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ABSTRACT

This paper assesses the benefits of hybridization on the accuracy and efficiency of high-order
discontinuous Galerkin (DG) discretizations. Two hybridized methods are considered in addition
to DG: hybridized DG (HDG) and embedded DG (EDG). These methods offer memory and com-
putational time savings by introducing trace degrees of freedom on faces that become the
only globally-coupled unknowns. To mitigate the effects of solution singularities on accuracy,
the methods are compared in an adaptive setting on meshes optimised for the accurate pre-
diction of chosen scalar outputs. Compressible flow results for the Euler and Reynolds-averaged
Navier-Stokes equations demonstrate that the hybridized methods offer cost savings relative to
DG in memory and computational time. In addition, for the cases tested, EDG yields the lowest
error levels for a given number of degrees of freedom. These benefits disappear on uniformly-
refined meshes, indicating the importance of using order-optimised meshes when comparing the
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1. Introduction

Although discontinuous Galerkin (DG) methods
(Reed and Hill 1973; Cockburn and Shu 2001)
have enabled high-order accurate computational fluid
dynamics simulations, their memory footprint and
computational costs remain large. In addition to
advances in solvers and preconditioning strategies
(Franciolini, Fidkowski, and Crivellini 2018), another
approach for reducing the expense of DG is modify-
ing the discretization to reduce the number of glob-
ally coupled degrees of freedom. This reduces the
computational time required by the global solver and
the memory footprint of the Jacobian matrix. In the
present work, we compare accuracy and cost trade-
offs of two such modifications, both in the category of
hybridized DG, in the context of output prediction on
optimised meshes.

Hybridization of DG (Cockburn, Gopalakrish-
nan, and Lazarov 2009; Nguyen, Peraire, and Cock-
burn 2009) modifies the DG discretization to reduce
its computational and memory expense for a given
mesh. The high cost of DG arises from the cou-
pling of the degrees of freedom used to approximate

an element-wise discontinuous high-order polynomial
solution: the residuals inside one element depend on
the states on neighbouring elements. This coupling
increases the memory requirements for solvers that
store the residual Jacobian matrix, in entirety or por-
tions there-of, even with an element-compact sten-
cil. Hybridized discontinuous Galerkin (HDG) meth-
ods reduce the number of globally-coupled degrees of
freedom by decoupling element solution approxima-
tions from each other. Instead, elemental degrees of
freedom are linked to new face degrees of freedom
through fluxes. Through a static condensation proce-
dure, these face unknowns become the only globally-
coupled degrees of freedom in the system. Since the
number of face unknowns scales as p4i™ ~1 compared
to the p4i™ scaling for elements, HDG methods can be
computationally cheaper and use less memory com-
pared to DG. The embedded discontinuous Galerkin
(EDG) method (Peraire, Nguyen, and Cockburn 2011;
Fernandez, Nguyen, and Peraire 2017) employs a con-
tinuous face approximation space, further reducing
the number of globally-coupled degrees of freedom.
However, in both HDG and EDG, extra computations
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must be performed to create the statically-condensed
system, and to back-solve for the element unknowns
after the solution of the face unknowns.

High-order accurate methods are generally advan-
tageous for problems in which the solutions are
smooth. Shocks and other singular features, such
as trailing edges and boundary layers in Reynolds-
averaged simulations, do not generally lend themselves
to efficient approximation with high-order polynomi-
als. More beneficial for such features is h-adaptation,
in which the mesh is refined to resolve the flow
in these areas (Venkatakrishnan et al. 2003). Deter-
mining the proper balance of high order and h-
adaptation is the central question of hp-adaptive meth-
ods (Burgess and Mavriplis 2011; Woopen et al. 2014).
Much work has been done in adaptive methods that
deliver the highest accuracy with the lowest cost, par-
ticularly in goal-oriented techniques (Becker and Ran-
nacher 2001; Venditti and Darmofal 2003; Fidkowski
and Darmofal 2011; Yano 2012).

This work compares DG, HDG, and EDG in terms
of cost and accuracy on output-based adapted meshes.
The use of adapted meshes allows for the realisation
of high-order accuracy with increasing p, as otherwise
singular features would pollute the results and set the
convergence rate. Previous works have compared stan-
dard and hybridized DG methods (Woopen et al. 2014;
Fidkowski 2016a), and the differentiating contribu-
tions of this work are (1) the consideration of EDG
in addition to HDG, and (2) the use of meshes cre-
ated by an output-based optimisation procedure that
minimises numerical errors for a particular order and
target cost.

2. Discretization

We consider the steady-state, compressible, Navier-
Stokes equations,

V -H(u, Vu) + S(u, Vu) = 0, (1)

(b) HDG

where u € RS = [p, pv, pE, p7]T is the conservative
state vector of rank s, consisting of density, momen-
tum, total energy, and turbulent viscosity components,
ﬁ(u, Vu) = ﬁ(u) + GVise (u, Vu) is the total flux, con-
sisting of the convective and viscous components, and
S(u, Vu) is a source term that is used when modelling
turbulent flow. We note that boldface denotes a state
vector, whereas the arrow denotes a spatial vector. The
viscous flux is assumed linear in the state gradients,
Gi(u, Vu) = —K;j(w)dju, where Kj; is the diffusivity
tensor (Fidkowski 2007).

2.1. Discontinuous Galerkin (DG)

Denote by Tj, the set of Ngem elements in a non-
overlapping tessellation of the computational domain,
Q. As shown in Figure 1(a), in DG, the state is
approximated by polynomials of order p on each ele-
ment, with no continuity constraints across elements.
Formally, u, € Vj, = [V, ]°, where V), = {u € Ly(Q) :
ulg, € PPV Q. € Ty}, and PP denotes polynomials
of maximum order p on the reference space of ele-
ment 2,. The weak form of (1) follows from mul-
tiplying the equation by test functions in the same
space, integrating by parts, and coupling elements via
unique fluxes. The result states: find uy, € Vj, such that
Ywy, € Vy,

—/ VWE-ﬁdQ-ﬁ-/ WEI:I-ﬁds
e 02,

— / aiw;TKg[[uh]] + / wiS(u, Vu) dQ = 0,
082, Qe
(2)

where (-)T denotes transpose, (-)*, (-)~ denote quan-
tities taken from the element or its neighbour, respec-
tively, [-] = () — (T), and (?) is the face average or
boundary value. H - 7 denotes the numerical normal
flux on faces and includes the convective (upwind)
and diffusive (jump) stabilizations. We use the Roe

(¢) EDG

Figure 1. Solution using standard and hybridized discontinuous Galerkin methods. (a) DG, (b) HDG and (c) EDG.



approximate Riemann solver (Roe 1981) for the
convective flux, and the second form of Bassi and
Rebay (BR2) (Bassi and Rebay 2000) for the viscous
flux. Choosing a basis for the test and trial spaces yields
a system of nonlinear equations, R(U) = 0, where U €
RN# is the discrete state vector of basis function coeffi-
cients, Ny, is the number of unknowns, and R € RNn is
the discrete steady residual vector function of the state.
The nonlinear system of equations is solved using the
Newton-Raphson method with pseudo-time continu-
ation and the generalised minimal residual (GMRES)
method, preconditioned with an element-block Jacobi
smoother (Fidkowski and Ceze 2016).

2.2. Hybridized and embedded discontinuous
Galerkin (HDG and EDG)

The starting point for a hybridized discretization
is the conversion of (1) to a system of first-order
equations,

4d—Vu=0, 3)

Ju

TV H(u,q) + S(u,q) = 0, (4)

where q is an approximation of the state gradient.
Multiplying these equations by test functions v €
[Vi]9™, w € V;, and integrating by parts over an ele-
ment 2, yields the weak form: find uy, € V, and q €
[Vy]9™ such that Vv, € [Vy]9™ and V wy, € V),

/Vz-ﬁthJr/ V. ¥lu, de
Qe Q2

_/ Vi, - i, ds = 0, (5)
082,

0 >
/w,fﬂdsz—/ Vw - HdQ
ot

+/ w,fﬁ-?zder/ w; S(uy, @) dQ2 = 0,
082, Q.
(6)

where @ is a new independent unknown: the state
approximated on faces of the mesh. Note that element
degrees of freedom are coupled to the face degrees
of freedom, but not to each other. The additional
unknowns call for additional equations, which come
from weak enforcement of flux continuity across
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faces,

/uT{I:I-ﬁlL—i-I:I-?llR}ds:O YueM, (7)
of

In this equation, M, denotes the order-p approxima-
tion space on the faces oy € Fy of the mesh: M), =
[My]*, where My, = {u € Ly(of) : uls; € PPV of €
Fy}, and the subscripts L and R refer to the two sides
of a face. Note that Fj, is the set of interior faces of
the mesh. As shown in Figure 1, both HDG and EDG
introduce uy, with the difference that in EDG, the
approximation space M, is continuous at mesh nodes
(and edges in three dimensions). This leads to a large
reduction in global degrees of freedom, particularly at
low or moderate orders.

The fluxes in (6) depend only on the state and gra-
dient inside the element and the face state, H - 7 =
H(b, q) - n + T (0, u, 1), where T consists of a Roe-like
convective stabilisation and a BR2 viscous stabilisa-
tion (Fidkowski 2016a). The entropy fix in the Roe
flux and the jump-penalty term in BR2 are the same
in the hybridized and standard DG discretizations. For
the cases tested, no differences were observed in the
stability properties of the various solvers.

Choosing bases for the trial/test spaces in Equa-
tions (5), (6), (7) gives a nonlinear system of equations,
RQ2 =0, RV =0, R® = 0, with the Newton update
system

AQ RQ 0

A B

[CD] AU |+ |RY|=]0], (8)
AA RA 0

where Q, U, and A are the discrete unknowns in the
approximation of q, u, and 1, respectively. [A, B; C, D]
is the primal Jacobian matrix partitioned into element-
interior and interface unknown blocks. Note that A,
B, and C contain both Q and U components, and
A is element-wise block diagonal, and hence easily
invertible.

Statically condensing out the element-interior states
gives a smaller system for the face degrees of freedom,

ICAA + <RA —cA~! [RQ;RU]) —o,
K=D-CA'B. )

This global system is solved using GMRES precon-
ditioned by a point-block Jacobi smoother, where a
‘point’ corresponds to a s x s block of unknowns
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associated with one degree of freedom. Following the
global solve for AA, an element-local back-solve yields
the updates to Q and U.

2.3. Adjoint discretization

For a scalar output J, the discrete adjoint W is a vec-
tor of sensitivities of ] to residual source perturbations,
and the associated adjoint equation is (JR/dU)TW +
(8]/3U)T = 0. For optimal output convergence and
accurate error estimates, the discretization and out-
put must be defined appropriately to ensure con-
sistency of the discrete adjoint with the continuous
adjoint (Lu 2005; Hartmann 2007). In the present
work, adjoint consistency has been verified through
output convergence studies and error effectivity tests
for all of the discretizations. We solve this equation
for the DG discretization, using the same precondi-
tioned GMRES approach as in the implicit primal
solver. When computed on a fine discretization space,
the adjoint provides a weight on residuals in a mea-
surement of output error.

2.4. Degrees of freedom and matrix sparsity

On a given mesh, DG, HDG, and EDG will have ditf-
ferent degree of freedom counts and residual Jacobian
sparsity patterns. Figure 2 presents an example of the
degree of freedom placement for p =2 approximation
on a ten-element triangular mesh. In HDG and EDG,
we do not introduce @ on boundary faces, as the flux
there is computed in the same way as in DG. The
number of matrix nonzeros for EDG (177) is about half
that of HDG (330) and a sixths that of DG (1080).

3. Output error estimation

We use output-based error estimates computed from
adjoint solutions to drive anisotropic mesh adapta-
tion in the DG discretization. An adjoint solution can
be used to estimate the numerical error in the cor-
responding output of interest, J, through the adjoint-
weighted residual (Becker and Rannacher 2001; Fid-
kowski and Darmofal 2011). Let H denote a coarse/
current discretization space, and h a fine one, e.g.
obtained by increasing the approximation order by
one. Denote by Uf the state injected from the coarse
to the fine space. Computing the fine-space resid-
ual with the injected state and weighting it by the
fine-space adjoint gives an estimate of the output
error between the coarse and fine spaces, ]h(Ufl{) -
Jn(Up) =~ =6 \IIZRh (Uf ). For the fine space, we incre-
ment the approximation order by one on each element
and obtain the fine-space adjoint by solving exactly
on this fine space. We obtain §W, an injection of
the coarse-space adjoint. The error estimates involv-
ing element residuals can be localised to element (e)
contributions, resulting in the error indicator £ =
|8\IIZ) Rie (U{f )|, where the subscript e denotes restric-
tion to element e. Note that the fine-space residual
on an element depends in general on neighbouring
states.

4, Adaptation

Estimates of the output error not only provide infor-
mation about the accuracy of a solution, but can
also drive mesh adaptation. A fair comparison of
high-order solution can only be made with meshes

globally—coupled
dof block size

e O

Figure 2. Degree of freedom placement (blue = DG, red = HDG) and residual Jacobian matrix sparsity patterns for a ten-element mesh.

In EDG, face approximation unknowns are unique at nodes.



optimised to a particular order. In the present work,
we assume that meshes optimised for the standard DG
discretization are close to optimal for both HDG and
EDG. We therefore generate an adapted sequence of
meshes for DG, using an optimisation algorithm pre-
sented in Fidkowski (2016b), which builds on the work
of Yano (Yano 2012). This algorithm is known as Mesh
Optimization through Error Sampling and Synthesis
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(MOESS). It relies on a Riemannian metric field to
encode information about the size and stretching of
mesh elements, and thus enables anisotropic refine-
ment. MOESS optimises the mesh to equidistribute the
marginal error to cost ratio, where the error model is

specific to each element and is identified through a
sampling procedure. The references contain details of
this method.

Figure 3. Inviscid flow: Mach contours and drag-adapted meshes for ~ 4000 DG degrees of freedom. (a) Mach number contours, (b)

p=1p=2(d)p=3,(e)p=4and(f) p=5.
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Figure 4. Inviscid flow: drag error convergence on adapted meshes plotted against various cost measures. (a) Convergence with
elements, (b) Convergence with dof , (c) Convergence with CPU time and (d) Convergence with nnz.
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5. Results
5.1. Inviscid flow

The first test case consists of a NACA 0012 airfoil in
inviscid flow at M = 0.5 and o = 2°. Quintinc (Q=5)
elements approximate the geometry, and the farfield
is 100 chord lengths away from the airfoil. We con-
sider the prediction of drag using orders p=1—5. For
each order, we generate adapted meshes using DG
at five target degrees of freedom, 1k, 2k, 4k, 8k, and
16k. To minimise scatter in the results, five adapted
meshes from MOESS are used at each degree of free-
dom to generate an averaged output. Figure 3 shows
the Mach contours and several adapted meshes. The
key regions targeted for refinement are the leading
and trailing edges. Figure 4 presents the convergence
results of all three discretizations. Errors in the drag
coefficient, computed relative to a finer truth solution,
are shown versus several cost measures. Whereas EDG
shows larger errors at lower orders, the comparable
performance at higher orders combined with EDG’s
lower cost in memory (dof and Jacobian nonzeros)

Drag coefficient error

10° 104

Number of elements

(a) Convergence with elements

107 T T T

Drag coefficient error

Drag coefficient error

Drag coefficient error

and CPU time make it the most attractive method
considered.

To demonstrate the importance of comparing the
methods on adapted meshes, Figure 5 repeats the con-
vergence study on a sequence of uniformly-refined
meshes, starting from one of the coarsest p =2 adapted
meshes. EDG now exhibits consistently higher errors,
even at high p, for which its lower cost cannot compen-
sate, with the result that HDG appears more attractive.
Adapted meshes must therefore be used to fully realise
the performance benefits of EDG.

5.2. Reynolds-averaged turbulent flow

The second test case consists of an RAE 2822 air-
foil in Reynolds-averaged turbulent flow at M =0.3,
a =2° and Re=10. The Spalart-Allmaras one
equation model with a negative viscosity correc-
tion (Allmaras, Johnson, and Spalart 2012) is used.
Quintinc (Q=5) elements approximate the geom-
etry, and the farfield is 100 chord lengths away
from the airfoil. We consider the prediction of drag

—&-DG pi
—-o-DGp2 |4
-A-DG p3
DG p4
——DG p5
-2-EDG p1 |
-6-EDG p2
-A-EDG p3
—%—EDG p4
——EDG p5 |4
-8-HDG p1
-6-HDG p2
—A-HDG p3
—%—HDG p4 |
—6—HDG p5

(b) Convergence with dof

| |
102 104

CPU time (s)

|
10°

(¢) Convergence with CPU time

| |
10° 108
Jacobian nonzeros

104

(d) Convergence with nnz

Figure 5. Inviscid flow: drag error convergence on a uniform-refinement mesh sequence. (a) Convergence with elements, (b) Conver-
gence with dof , (c) Convergence with CPU time and (d) Convergence with nnz.
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Figure 6. RANS flow: Mach contours and drag-adapted meshes, all shown for ~ 8000 DG degrees of freedom. (a) Mach number contours,

(b)p=1,()p=2,(d)p=3,(e)p=4and (f) p=5.
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Figure 7. RANS flow: drag error convergence on adapted meshes plotted against various cost measures. (a) Convergence with elements,
(b) Convergence with dof , (c) Convergence with CPU time and (d) Convergence with nnz.

using orders p=1—5. For each order, we generate
adapted meshes at 4k, 8k, 16k, 32k, and 64k dof .
Figure 6 shows the Mach contours and several adapted
meshes. Figure 7 presents the drag convergence results.
As in the inviscid case, we see higher errors for
EDG at lower orders, which diminish at higher
orders and, once memory and CPU time costs are
factored in, make EDG again the most attractive
discretization.

6. Conclusions

This paper presents a comparison of standard and
hybridized discontinuous Galerkin (DG) methods on
output-based adapted meshes. Both hybrid (HDG)
and embedded (EDG) variants of DG are considered,
and these offer cost savings in globally-coupled
degrees of freedom and Jacobian size relative to
standard DG. EDG additionally eliminates duplicate
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degrees of freedom at nodes and yields a much smaller
system than DG and HDG. For the inviscid and
RANS cases tested, at moderate and high orders,
EDG delivers the lowest error versus memory and
computational time cost measures. Adapted meshes
are crucial to realising this advantage, which can disap-
pear on sub-optimal uniformly-refined meshes. Future
work will consider discretization-specific mesh opti-
misation algorithms, to further reduce the error levels
for a given cost.

Disclosure statement

No potential conflict of interest was reported by the authors.

Funding

This work was supported by the Department of Energy (DE-
FG02-13ER26146/DE-SC0010341) and the Boeing Company,
technical monitor Dr. Mori Mani.

ORCID

K.J. Fidkowski (© http://orcid.org/0000-0002-5106-136X

References

Allmaras, S. R, E T. Johnson, and P. R. Spalart. 2012. “Mod-
ifications and Clarifications for the Implementation of the
Spalart-Allmaras Turbulence Model.” Seventh international
conference on computational fluid dynamics (ICCFD?7)
1902, Hawaii, USA.

Bassi, E, and S. Rebay. 2000. “GMRES Discontinuous Galerkin
Solution of the Compressible Navier-Stokes Equations.” In
Discontinuous Galerkin Methods: Theory, Computation and
Applications, edited by Bernardo Cockburn, George Karni-
adakis, and Chi-Wang Shu, 197-208. Berlin: Springer.

Becker, R., and R. Rannacher. 2001. “An Optimal Control
Approach to a Posteriori Error Estimation in Finite Element
Methods.” In Acta Numerica, edited by A. Iserles, 1-102.
Cambridge: Cambridge University Press.

Burgess, Nicholas K., and Dimitri J. Mavriplis. 2011. “An hp-
Adaptive Discontinuous Galerkin, Solver for Aerodynamic
Flows on Mixed-Element Meshes.” AIAA paper 2011-490,
Orlando, Florida, USA.

Cockburn, Bernardo, Jayadeep Gopalakrishnan, and Raytcho
Lazarov. 2009. “Unified Hybridization of Discontinuous
Galerkin, Mixed, and Continuous Galerkin Methods for Sec-
ond Order Elliptic Problems.” SIAM Journal on Numerical
Analysis 47 (2): 1319-1365.

Cockburn, Bernardo, and Chi-Wang Shu. 2001. “Runge-
Kutta Discontinuous Galerkin Methods for Convection-
dominated Problems.” Journal of Scientific Computing 16 (3):
173-261.

Fernandez, P, N. C. Nguyen, and J. Peraire. 2017. “The
hybridized Discontinuous Galerkin Method for Implicit

Large-Eddy Simulation of Transitional Turbulent Flows.”
Journal of Computational Physics 336: 308-329.

Fidkowski, Krzysztof J. 2007. “A Simplex Cut-Cell Adaptive
Method for High-order Discretizations of the Compressible
Navier-Stokes Equations.” PhD diss., Massachusetts Institute
of Technology, Cambridge, Massachusetts. http://hdl.handle.
net/1721.1/39701.

Fidkowski, Krzysztof J. 2016a. “A Hybridized Discontinuous
Galerkin Method on Mapped Deforming Domains.” Com-
puters and Fluids 139 (5): 80-91.

Fidkowski, Krzysztof J. 2016b. “A Local Sampling Approach to
Anisotropic Metric-Based Mesh Optimization.” ATAA paper
2016-0835, San Diego, California, USA.

Fidkowski, Krzysztof J., and Marco A. Ceze. 2016. “High-Order
Output-Based Adaptive Simulations of Turbulent Flow Over
a Three Dimensionsional Bump.” AIAA paper 2015-0862,
San Diego, California, USA.

Fidkowski, Krzysztof J., and David L. Darmofal. 2011.
“Review of Output-Based Error Estimation and Mesh
Adaptation in Computational Fluid Dynamics.” American
Institute of Aeronautics and Astronautics Journal 49 (4):
673-694.

Franciolini, Matteo, Krzysztof J. Fidkowski, and Andrea Criv-
ellini. 2018. “Efficient Discontinuous Galerkin Implemen-
tations and Preconditioners for Implicit Unsteady Com-
pressible Flow Simulations.” arXiv preprint arXiv:1812.
04789.

Hartmann, Ralf. 2007. “Adjoint Consistency Analysis of Dis-
continuous Galerkin Discretizations.” SIAM Journal on
Numerical Analysis 45 (6): 2671-2696.

Lu, James. 2005. “An a Posteriori Error Control Framework
for Adaptive Precision Optimization Using Discontinuous
Galerkin Finite Element Method.” PhD diss., Massachusetts
Institute of Technology, Cambridge,
Massachusetts.

Nguyen, N. C,, J. Peraire, and B. Cockburn. 2009. “An Implicit
High-Order Hybridizable Discontinuous Galerkin, Method
for Linear Convection-Diffusion Equations.” Journal of
Computational Physics 228: 3232-3254.

Peraire, ], N. C. Nguyen, and B. Cockburn. 2011. “An
Embedded Discontinuous Galerkin Method for the Com-
pressible Euler and Navier-Stokes Equations.” AIAA paper
2011-3228, Honolulu, Hawaii, USA.

Reed, W,, and T. Hill. 1973. “Triangular Mesh Methods for
the Neutron Transport Equation.” Los Alamos Scientific
Laboratory Technical Report LA-UR-73-479.

Roe, P. L. 1981. “Approximate Riemann Solvers, Parameter
Vectors, and Difference Schemes.” Journal of Computational
Physics 43: 357-372.

Venditti, D. A., and D. L. Darmofal. 2003. “Anisotropic
Grid Adaptation for Functional Outputs: Application to
Two-dimensional Viscous Flows.” Journal of Computational
Physics 187 (1): 22-46.

Venkatakrishnan, V., S. R. Allmaras, D. S. Kamenetskii,and E T.
Johnson. 2003. “Higher Order Schemes for the Compressible
Navier-Stokes Equations.” AIAA Paper 2003-3987, Miami,
Florida, USA.


http://orcid.org/0000-0002-5106-136X

INTERNATIONAL JOURNAL OF COMPUTATIONAL FLUID DYNAMICS 9

Woopen, Michael, Aravind Balan, Georg May, and Jochen Yano, Masayuki. 2012. “An Optimization Framework for

Schiitz. 2014. “A Comparison of Hybridized and Stan- Adaptive Higher-Order Discretizations of Partial Differ-
dard DG Methods for Target-based hp-adaptive Simu- ential Equations on Anisotropic Simplex Meshes.” PhD
lation of Compressible Flow.” Computers ¢ Fluids 98: diss., Massachusetts Institute of Technology, Cambridge,

3-16. Massachusetts.



	1. Introduction
	2. Discretization
	2.1. Discontinuous Galerkin (DG)
	2.2. Hybridized and embedded discontinuous Galerkin (HDG and EDG)
	2.3. Adjoint discretization
	2.4. Degrees of freedom and matrix sparsity

	3. Output error estimation
	4. Adaptation
	5. Results
	5.1. Inviscid flow
	5.2. Reynolds-averaged turbulent flow

	6. Conclusions
	Disclosure statement
	Funding
	ORCID
	References

