on these meshes. On the other hand, incorporating the Λ error estimate into the
mesh optimization error model leads to more refinement at the trailing edge and lower errors.

nelem=644, ndofU=1932, ndofL=0

(a) p = 1, DG

nelem=326, ndofU=1956, ndofL=0

(b) p = 2, DG

nelem=195, ndofU=1950, ndofL=0

(c) p = 3, DG

nelem=650, ndofU=1950, ndofL=351

(d) p = 1, EDG, U only

nelem=328, ndofU=1968, ndofL=656

(e) p = 2, EDG, U only

nelem=205, ndofU=2050, ndofL=701

(f) p = 3, EDG, U only

nelem=646, ndofU=1938, ndofL=348

(g) p = 1, EDG, complete

nelem=334, ndofU=2004, ndofL=668

(h) p = 2, EDG, complete

nelem=205, ndofU=2050, ndofL=700

(i) p = 3, EDG, complete

Figure 9. Inviscid flow test: adapted meshes for approximately 2000 interior (U) degrees of freedom.

V.B. Laminar viscous flow

The second test case is viscous flow over a NACA 0012 airfoil at α = 2◦,M = 0.5, Re = 5000. The
output of interest is again the drag coefficient. Figure 10 shows the initial mesh and Mach number
contours. The mesh is curved to the geometry using a cubic mapping from reference space.

Figure 11 shows the convergence of the output with number of elements for the two discretiza-
tions, and again two sets of EDG results are shown: one driven by the element-only (EUe and EQe )
error indicator only, and one driven by the complete (including EΛ

e ) error indicator. As in the
previous case, mesh optimizations in each case were run for 20 adaptive iterations, starting with
the initial mesh, for each target number of elements. The data points shown are the average errors
and costs over the last six optimization iterations.

As in the inviscid case, for p = 1, DG is more accurate than EDG for a given number of
elements. The output error for a given number of elements is approximately three times larger for
EDG than DG. In addition, edge-based EDG again performs better than U -only EDG. This benefit
diminishes at higher orders, but in general, incorporating the Λ and error estimates reduces the
output errors in the optimized meshes. For p > 1, the EDG results are on par with the DG results

13 of 20

American Institute of Aeronautics and Astronautics



(a) Initial mesh, 326 elements (b) Mach number contours

Figure 10. Viscous flow test: initial mesh and solution Mach contours.
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Figure 11. Viscous flow test: output convergence results versus number of elements.
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for a given number of elements.
Figure 12 presents the same data versus number of globally-coupled degrees of freedom. We see

that EDG is again advantageous compared to DG, especially at p = 2 and p = 3, where the error
levels are already comparable for the same number of elements. The benefit of EDG versus DG
in terms of globally-coupled of freedom grows with order, as expected since the ratio of element-
interior to edge degrees of freedom scales linearly with p. By p = 3, on the finer meshes, the degree
of freedom advantage is a factor of 4-5 in favor of EDG.
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Figure 12. Viscous flow test: output convergence results versus number of globally-coupled degrees of freedom.

Figure 13 shows the final adapted meshes for the various discretizations and orders run. Ar-
eas targeted for refinement consist primarily of the leading edge, boundary layer, and stagnation
streamline in front of the airfoil. The meshes are visually similar in this case, though the two sets
of EDG results do show differences in the output. This suggests that optimal meshes may not be
straightforward to identify purely from a visual analysis.

V.C. RANS flow

The third test case is Reynolds-averaged turbulent flow over a flat plate at M = 0.5, α = 0◦, and
Re = 106. The flat plate has unit length, and the computational domain extends two units ahead
of and behind the flat plate. A symmetry boundary condition is applied on these boundaries, as
well as on the top boundary, which is two length units above the plate. Stagnation quantities
are prescribed on the left boundary, and static pressure is specified on the right boundary. The
RANS-SA equations, with negative turbulent viscosity modification,32,33 are used for these runs.
To aid solver convergence, the RANS equations and working variable are scaled by the square root
of the Reynolds number.34 The output of interest is the drag coefficient on the flat plate. Figure 10
shows the initial mesh.

Figure 15 shows the convergence of the output with number of elements for the two discretiza-
tions, and again two sets of EDG results are shown: one driven by the element error indicator only,
and one driven by the complete (including EΛ

e ) error indicator. As in the previous cases, mesh
optimizations were run for 20 adaptive iterations, starting with the initial mesh, for each target
number of elements. The data points shown are the average errors over the last six optimization
iterations.

For this case, the p = 1 results show a substantial difference in errors between the two EDG
adaptive methods. Not incorporating the edge-based error estimates into the adaptive indicator
results in meshes for which the EDG drag coefficient error is over an order of magnitude larger than
when the edge-based contribution is included. This difference diminishes significantly for p = 2 and
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(b) p = 2, DG
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(d) p = 1, EDG, U only
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(e) p = 2, EDG, U only
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(f) p = 3, EDG, U only
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(g) p = 1, EDG, complete

nelem=659, ndofU=3954, ndofL=1318

(h) p = 2, EDG, complete

nelem=401, ndofU=4010, ndofL=1386

(i) p = 3, EDG, complete

Figure 13. Viscous flow test: adapted meshes for approximately 4000 interior (U) degrees of freedom.
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(b) Zoom of the initial mesh

Figure 14. RANS flow test: initial mesh, with a zoomed-in view of the boundary layer.
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Figure 15. RANS flow test: output convergence results versus number of elements.

p = 3, where the two sets of EDG results are close. In all cases, the results of the EDG edge-based
adaptation are close to those of the DG adaptation.

Figure 16 presents the convergence data versus number of globally-coupled degrees of freedom.
We see that EDG is again advantageous compared to DG, especially at p = 2 and p = 3. For p = 1,
the poorly-performing U -only EDG method is actually still on par with DG, and the edge-based
EDG results are approximately a factor of 5 cheaper.
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Figure 16. RANS flow test: output convergence results versus number of globally-coupled degrees of freedom.

Figure 17 shows the final adapted meshes for the various discretizations and orders run. Small
elements are needed to resolve the singularities at the leading and trailing edges of the flat plate. In
addition, anisotropic elements are used to efficiently resolve the flow over the flat plate. Note that
the figures use vastly different scales in the horizontal and vertical directions, so that the anisotropy
is much larger than that apparent from the figures. As expected, for a constant number of element
degrees of freedom, the higher-order meshes become coarser. However, the anisotropy at higher
orders does not diminish and even increases (e.g. p = 1 to p = 2). At p = 1, a noticeable difference
between the U -only EDG mesh and the other two meshes is the resolution near the leading and
trailing edges. The U -only EDG mesh does target these areas, but not to the same extent vertically
away from the flat plate. This lack of resolution slightly above the leading and trailing edges is
likely responsible for the large difference in the drag coefficient errors on the U -only EDG meshes
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compared to the results on the meshes generated by the other two adaptive indicators.
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(a) p = 1, DG
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(d) p = 1, EDG, U only
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(e) p = 2, EDG, U only
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(f) p = 3, EDG, U only
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(g) p = 1, EDG, complete
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(h) p = 2, EDG, complete
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(i) p = 3, EDG, complete

Figure 17. RANS flow test: adapted meshes for approximately 1000 interior (U) degrees of freedom.

VI. Conclusions

We present an approach for optimizing meshes using an engineering output as the target and
a measure of cost as the constraint. Both discontinuous Galerkin (DG) and embedded discontinu-
ous Galerkin (EDG) discretizations are considered. Whereas mesh optimization has been studied
previously for DG, this work extends these ideas to EDG. A particular contribution of this work
is the modification of the element-based error model, required for mesh optimization, to take into
account error contributions from faces of elements. By including all contributions into the error
model and sampling their decay with refinement separately, we obtain a more accurate prediction
of the behavior of the error with mesh refinement. This in turns creates more efficient meshes, as
shown in the results for the inviscid and viscous cases considered.
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