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This paper presents a self-contained, comprehensive exposition and new
elements of a classic airfoil analysis technique: an integral boundary layer solver
coupled to a vortex-panel potential-flow method. The resulting solver mfoil,
implemented in Matlab and made freely available, builds on the XFOIL code
and documentation, which serve as the inspiration, reference, and standard
of comparison. Modifications made in the present implementation include an
augmented-state coupled solver for more control in limiting the state update,
a new stagnation-point formulation to reduce leading-edge oscillations in the
boundary layer variables, and amore robust treatment of the amplification rate
near transition. Several results highlight these modifications and demonstrate
capabilities of the code.

Nomenclature

2 = airfoil chord length
2air = speed of sound
23 = drag coefficient
2� = dissipation coefficient, 1/(d4D3

4)
∫
g(mD/m[)3[

2 5 = skin-friction coefficient, 2gwall/(d4D2
4)

2g = shear stress coefficient, gmax/(d4D2
4)

2ℓ = lift coefficient
2< = moment coefficient
2? = pressure coefficient
38 = edge velocity direction factor on node 8
�0 = stagnation enthalpy
� = shape parameter, X∗/\
�: = kinematic shape parameter, � computed with d = 1
�∗ = kinetic energy shape parameter, \∗/\
�∗∗ = density shape parameter, X∗∗/\
�F = wake shape parameter, ℎF/\
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ℎF = wake gap/dead-air thickness
8̂, :̂ = unit direction vectors along G, I
< = mass (area) flow
" = Mach number
=̃ = amplification factor for transition
ASu = Sutherland’s law temperature ratio
'4 = chord-based Reynolds number, d∞+∞2/`∞
'4\ = local momentum-thickness Reynolds number, dD4\/`
B = arc-length distance on airfoil and wake
Bstag = stagnation point B value
Su(·) = Sutherland’s law function
) = temperature
u = boundary-layer state vector
D4 = boundary-layer edge velocity
*B = normalized wall slip velocity
D@ = equilibrium value of (1/D4)3D4/3b
+∞ = free-stream speed
®G = spatial coordinate, G8̂ + I:̂
U = angle of attack
W = vortex sheet strength
Wair = ratio of specific heats for air
X = combined momentum and displacement thickness
X∗ = displacement thickness,

∫
[1 − (dD)/(d4D4)] 3[

X∗∗ = density thickness
\ = momentum thickness,

∫
(dD)/(d4D4) [1 − D/D4] 3[

\∗ = kinetic energy thickness,
∫
(dD)/(d4D4) [1 − D2/D2

4] 3[
` = dynamic viscosity
b = surface distance from leading edge
d = density
f = source sheet strength
g = shear stress
Ψ = streamfunction
l = Newton-Raphson under-relaxation factor

I. Introduction
The XFOIL code [1] has dominated airfoil analysis and design for over thirty years. It has

been used in the design of airfoils for wind turbines [2–4], small UAVs [5, 6], marine turbines [7],
aeroacoustics [8], and other applications. It has also been wrapped in scripts for analysis/design
frameworks [9], and its methods have been ported to academic [10, 11] and industry codes [12].
The original publication has over 2400 citations.

Developed at a similar time as the ISES code [13–15], now a part of MISES, which features an
Euler method for the outer flow, the panel code XFOIL shares the same integral boundary layer (IBL)
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formulation. Compared to ISES, XFOIL cannot be applied to transonic flow, but it is simpler, faster,
more robust, and easier to use. It also includes a compressibility correction that extends its domain
of applicability beyond very low speeds. It is neither the first nor the only coupled inviscid/viscous
airfoil analysis and design code. Other early codes include GBK [16], Eppler’s PROFILE [17, 18],
and GRUMFOIL [19]. However, XFOIL rose above these in adoption and longevity, for various
reasons. Mathematically, its global Newton solver offers unprecedented robustness for a difficult,
tightly-coupled inviscid-viscous problem. Moreover, it features a powerful user interface, built-in
geometry manipulation and inverse-design capabilities, and tuned correlations for turbulence and
transition. It is easily accessible, either via source code or pre-compiled versions for various
platforms. Finally, it is written in optimized Fortran, so that run time is rarely an issue.

While still dominant, XFOIL is arguably feeling its age, particularly for education and even
research purposes. Non-intuitive aspects for new users include a text-based menu-driven user
interface, file-based input-output, and postscript graphics. Installation and run-time issues related
to graphics and permissions are beginning to creep up on newer platforms. As a result, the code
is becoming more difficult to use as an educational or research tool. Moreover, the epitome of a
black-box code, XFOIL hides many gems, including solver tricks and undocumented models from
years of tuning and modifications. These will fall by the wayside if the code stops being widely
used. Herein lies the two-fold motivation for this work: (1) to distill and document the models and
methods of the XFOIL code; and (2) to provide a modular and accessible enhanced implementation
in a newer software environment. In addition, several modifications that enhance performance and
robustness are presented.

The resulting code, mfoil [20], is written inMatlab [21] and made for both education and research.
Given today’s availability of computational power, speed and efficiency are not primary concerns
for a two-dimensional panel/boundary-layer code. Instead, the present implementation focuses
on clarity, modularity, and robustness. The code can undoubtedly be reformulated and optimized
from its present version, and ported to other languages such as Python, given the modularity of the
implementation. The mfoil code is a single-file Matlab class, easily searchable with all variables and
methods documented and exposed to the user. It therefore supports prospects of new developments,
e.g. data-driven models, adaptation, or pulling out pieces, such as the boundary-layer treatment, for
other codes. It also includes new contributions: an improved stagnation-point treatment, a consistent
airfoil/wake source-panel interface, smooth model functions for better convergence and optimization
prospects, an augmented-state nonlinear system, a modified amplification factor growth perturbation
near transition, and an angle-of attack continuation solution strategy. The remainder of this paper
presents a complete description of the code and the new elements.
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II. Equations and Discretization
The velocity field, ®E(®G) in incompressible and irrotational flow satisfies ∇ · ®E = 0 and ∇ × ®E = ®0,

respectively. A velocity potential Φ(®G) models irrotational velocity fields via ®E = ∇Φ, and, in
two dimension, a streamfunction Ψ(®G) models incompressible velocity fields via ®E = ∇ × (∇Ψ).
In a flow that is both incompressible and irrotational, the velocity potential and streamfunction
satisfy Laplace’s equation, ∇2Φ = ∇2Ψ = 0. A general potential flow can therefore be modeled
by superimposing elementary solutions to Laplace’s equations, which include vortex and source
distributions. Placing these distributions on panels in two dimensions yields a potential flow panel
method for modeling the entire flowfield [22].

High-Reynolds number, subcritical flow over an airfoil can be modeled by a superposition of a
constant freestream, vortex sheets, and source sheets that account for viscous displacement effects of
the non-potential flow boundary layer. The present discretization follows that of [1]: # − 1 panels
form the airfoil, and #F − 1 panels form the wake, as shown in Figure 1. Global unknowns are
stored at the total # + #F nodes, ordered clockwise with the wake extending the upper surface.
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Fig. 1 Discretization of the airfoil and wake into panels with associated placements of vortex
and source sheets.

Each panel on the airfoil contains a linear vortex sheet and a constant source sheet. Wake panels
contain only source sheets, which are linear over each half-panel to avoid singular velocities at wake
nodes. No such problem exists at airfoil nodes, where only streamfunction evaluations are needed.
The source strength at the first wake node is the sum of the first and last airfoil panel source strengths
in order to avoid a velocity spike at the trailing edge. To avoid a similar problem at the end of the
wake, the last wake half panel is duplicated past node # + #F, resulting in a constant-source panel
with the node in the center. A constant source and linear vortex panel spans the trailing-edge gap.

III. Inviscid Formulation
For a given distribution of sources on the airfoil and wake, the requirement of flow tangency on

the airfoil uniquely determines the vortex strengths. Flow tangency implies a constant streamfunction,
presently enforced at the airfoil nodes. The streamfunction at an arbitrary point ®G = G8̂ + I:̂ in the
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domain is

Ψ(®G) = +∞(I cosU − G sinU)︸                     ︷︷                     ︸
Ψ∞ (®G)=freestream contribution

+
#−1∑
:=1

(
	W

:
(®G) [W: , W:+1]) +Ψf: (®G)f:

)
︸                                    ︷︷                                    ︸

airfoil panel :

+
#F−1∑
:=1

(
	F
: (®G) [f

F
:−1, f

F
: , f

F
:+1]

)
)

︸                             ︷︷                             ︸
wake panel :

+	TE(®G) [W# , W1])︸                ︷︷                ︸
TE gap panel

(1)

On a wake panel, the source strength varies piecewise linearly on the two panel halves, as shown in
Figure 1 and denoted by :− and :+, so that wake panel : contributes

	F
: (®G) [f

F
:−1, f

F
: , f

F
:+1]

) = 	f
:−

[
1
2
(fF:−1 + f

F
: ), f

F
:

]
+ 	f

:+

[
fF: ,

1
2
(fF: + f

F
:+1)

]
(2)

The appendix provides expressions for the vortex and source panel streamfunction influence
coefficients that appear in these two equations. In the presence of a trailing-edge gap, a constant
source panel of strength fTE = 1

2 (W# − W1) |ĈTE × ?̂TE |, and a constant vortex panel of strength
WTE =

1
2 (W# − W1) ĈTE · ?̂TE, where ĈTE is the unit trailing-edge bisector vector and ?̂TE is the unit

vector along the TE panel from node # to node 1, ensure no net flow through the gap and smooth
streamlines off the upper and lower surfaces [1], as shown in Figure 2. 	TE(®G) accounts for the
contributions of both of these TE panels.

(a) No source or vortex panel (b) Only source panel (c) Both source and vortex panels

Fig. 2 Effect of trailing-edge source and vortex panels on flow near the trailing edge. The
branch cut perpendicular from the constant-source panel creates the concentration of stream-
lines in (b) and (c).

Both the linear vortex and constant source panels have bounded streamfunction values at the
panel endpoints. Constant source panels exhibit branch cuts across which the streamfunction
is discontinuous. Making the cuts point outward from the airfoil on each panel prevents the
discontinuities from affecting the streamfunction calculation at the airfoil nodes, as illustrated in
Figure 3.
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(a) Panel-aligned branch cuts (incorrect k) (b) Panel-perpendicular branch cuts (correct k)

Fig. 3 Use of a standard arctangent in panel-aligned coordinates causes branch cuts of
constant-source panels, here only across the trailing-edge gap, to interfere with the stream-
function calculation on airfoil nodes. Panel-perpendicular cuts, obtained by a simple shift of
streamfunction values, prevent this problem.

Evaluating Eq. 1 at the airfoil nodes gives a vector of # streamfunction values,

	 = 	∞ + A$ + B2 A ∈ R#×# , B ∈ R#×(#+#F−2) , (3)

where $ ∈ R# contains the airfoil node vortex strengths and 2 ∈ R#+#F−2 contains both the airfoil
and wake panel source strengths. The Kutta condition of smooth flow off the trailing edge provides
an additional equation, W1 + W# = 0. Setting the streamfunction equal to Ψ0, an additional unknown,
at each airfoil node yields a (# + 1) × (# + 1) system of equations for $ and Ψ0. Solving this system
gives

$̃ = −Ã−1
(
	̃
∞ + B̃2

)
(4)

where $̃ = [$,Ψ0]) , Ã is A augmented with the Kutta condition and effects of Ψ0, and B̃ is B
padded with an extra row of zeros. Without viscous sources, Eq. (4) constitutes the inviscid solution,
which can be separated into 0 and 90◦ reference solutions as $̃8 = −Ã−1	̃

∞
= $̃0 cosU + $̃90 sinU.

Since the flow inside the airfoil is stagnant, W equals the tangential velocity at the airfoil surface.
For an airfoil without a trailing-edge gap, nodes 1 and # coincide, so that the # th row of the

system in Eq. (3) duplicates the first. The # th row is then replaced by an extrapolation of the change
in W between the lower and upper surfaces: W# − W1 = 2(W2 − W#−1) − (W3 − W#−2) [1].

IV. Viscous Formulation

A. Boundary-Layer Equations
The integral boundary layer equations model the viscous flow and affect the inviscid solution

through displacement effects. In turn, the inviscid solution affects the boundary layer through the
edge velocity. Separate boundary layer solutions exist on the upper and lower surfaces, and in

6



the wake. Let b be the distance from the leading edge stagnation point for one such surface. The
governing boundary layer equations on that surface read [1, 13, 22].

1
\

3\

3b
+ (2 + � + �F − "2

4 )
1
D4

3D4

3b
=

2 5

2\
(momentum) (5)

1
�∗

3�∗

3b
+

(
2
�∗∗

�∗
+ 1 − � − �F

)
1
D4

3D4

3b
=

22�
\�∗
−
2 5

2\
(shape parameter) (6)

3=̃

3b
=

3=̃

3'4\

3'4\

3b
(amplification) (7)

X

2
1/2
g

32
1/2
g

3b
−

 lag

�V (1 +*B)
(21/2
g,eq − [�21/2

g ) = 2X
(
D@ −

1
D4

3D4

3b

)
(turbulent shear lag) (8)

The amplification equation pertains to the growth of the amplitude of the most amplified Tollmien-
Schlichting wave and applies only in laminar regions. The turbulent shear lag equation models
the evolution of the maximum shear stress coefficient, 2g, to account for deviations of outer layer
dissipation from its local equilibrium value. It only applies in the turbulent region, which includes
the entire wake.

The boundary layer equations are discretized by finite differences on the airfoil and wake nodes.
At each node 8, the state vector consists of four quantities, u8 = [\, X∗, =̃ or 21/2

g , D4]) . To interpret
the third state, a separate flag indicates whether a node is laminar or turbulent.

B. Boundary-Layer Residuals
Considering adjacent nodes 1 and 2, the discretized equations read

'mom ≡ ln
\2
\1
+ (2 + � + �F − "2

4 ) ln
D42
D41
− 1

2
ln
b2
b1

2 5 b

\
(9)

'shape ≡ ln
�∗2
�∗1
+

(
2
�∗∗

�∗
+ 1 − � − �F

)
ln
D42
D41
+ ln

b2
b1

(
1
2
2 5 b

\
− 2�b
\�∗

)
(10)

'amp ≡ [2 − [1 −
3=̃

3b
Δb (11)

'lag ≡ 2X ln
2

1/2
g2

2
1/2
g1
−

 lag

�V (1 +*B)
(21/2
g,eq − [�21/2

g )Δb − 2X
(
D@Δb − ln

D42
D41

)
(12)

The derivation of these equations uses finite differences of logarithms for terms such as 1
\
3\
3b
= 3

3\
ln \.

Including b with the 2 5 and 2� terms in the momentum and shape equations, i.e. 2 5
\
= 1

b

2 5 b

\
=

3
3b
(ln b) 2 5 b

\
, improves accuracy and stability near stagnation, as 2 5 and 2� depend inversely on D4,

which depends directly on b at stagnation.
The appendix presents closure relations for the quantities that appear in the residuals. In the

discretized equations, quantities without a subscript of 1 or 2 are determined by symmetrical
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averaging from the nodes, consistent with trapezoidal integration, or upwinding, which improves
stability with a bias towards backward Euler. The upwinding factor between nodes 1 and 2, used as
e.g. � = (1 − [up)�1 + [up�2, depends on the kinematic shape parameter,

[up = 1 − 1
2

exp

(
−(ln | 5�D |)2

�up

�2
:2

)
, 5�D =

�:2 − 1
�:1 − 1

(13)

where �up equals 1 on the airfoil and 5 in the wake. The larger value in the wake derives from the
original XFOIL implementation and improves stability of the solver. In the momentum equation, all
quantities are averaged and the term 2 5 b

\
is treated together. Further averaging 2 5 b

\
with an evaluation

at the midpoint state improves accuracy of the drag calculation. In the shape parameter equation, the
skin friction and dissipation terms, 2 5 b

\
and 2�b

\�∗ , are upwinded, while the other terms are averaged.
In the amplification equation, 3=̃

3b
is averaged. In the shear lag equation, 21/2

g and 21/2
g,eq are upwinded,

X is averaged, and D@ is computed using an upwinded 2 5 and �: , and an averaged X∗ and '4\ .

C. Stagnation-Point Treatment
The leading-edge stagnation point, defined as the location on the airfoil surface at which D4 = 0,

separates the upper and lower surfaces of the airfoil. The distance from the leading edge of a point
on the airfoil surface or wake is then b ≡ |B − Bstag |, where B is the spline arclength. The B-value of
the stagnation point, Bstag is determined by linearly interpolating the edge velocity and B values of
the nodes adjacent to the stagnation interval, Bstag = (D42B1 + D41B2)/(D41 + D42). The sign of the
edge velocity is positive away from the stagnation point, and hence a negative D41 or D42 in the
course of a calculation indicates that the stagnation interval must move. A direction factor, 38 ± 1,
at each airfoil and wake node aids in mapping the clockwise node ordering direction to the local
downstream direction: i.e. 38 = −1 on the lower surface nodes.

The discretized equations apply between two nodes on a given surface or wake. These equations
change for the interval between stagnation and the first node, as only one state is available. The
modified equations dictate the value of variables at stagnation and pertain to momentum and shape
parameter, as the amplification rate is assumed to be zero on the first interval. At stagnation,
b, D4 → 0, so the first terms in Eqs. (5) and (6) become negligible relative to the others, which have
D4 in the denominator. Thus, ln \2

\1
and ln �∗2

�∗1
drop out of the discretized equations. Also, writing

D4 ≈  b (first term in Taylor series) at stagnation means that ln D42
D41

= ln b2
b1
, and without loss of

generality, both of these terms can be set to 1. The resulting two equations are closed and yield the
stagnation values of \ and X∗. Applying this equation to the first node state makes the assumption
that the first node and stagnation point are the same, which can cause inaccuracy and unstable
oscillations in the variables. At a cost of slightly higher bandwidth in the residual Jacobian matrix, a
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more accurate and stable solution follows from applying the stagnation point equations to a state
linearly extrapolated from the first two nodes to b = 0. For further accuracy improvement, the edge
velocity slope at stagnation,  = 3D4

3b
, is calculated from a quadratic fit of D4 at stagnation and the

first two nodes. In the unlikely case that the stagnation point coincides, to machine precision, with a
panel node, the stagnation equations apply to that node.

D. Wake Discretization and Initialization
An accurate viscous flow approximation requires solution of the boundary layer variables in the

airfoil wake. The inviscid solution defines the wake geometry as the streamline emanating from the
midpoint of the trailing edge, as shown in Figure 1. Starting with the first wake point a distance nF2
downstream of the trailing edge midpoint, a predictor-corrector method produces the subsequent
wake nodes, totalling #F = [#/10 + 103F] and spaced geometrically until a total wake length of
3F2.

A separate set of three equations defines the first wake node state in terms of the airfoil trailing
edge states 1 and # ,

'Fmom ≡ \F1 − \1 − \# , 'Fshape ≡ X
∗F
1 − X

∗
1 − X

∗
# − ℎTE, 'Flag ≡ 2

1/2F
g1 −

\12
1/2
g1 + \#2

1/2
g#

\1 + \#
(14)

If the state at node 1 or # is laminar, transition to turbulence is forced and 21/2
g is calculated using

the transition equation, Eq. (17). The wake displacement thickness includes the trailing edge gap,
which starts at ℎF1 = ℎ)� for the first wake node and decreases to zero at a distance !F = 5 Fℎ)�

away from the trailing edge according to [23]

ℎF (bF) = ℎ)�
[
1 +

(
2 + 5 F 3C

3b

)
bF

!F

] (
1 − b

F

!F

)2
(15)

where bF is the distance along the wake from the trailing edge, and 3C
3b

is the TE airfoil thickness
slope, clipped to lie between ±3/ 5 F. The value ℎF is subtracted from the displacement thickness
at the affected wake nodes for use in the boundary layer equations. The momentum and shape
equations explicitly add ℎF back into X∗ to obtain the shape parameter with the true displacement
thickness, � + �F, where �F = ℎF/\.

E. Transition Prediction
To predict transition, the present approach uses the 49 method [13, 24], as in XFOIL. The

amplification factor, =̃, starts at zero at the leading-edge stagnation point and evolves downstream
according to Eq. (7). Once =̃ exceeds =̃crit, the boundary layer transitions to turbulent and the shear
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lag equation, Eq. (8) replaces the amplification factor equation. The discrete interval over which
transition occurs requires special treatment to predict the transition location.

=̃

laminar

turbulent

2
1/2
g

b1 b2bC

u+C
u2

u1

u−C

Fig. 4 Transition interval definitions.

Figure 4 illustrates the quantities used in analyzing a transition interval. The switch in equations
and variables occurs at the transition location, bC . The discrete boundary layer equations applied
separately over the laminar interval, b1 to bC , and the turbulent interval, bC to b2, yield two sets of
residuals, which are summed together in the global system,

Rtran ≡ R(u1, b1; u−C , bC)︸              ︷︷              ︸
laminar

+R(u+C , bC ; u2, b2)︸              ︷︷              ︸
turbulent

(16)

where R ≡ ['mom, 'shape, 'amp or 'lag]) and the arguments indicate the endpoint states and
coordinates for the particular subinterval. The state variables \, X∗, and D4 at transition, uC , are
obtained by linearly interpolating the states from nodes 1 and 2 to bC . On the laminar side of
transition, u−C , the amplification factor is =̃ = =̃crit, whereas on the turbulent side, u+C , the shear stress
coefficient is initialized to

21/2
g = �g4

−�g/(�:−1)21/2
g,eq (17)

The discretized amplification equation, Eq. (11), on the laminar subinterval implicitly defines the
transition location via the residual

'C ≡ 'amp(u1, b1; u−C , bC) = 0 (18)

For given endpoint states u1, u2, a Newton-Raphson solver yields bC and its derivatives with respect
to the state variables and node coordinates for addition to the global system. The requirement that
the transition residual remain zero constrains the derivatives. For example, the calculation of the
derivative of bC with respect to the state at node 1 proceeds as follows:

0 = X'C =
m'C

mu1
Xu1 +

m'C

mbC
XbC ⇒ mbC

mu1
= −

(
m'C

mbC

)−1
m'C

mu1
(19)

10



A similar calculation yields derivatives with respect to u2, b1, and b2. These derivatives then appear
in the linearization of the transition residual, Eq. (16), for the global system.

On the way to the converged solution, the location of transition can move within a panel or across
panels, with the latter more likely in the initial solver iterations. Following each state update in the
solver, the transition location is recalculated on both airfoil surfaces by marching the amplification
equation from the stagnation point, using the updated state. This marching further updates the
amplification factor at the laminar nodes∗ and stops upon reaching the transition interval, identified
when =̃ exceeds =̃crit. If the new interval is upstream of the previous one, the previously laminar
nodes between the two intervals are initialized to turbulent, with 21/2

g linearly interpolated from the
transition value, Eq. (17), to the first turbulent node after the original transition interval. If the
transition interval moves downstream, the amplification factor on the newly identified laminar nodes
is already set from marching, and no further re-initialization is required. Similarly, no action is
required if the transition interval remains the same, as the transition residual calculation accounts
for movements of bC within an interval.

V. Coupled Solver

A. Initialization
The coupled inviscid-viscous Newton solver requires an initial guess for the boundary layer

variables. A segregated solution provides this guess: solving the inviscid problem first, without
viscous sources, yields the wake shape and a baseline edge velocity D4 at each node. A marching
procedure on each airfoil surface follows, starting at the first point after the leading edge, which is
set to the stagnation state. On each subsequent interval, the residuals from Eqs. (9)-(12) provide
three implicit equations for the three unknown states, \, X∗, =̃ or 21/2

g , at the next node. This “direct”
marching mode can fail, however, particularly close to separation [25]. When the Newton-Raphson
solver fails to converge, or when the kinematic shape parameter exceeds �:,max, 3.8 for laminar and
2.5 for turbulent flow, an “inverse” mode is attempted. In the inverse mode, D4 returns as a state
variable, and a prescribed �: change provides the fourth equation that closes the system. Between
nodes 1 and 2, this change is

�:2 = max(�:1 + .03Δ�: , �: max,lam) (laminar) (20)

�:2 = max(�:1 − .15Δ�: , �: max,turb) (turbulent) (21)

�:2 = �:2 −
�:2 + .03Δ�: (�:2 − 1)3 − �:

1 + .09Δ�: (�:2 − 1)2
(wake) (22)

∗The amplification factor does not directly affect the other residuals, so updating it again in an additional segregated
step does not destroy the quadratic convergence of the Newton-Raphson solver.
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where Δ�: ≡ (b2 − b1)/\1. The wake definition is implicit and six iterations are performed starting
from �:2 = �:1. The inverse mode can also fail, although much less frequently than the direct
mode. In the event of failure, the state at node 2 is constructed by scaling \ and X∗ from node 1 by
(b2/b1) .5 (on the airfoil), and by using the inviscid edge velocity. In the wake, the extrapolation is
\2 = \1 and X∗2 = (X

∗
1 + \1A)/(1 + A), where A = (b2 − b1)/(10X∗1). While heuristic, these equations

generally provide adequate initialization for the Newton-Raphson solver.
During initialization of the boundary layer on the airfoil, if the updated amplification factor,

=̃2, exceeds =̃crit, that interval is solved again using the transition residual, Eq. 16, in place of the
original residual. The subsequent nodes are then marked as turbulent. If the flow remains laminar at
the airfoil trailing edge, transition is forced at the start of the wake, and the wake residuals, Eqs. 14,
define the first wake state.

B. Coupling with the Inviscid Solution
The boundary layer displacement thickness affects the potential flow solution through a

transpiration boundary condition [22], modeled by source sheets on the wake and airfoil panels,
as shown in Figure 1. Defining the missing “mass” flow, density excluded, as < ≡ D4X∗, the local
source sheet strength is f = 3<

3b
[1]. The discretized version of this equation on the panel between

nodes 8 and 8 + 1 reads

f8 =
<8+138+1 − <838

B8+1 − B8
⇒ 2 = D′m (23)

where 2 consists of sources on both the airfoil and wake panels, and D′ ∈ R(#+#F−2)×(#+#F ) maps
the mass flow vector at the nodes, m, to 2. Eq. 23 remains valid across the stagnation interval,
where the sum of the mass flows dictates the source strength, due to the presence of the direction
factors 38 and 38+1.

The potential flow solution affects the boundary layer equations through the edge velocity, D4.
On the airfoil nodes, W8 equals the clockwise tangential velocity, so D48 = 38W8. On the wake nodes,
the velocity is calculated by summing contributions from the freestream and all vortex and source
sheets,

uF4 = uF,∞4 + CW$ + Cf2 (24)

where DF,∞
4,8

= +∞(cosU8̂ + sinU:̂) · ĈF
8
is the freestream contribution, ĈF

8
is the unit tangent vector

along the wake at node 8, CW ∈ R#F×# accounts for the effect of the airfoil vortex sheet strengths,
and Cf ∈ R#F×(#+#F−2) accounts for the effect of the airfoil and wake source strengths.

From Eq. (4), the vector of vortex strengths on the airfoil nodes can be written as $ =
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$0 cosU + $90 sinU + B′2, where B′ ∈ R#×(#+#F−1) . Substituting this expression into the
expressions for the edge velocity on the airfoil and wake gives

airfoil: u04 = diag(d0)
[
$0 cosU + $90 sinU + B′2

]
= u0,inv4 + D0m

wake: uF4 = uF,∞4 + CW
[
$0 cosU + $90 sinU + B′2

]
+ Cf2 = uF,inv4 + DFm

(25)

where in the second steps, Eq. (23) replaced 2 in terms of m, resulting in the matrices D0 =

diag(d)B′D′ ∈ R#×(#+#F ) and DF = (CWB′ + Cf)f ∈ R#F×(#+#F ) . The vector d0 contains the #
direction factors 38 on the airfoil.

Combining these expressions yields the potential flow edge velocity on all nodes, airfoil and
wake,

u4 = uinv
4 + Dm (26)

where D = [D0; DF] ∈ R(#+#F )×(#+#F ) depends only on the airfoil and wake geometry, and the
inviscid solution is stored as two reference vectors, so that uinv

4 = uinv
4,0 cosU + uinv

4,90 sinU. In a
converged coupled solution, this potential-flow expression for the edge velocity must match the edge
velocity stored in the boundary-layer state vector. Enforcing this equality at each airfoil and wake
node yields the residual vector

RD ≡ u4 −
[
uinv
4 + D(u4 .%∗)

]
(27)

where in the mass flow expression, the product between u4 and %∗ is element-wise. This is the fourth
set of equations that closes the global system.

C. Global System Solution
The global system contains 4# tot unknowns, where # tot = # + #F, consisting of state vectors

on every airfoil and wake node. Marching through the panels on the three surfaces (lower, upper,
wake) yields three residuals per panel, Eqs. (9)-(12). The stagnation point system and the wake
initialization provide the starting-node residuals on the airfoil and wake surfaces. Finally, Eq. (27)
provides the additional fourth residual for each node.

Most of the sparse residual Jacobianmatrix is populated concurrently with the residual calculation
at each panel. To account for movement of the stagnation point, derivatives of the three panel
residuals with respect to b, which is measured from the stagnation point coordinate Bstag, are also
calculated and stored in the sparse matrix mR′

m/ ∈ R
(3# tot)×# tot , where R′ ∈ R3# tot contains the panel

residuals, and / ∈ R# tot stores the surface b coordinate of each node. As the stagnation point location
depends on the edge velocity, the required addition to the residual Jacobian matrix occurs in the u4
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columns,

mR′

mu4
+= mR′

m/

m/

mBstag

mBstag

mu4
(28)

where m/
mBstag

= −d is the opposite of the nodal direction vector, and mBstag
mu4 ∈ R

1×(#+#F ) contains only
two nonzero entries corresponding to the edge velocities adjacent to the stagnation interval. Hence,
the step in Eq. 28 increments only two columns of the residual Jacobian matrix.

In a lift-constrained run with a target lift coefficient 2ℓ,tgt, an extra residual, '2ℓ ≡ 2ℓ (u) − 2ℓ,tgt,
augments the global system to allow solution for the unknown angle of attack, U. Derivatives of
'2ℓ with respect to the state and angle of attack are computed during the 2ℓ calculation. In the
additional column of the Jacobian matrix, mR′

mU
= 0 for the three boundary-layer residuals, and, by

Eq. 27, mRD
mU

= − muinv
4

mU
= uinv

4,0 sinU − uinv
4,90 cosU.

At each Newton iteration, a sparse linear solver yields the state update, Δu ∈ R# tot , and the
angle of attack update ΔU in lift-constrained mode. Limiting this update with an under-relaxation
factor, l, prevents non-physical states and divergence of the solver. A single global value of l is
calculated such that: \ and X∗ do not decrease by more than 50%; =̃ and 21/2

g values greater than
0.2 and 0.1 max(21/2

g ), respectively, do not decrease by more than 80% (very small values are not
limited); =̃ does not increase by more than 2; 21/2

g does not increase by more than .05; D4 does not
change by more than 20%; U does not change by more than 2◦. In addition, after the update, negative
2

1/2
g values are clipped to 0.1 max(21/2

g ), and the value of X∗ on each node is increased to ensure that
�: > �:,min, where �:,min = 1.00005 on the airfoil and 1.02 in the wake. Changes in the angle of
attack require rebuilding the inviscid solution and potentially the wake, although an option exists to
keep the wake fixed at the inviscid-trimmed angle of attack.

VI. Compressibility Correction
The potential flow solution presented thus far applies to incompressible flow. A compressibility

correction extends its applicability to subcritical compressible flow. As in XFOIL, the present work
uses the Kármán-Tsien compressibility correction [26], which consists of nonlinear corrections to
the incompressible speed, +inc, and pressure coefficient, 2?,inc,

+ =
+inc(1 − _)

1 − _(+inc/+∞)2
, 2? =

2?,inc

V + _(1 + V)2?,inc/2
, _ =

"2
∞

(1 + V)2
, V =

√
1 − "2

∞ (29)

Although the boundary-layer equations apply as written in compressible flow, notably through the
inclusion of the edge Mach number, "4, in Eq. 5, the velocity correction has several widespread,
albeit subtle, effects. First, the edge velocity computed from the potential flow solution and stored
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as a boundary layer state corresponds to the incompressible edge velocity, D4,inc. Applying the
correction yields the compressible edge velocity, D4, as a function of D4,inc and "∞. The edge Mach
number calculation, "4 = D4/2air requires the local speed of sound, 2air, which depends on the
temperature and hence the corrected speed through

22
air = (Wair − 1)

(
�0 −

D2
4

2

)
, �0 =

+2
∞

(Wair − 1)"2
∞

(
1 + Wair − 1

2
"2
∞

)
(30)

where�0 is the constant stagnation enthalpy. Themomentum-thickness Reynolds number calculation
'4\ = dD4\/` also requires the local density, d, and dynamic viscosity, `. Isentropic relations yield
the density,

d = d0

(
1 + Wair − 1

2
"2
4

)−1/(Wair−1)
, d0 = d∞

(
1 + Wair − 1

2
"2
∞

)1/(Wair−1)
(31)

and Sutherland’s law yields the dynamic viscosity,

` = `0Su
(
)

)0

)
, `0 = `∞Su

(
)∞
)0

)
, Su

(
)

)0

)
=

(
)

)0

)1.5 1 + ASu
)
)0
+ ASu

,
)

)0
= 1 − 1

2
+2
∞
�0

(32)

VII. Post-Processing
Outputs of interest include coefficients of lift, moment, and drag, separated into skin-friction and

pressure components. A summation over the airfoil panels, including the trailing-edge gap, yields
the lift, moment, and near-field pressure drag coefficients,

2ℓ =
1
2

∫
airfoil

2? =̂ · !̂ 3B ≈
1
2

#∑
8=1

2̄?,8 (− sinUΔI8 − cosUΔG8) (33)

23,inv =
1
2

∫
airfoil

2? =̂ · �̂ 3B ≈
1
2

#∑
8=1

2̄?,8 (cosUΔI8 − sinUΔG8) (34)

2< =
1
22

∫
airfoil

2? [(®G − ®G0) × =̂] · 9̂ 3B ≈
1
22

#∑
8=1
[2?,8, 2?,8+1]M


Δ®G8 · (®G8 − ®G0)

Δ®G8 · (®G8+1 − ®G0)

 (35)

where !̂ = − sinU8̂+cosU:̂ , �̂ = cosU8̂+sinU:̂ , 2̄?,8 = (2?8+2?,8+1)/2, Δ®G8 = ®G8+1−®G8 = ΔG8 8̂+ΔI8 :̂ ,
®G0 is the moment reference location, and M = [2, 1; 1, 2]/6. The approximation that the pressure
coefficient varies linearly across a panel underlies these integrals.

In viscous simulations, the Squire-Young relation [27] provides an accurate approximation of the
total drag coefficient by extrapolating the final wake momentum thickness, 23 = 2\ (D4/+∞) (5+�)/2.
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The quantities \, D4, and � in this expression are taken from the final wake node. An integration of
the skin friction coefficient over the airfoil lower and upper surfaces yields the skin friction drag
coefficient,

235 =
� 5 1 + � 5 2

1
2d∞+

2
∞2

, � 5 9 =

∫
surface 9

gF 3 ®b · �̂ ≈
# 9∑
8=1

1
2
(gF,8−1 + gF,8)Δ®G 9 · �̂, gF =

1
2
d2 5 D

2
4 (36)

where # 9 is the number of nodes on surface 9 , and node 0 corresponds to the stagnation point,
where D4 = 0. The difference of the total and skin friction drag coefficients yields the pressure drag
coefficient, 23? = 23 − 235 .

VIII. Results
Unless otherwise noted, the following set of results is based on a NACA 2412 airfoil at chord

Reynolds number '4 = 106, angle of attack U = 2◦, and free-stream Mach number "∞ = 0.4. The
default number of airfoil points is # = 200.

A. Outputs and Distributions
Table 1 presents the outputs computed from the present code, mfoil, in comparison to those

obtained from XFOIL. Differences in panel distributions and models cause slight differences in the
results, but the overall agreement is very good. Likewise, the distribution quantities in Figure 5
exhibit excellent agreement.

Table 1 NACA 2412, '4 = 106, U = 2◦, "∞ = 0.4: output comparisons to XFOIL

output mfoil XFOIL
lift coefficient 0.4889 0.4910

quarter-chord moment coefficient -0.0501 -0.0506
drag coefficient 0.00617 0.00618

skin friction drag coefficient 0.00421 0.00421
upper surface transition 0.49082 0.49012
lower surface transition 0.94872 0.94862

The present modifications in the stagnation point treatment, described in Section IV.C, cause
noticeable differences in the solution behavior near the stagnation point. Figure 6 shows the
kinematic shape factor, which for most of the airfoil and the wake matches that of XFOIL very well.
However, a zoom-in at the leading edge shows oscillations in the XFOIL results. These oscillations
are due to an inconsistency in the equation for the first boundary layer point on each surface, which
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Fig. 5 NACA 2412, '4 = 106, U = 2◦, "∞ = 0.4: comparison of distributions.

in general is not at stagnation. The oscillations diminish but do not disappear with increasing # .
On the other hand, mfoil, with its stagnation point extrapolation and higher-order edge velocity
derivative calculation, exhibits a smoother �: profile. Early-stage convergence of mfoil was found
to be less robust without this stagnation point treatment.
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(b) zoom-in at stagnation point

Fig. 6 NACA 2412, '4 = 106, U = 2◦, "∞ = 0.4: kinematic shape factor comparison.

B. Solver Convergence
Following the boundary layer initialization process described in Section V.A, the coupled solver

advances the state towards convergence. Since the initialized state may not be close to the converged
one, the first Newton iterations proceed slowly, as illustrated in Figure 7(a). Update limiting plays a
critical role in keeping the solution physical and preventing divergence in this stage. A sharp residual
drop follows the initial residual plateau, characteristic of quadratic Newton-Raphson convergence.
The length of the plateau depends on the operating conditions and the number of points: increasing
# leads to more iterations. Figure 7(b) shows the lift coefficient output history for both runs.
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Accurate 2ℓ values do not occur until close to residual convergence.
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Fig. 7 NACA 2412, '4 = 106, U = 2◦, "∞ = 0.4: residual and output convergence.

The amplification factor rate of increase equation contains an extra term, Eq. 76, that ensures
that the rate does not stagnate as =̃ → =̃crit. This term differs from a similar one in XFOIL, in
its smoother form and positive values after =̃crit. Without this term, the amplification factor may
not cross the critical value when expected, particularly at high Reynolds numbers and on coarse
panelings. Figure 8 shows this lack of convergence for the NACA 2412 airfoil at U = 2◦, " = 0.4,
'4 = 107. Including the extra term in 3=̃

3b
yields rapid convergence instead.
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Fig. 8 NACA 2412, '4 = 107, U = 2◦, "∞ = 0.4: lack of convergence without extra
amplification rate.
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C. Geometry Manipulation and Newton Continuation
The code supports airfoil geometry import and manipulation, including camber modification

and flap deployment. Built-in splining functions redistribute panel nodes based on surface curvature.
High angle of attack simulations with flaps can cause convergence problems due to the near separated
nature of the flowfield. Figure 9 illustrates this problem for an U = 5◦, '4 = 106, " = 0.2 simulation
of a NACA 2412 airfoil with a 10◦ flap at 80% chord. A direct solution attempt fails due to
separation on the upper surface flap hinge, as shown in Figure 9(a). The residual stagnates at a large
value and severe update limiting due to a near non-physical state prevents solution advancement.
An angle-of-attack continuation strategy aids in such a case: a solution at U = 0◦ initializes the
boundary-layer solution at U = 2.5◦, which in turn initializes the solution at U = 5◦, shown in
Figure 9(c). Figure 9(b) shows the combined residual history: after the first angle of attack,
subsequent solutions proceed more quickly due to a good starting guess. This process can be
automated inside or outside the code, using different starting angles of attack and fixed or adaptive
increments.
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Fig. 9 NACA 2412, '4 = 106, U = 5◦, "∞ = 0.2, 10◦ flap : angle-of-attack continuation.

IX. Conclusion
The speed, robustness, and ease-of-use of the XFOIL airfoil analysis and design code have

made it the program of choice for many research studies and educational purposes. Its longevity of
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over thirty years and counting is a testament to its methods, implementation, and maintenance. As
software and hardware have advanced, however, XFOIL is feeling its age with regard to accessibility
and understanding beyond a black-box level. In this work, the XFOIL code has been re-implemented,
with certain modifications, in a modular, documented Matlab class, with the purpose of (1) distilling
and documenting the models and methods; and (2) providing an accessible implementation in a
newer software framework. This paper presents a self-contained and comprehensive exposition of
the methods used, as an accompaniment to the code. The results section serves to show agreement
with XFOIL, which has undergone multiple previous validations, and performance and robustness
enhancements due to several modifications.

Appendix

A. Panel Influence Coefficients
This appendix presents the influence coefficients of linear/constant vortex/source panels that

appear in Eqs. (1) and (2). Figure 10 defines the quantities used in calculating the streamfunction
and velocity at an arbitrary evaluation point.

G

A1

\2

\1

ℎ

0

3

A2

I

evaluation point

2

1

=̂

Ĉ

Fig. 10 Geometry definition for a panel of length 3.

Vortex panel: Given vortex strengths W1 and W2 at the two nodes, the streamfunction at the
evaluation point is Ψ = 	W [W1, W2]) , where 	W = [Ψ̄W − Ψ̃W, Ψ̃W], and

Ψ̄W =
1

2c
(ℎ(\2 − \1) − 3 + 0 ln A1 − (0 − 3) ln A2) , (37)

Ψ̃W =
0

3
Ψ̄W + 1

4c3

(
A2

2 ln A2 − A2
1 ln A1 −

1
2
A2

2 +
1
2
A2

2

)
(38)

When the evaluation point lies on a panel endpoint, setting the corresponding ln A1 or ln A2 to zero
avoids a mathematical exception (the streamfunction remains well-defined due to multiplicative
factors on these terms that go to zero). The velocity at the evaluation point is ®E = EC Ĉ + E==̂, where
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EC = (ĒC − ẼC)W1 + ẼCW2, E= = (Ē= − Ẽ=)W1 + Ẽ=W2, and

ĒC =
1

2c
(\2 − \1), ẼC =

1
2c3

(
ℎ ln

A2
A1
+ 0(\2 − \1)

)
, (39)

Ē= =
1

2c
ln
A2
A1
, Ẽ= =

1
2c3

(
0 ln

A2
A1
+ 3 − ℎ(\2 − \1)

)
(40)

Setting W1 = W2 = W gives the constant vortex panel result, Ψ = ΨWW, where ΨW = Ψ̄W, and
®E = (ĒC Ĉ + Ē==̂)W.

Source panel: Given source strengths f1 and f2 at the two nodes, the streamfunction at the
evaluation point is Ψ = 	f [f1, f2]) , where 	f = [Ψ̄f − Ψ̃f, Ψ̃f], and

Ψ̄f =
1

2c
(0(\1 − \2) + 3\2 + ℎ ln A1 − ℎ ln A2) , (41)

Ψ̃f =
0

3
Ψ̄f + 1

4c3

(
A2

2\2 − A2
1\1 − ℎ3

)
(42)

The streamfunction is singular at the panel endpoints, except in the case of a constant source,
f1 = f2 = f, in which case Ψ = Ψff = Ψ̄ff. Setting the appropriate ln A1 or ln A2 to zero avoids a
mathematical exception. For a constant source panel, offsetting the streamfunction calculation by
−3/4 or 33/4, depending on the sign of \1 + \2 − c, positions the branch cut in the =̂ direction.

The velocity at the evaluation point is ®E = EC Ĉ + E==̂, where EC = (ĒC − ẼC)f1 + ẼCf2, E= =
(Ē= − Ẽ=)f1 + Ẽ=f2, and

ĒC =
1

2c
ln
A1
A2
, ẼC =

1
2c3

(
0 ln

A1
A2
− 3 + ℎ(\2 − \1)

)
, (43)

Ē= =
1

2c
(\2 − \1), Ẽ= =

1
2c3

(
−ℎ ln

A1
A2
+ 0(\2 − \1)

)
(44)

Setting f1 = f2 = f gives the constant source panel result ®E = (ĒC Ĉ + Ē==̂)f.

B. Closure Equations
This appendix presents the closure relations used in mfoil, which in large part follow those of

XFOIL and have previously been documented [1, 13, 23]. Deviations from these references aremainly
due to updates to the XFOIL code from the original publications, and present additional modifications,
in Eqs. (58), (74), (76), have been made for improved robustness of the Newton-Raphson solver.
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The shape parameter closures are

�: = (� − 0.29"2
4 )/(1 + 0.113"2

4 ) (45)

�∗∗ = 0.064"2
4 /(�: − 0.8) (46)

�∗lam =


(0.0111�̃2

:
− .0278�̃3

:
)/(�: − 1) + 1.528 − 0.002(�̃:�: )2 if �: < 4.35

0.015�̃2
:
/�: + 1.528 otherwise

(47)

�̃: = �: − 4.35 (48)

�∗turb = (�∗turb,inc + 0.028"2
4 )/(1 + 0.014"2

4 ) (49)

�∗turb,inc =


1.5 + 4/'̃4\ + 1.5(.5 − 4/'̃4\)�2

A /(�: + .5) if �: < �0

1.5 + 4/'̃4\ + (�: − �0)2(0.007 ln '̃4\/�2
�∗ + 0.015/�: ) otherwise

(50)

�A = (�0 − �: )/(�0 − 1) (51)

�0 = min(3 + 400/'4\ , 4) (52)

'̃4\ = max('4\ , 200) (53)

��∗ = �: − �0 + 4/ln '̃4\ (54)

X = min (3.15 + 1.72/(�: − 1) + X∗, 12\) (55)

The skin-friction coefficient is zero in the wake. In laminar and turbulent regions, it is

2 5 ,lam =
1
'4\


0.0727(5.5 − �: )3/(�: + 1) − 0.07 if �: < 5.5

0.015(1 − 1/(�: − 4.5))2 − 0.07 otherwise
(56)

2 5 ,turb = 0.34�2 5 �−1.74−0.31�:
2 5

+ 0.00011(tanh(4 − �:/.875) − 1) (57)

�2 5 = −1.33�: ; if �2 5 < −17, �2 5 = −20 + 34(�2 5 +17)/3 (58)

�2 5 = max(log10('4\/�2), 1.303) (59)

�2 =

√
1 + 0.5(Wair − 1)"2

4 (60)
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The dissipation coefficient closures are

2�8,lam =
1
'4\


0.00205(4 − �: )5.5 + 0.207 if �: < 4

−0.0016(�: − 4)2/(1 + 0.02(�: − 4)2) + 0.207 otherwise
(61)

2�8,turb = min(2�8,wall + 2�8,outer + 2�8,stress, 2�8,lam) (62)

2�8,wall =
1
2
2 5*B (2/�∗)0.5 [1 + tanh((�: − 1) ln('4\)/2.1)] (63)

2�8,outer = 2g (0.995 −*B)2/�∗ (64)

2�8,stress = 0.3(0.995 −*B)2/(�∗'4\) (65)

2�8,wake = min(2�8,outer + 2�8,stress, 2�8,lamwake) (66)

2�8,lamwake = 2.2(1 − 1/�: )2(1/�: )/(�∗'4\) (67)

*B =
1
2
�∗(1 − (�: − 1)/(��V)) (max 0.98 on airfoil, 0.99995 in wake) (68)

The rate of increase of the amplification factor is

3=̃

3b
= (A=̃ 5=̃6=̃ + n=̃)/\ (69)

5=̃ = −.05 + 2.7�̂ − 5.5�̂2 + 3�̂3 + 0.14−20�̂ (70)

6=̃ = 0.028/�̂ − 0.0345 exp[−(3.87�̂ − 2.52)2] (71)

A=̃ =


0 if B=̃ < 0

1 if B=̃ > 1

3B2
=̃
− 2B3

=̃
otherwise

(72)

B=̃ = (log10 '4\ − (!0 − 0.1))/0.2 (73)

!0 = 2.492�̂0.43 + 0.7(1 + tanh(14�̂ − 9.24) (74)

�̂ = 1/(�: − 1) (75)

n=̃ = 0.001(1 + tanh(5(=̃ − =̃crit)) (76)

The equilibrium values of D@ = 1
D4

3D4
3b

and the root shear stress coefficient are

D@ = (0.52 5 − (�:2/(��[��: ))2)/(�VX
∗) (77)

�:2 = �: − 1 − �̃�/'4\ , �̃� = 0 in wake, else �� (78)

2g,eq = �∗(�: − 1)�2
:2/[(2�

2
��V (1 −*B)��2

: ] (79)

In the above equations, small �: values are limited to 1.00005 in the wake and 1.05 on the
airfoil.
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C. Parameters
Table 2 lists the default numerical values of the various parameters appearing in the presented

equations.

Table 2 Parameter definitions and values

Parameter Description Value
Wair Ratio of specific heats 1.4
[crit Critical amplification factor 9
�� � − V locus � constant 6.7
�� � − V locus � constant 0.75
�� � − V locus � constant 18.0
[� wall/wake dissipation length ratio 0.9 in wake
 lag shear lag constant 5.6
�g shear stress initialization constant 1.8
�g shear stress initialization exponent 3.3
A(D Sutherland temperature ratio 0.35
5 F wake gap continuation factor 2.5
3F wake length, in airfoil chords 1
nF first wake point offset, in airfoil chords 10−5
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