
A Neural-Network Based Adaptive Discontinuous Galerkin
Method for Turbulent Flow Simulations

Miles McGruder∗, Aniruddhe Pradhan†, and Krzysztof J. Fidkowski‡
Department of Aerospace Engineering, University of Michigan, Ann Arbor, MI 48109, USA

This paper presents an adaptivemeshing technique for turbulent simulations using a neural-
network based error indicator. The network is designed to be compact and has generalized
well on untrained flow conditions. The discontinuous Galerkin method allows localized poly-
nomial order refinement, eliminating costly and error-prone re-meshing. The neural-network
drives adaptation by predicting unresolved scales, providing a natural error indicator when the
solution is under-resolved. The proposed methods are tested on turbulent channel flow simu-
lations and a simplified turbomachinery cooling slot geometry. Preliminary results show good
performance of the network model in reconstructing fine-scale solutions and its effectiveness
in driving mesh adaptation.

I. Introduction
High Reynolds number turbulent flows are of particular interest in aerospace engineering since the operating

conditions of modern aircraft often fall into this flow regime. However, due to the wide range of spatial and temporal
scales present in the flow fields, fully-resolved solutions of high Reynolds number turbulent flows are computationally
intractable even for simple geometries. Therefore, a more practical approach is to only resolve the large (coarse) scales
while modeling the effects of the small (fine) scales, a process also know as large eddy simulation (LES). In LES, either
an explicit sub-grid scale (SGS) model or the numerical dissipation embedded in the discretization (e.g., numerical
fluxes) is used to model the unresolved turbulent motions. In this paper, the latter approach, often termed implicit large
eddy simulation (ILES), is adopted. Since no explicit sub-grid scale models are employed, the solution accuracy of
ILES is strongly tied to the mesh resolution. Solution accuracy in under-resolved flow regions can be improved by
selectively refining the simulation in regions of high estimated error.

Solution reconstruction, also called super-resolution, has drawn much attention over the past decade, mainly due to
the successful application of machine learning techniques. Motivated by the early success of data-driven approaches in
Reynolds-Averaged Navier-Stokes (RANS) simulations [1–3], many attempts have been made to improve LES modeling
through machine learning. Gamahara and Hattori [4] used an artificial neural-network to establish a map between the
grid-scale flow field and the SGS stress without any assumption on its functional form, though no performance gains
were found compared to traditional SGS models. Wang et al. [5] incorporated more comprehensive physical insights in
the network input design, achieving an improved extrapolation capability and a better performance over conventional
models. Fan et al. [6] investigated the performance of different machine learning models and the relative importance
of different flow variables as the input features. Many different machine learning architectures and various network
feature designs have also been studied recently [7–9]. These methods super-resolve the effects of sub-grid scales on
the resolved scales, i.e., the sub-grid scale stresses. Therefore, when used in real-time simulations, they are not very
different from the explicit LES except that the traditional SGS models are replaced by machine learning models. On
the other hand, network models have also been used to directly super-resolve the fine-scale solution field using the
coarse space solutions [10–12]. These approaches, by themselves, can be very powerful post-processing tools for
coarse-grained simulation or experimental data.

Although solution accuracy can be improved by a super-resolution model directly augmenting an ILES, the overall
accuracy gains stall on a fixed mesh since the optimal accuracy (in !2 or other well-defined norms) on a given mesh
and order is limited by the approximation power. Another more traditional, yet very effective approach to improve
the solution accuracy is mesh adaptation. In this work, the super-resolution approach is employed to create an error
indicator to improve accuracy and computational efficiency of ILES flow solutions.

∗Graduate Research Assistant
†Graduate Research Assistant
‡Professor, AIAA Associate Fellow

1

The remainder of this paper proceeds as follows. We describe the adopted discontinuous Galerkin (DG) discretization
in Section II. The development of the neural-network based super-resolution model is presented in Section III. Section IV
outlines the details of the error indicator and the adaptation strategy in the network enabled modeling framework. The
preliminary results are shown in Section V, and Section VI concludes the present work and discusses potential future
work.

II. Spatial Discretization
The governing equations used in this work are compressible Navier-Stokes, which can be written in a compact form

as
mu
mC
+ ∇ ·

⃗⃗⃗
F(u) − ∇ ·

⃗⃗ ⃗⃗
G(u,∇u) = 0, (1)

where u ∈ RB is the conservative flow state vector of rank B, and
⃗⃗⃗
F and

⃗⃗ ⃗⃗
G denote the inviscid and viscous fluxes,

respectively. The viscous flux is assumed to be linear in the state gradients,
⃗⃗ ⃗⃗
G(u,∇u) = K(u)∇u, where K denotes the

diffusivity tensor.
We discretize Eq. (1) with the discontinuous Galerkin (DG) finite-element method, which is suitable for high-order

accuracy and ℎ?-refinement [13–16]. Consider a partition Tℎ of the computational domain Ω consisting of #4
non-overlapping elements Ω4, Tℎ = {Ω4 : ∪Ω4 = Ω,∩Ω4 = ∅}. The state is approximated by piece-wise polynomials
lying on the approximation spaceVℎ , with no continuity constraints on the approximation between adjacent elements.
Formally, the approximation space is defined asVℎ = [Vℎ]B, whereVℎ = {E ∈ !2 (Ω) : E |Ω4 ∈ P ? ,∀Ω4 ∈ Tℎ}, and
P ? denotes polynomials of order ? on the reference space of element Ω4. The weak form of Eq. (1) follows from
multiplying the equation by test functions (taken from the same approximation space), integrating by parts, and coupling
elements via unique inter-element fluxes,∫

Ω4

w)ℎ
mu
mC
3Ω −

∫
Ω4

∇w)ℎ ·
[⃗⃗⃗
F(uℎ) −

⃗⃗ ⃗⃗
G(uℎ ,∇uℎ)

]
3Ω +∫

mΩ4

w)ℎ
[
F̂(u+ℎ , u

−
ℎ) − Ĝ(u+ℎ , u

−
ℎ ,∇u+ℎ ,∇u−ℎ)

]
· ®=3(−

∫
mΩ4

(u+ℎ − {uℎ})
)
⃗⃗ ⃗⃗
G(u+ℎ ,∇w+ℎ) · ®=3(= 0, ∀wℎ ∈ Vℎ .

(2)

On the element boundary mΩ4, (·)+, (·)− denote, respectively, the quantities taken from the element or its neighbor, {·}
is the face/edge average or the boundary value, and ˆ(·) · ®= represents the uniquely defined normal numerical flux on
element interfaces. The last term on the left-hand side (LHS) of Eq. (2) symmetrizes the weak form and ensures adjoint
consistency.

Choosing a basis for the approximation space, the DG weak form in Eq. (2) yields a system of ordinary differential
equations,

3Uℎ
3C
+ fℎ (Uℎ) = 0, fℎ = M−1

ℎ Rℎ (Uℎ), (3)

where Uℎ ∈ R#ℎ is the discrete unknown vector of the basis function coefficients, Mℎ is the global block-diagonal mass
matrix, and Rℎ is the discrete spatial residual vector.

III. Super-Resolution Neural-Network

A. Super-Resolution Model
The idea of super-resolution is to reconstruct unresolved fine-scale solutions using the readily available coarse space

solution. Suppose we have the exact solution u. We decompose it as

u = u� + u′, u ∈ V, u� ∈ V� , u′ ∈ V, (4)

where V is the infinite-dimensional space containing the exact solution, V� denotes the finite-dimensional space
defined by the numerical discretization, and u′ represents the fine-scale component missing from the discrete solution
u� . The idea of super-resolution is to reconstruct the fine-scale component u′, and hence the true solution, using the
coarse-space solution u� . However, given the high dimensionality of the fine scale component u′, the super-resolution

2

model may be extremely complex. Therefore, we search for a surrogate of the true solution, u∗
ℎ
, in a more accessible

finer space Vℎ ,V� ⊂ Vℎ ⊂ V, such that,

u∗ℎ = u� + u′ℎ , u∗ℎ ∈ Vℎ , u� ∈ V� , u′ℎ ∈ Vℎ . (5)

In this work, we define u∗
ℎ
as the !2 optimal representation of the true solution u inVℎ ,

u∗ℎ = arg min
wℎ

∫
Ω

‖wℎ − u‖23Ω, wℎ ∈ Vℎ . (6)

Now, the super-resolution model can be stated as finding a map 5BA from the coarse-scale solution to the missing
fine-scale component,

u′ℎ = 5BA (u�). (7)

In this work, the super-resolution map is approximated by a neural-network model.

B. Fully Connected Neural-Networks
In this work, we use fully connected neural-networks (FCNNs), which are designed to emulate the response of

neurons to input signals. They are also known as artificial neural-networks or multi-layer perceptrons in the early days
of machine learning [17]. A simple three-layer FCNN is shown in Figure 1a. It consists of an input layer x, an output
layer y, and a hidden layer that involves an affine transformation and a nonlinear activation. The map between x and y
can be written as

y = 5 (�outh), h = f(z), z = �inx,
�inx ≡Winx + bin, �outh ≡Wouth + bout.

(8)

z is an affine transformation of the input x with parameters �in, which contains both the linear map weights
Win ∈ Rdim(z)×dim(x) , and a translation or bias term bin ∈ Rdim(z) . A nonlinear activation function f then maps z
element-wise to the hidden units h, often referred to as the hidden neurons. The nonlinear activation f provides the
power of modeling complex phenomena and is often defined a priori; examples include the sigmoid or rectified linear
unit (ReLU) [18] functions. From the hidden layer to the output, we only show an affine map�out in Figure 1a, although
one more nonlinear or linear activation 5 can also be applied.

The complexity and approximation power of a network increase as the number of neurons increases. One can also
stack the hidden layers to increase the approximation capacity, resulting in a multi-layer network. Deep FCNNs are
usually obtained by increasing both the number of hidden layers and the number of neurons in each layer, as shown in
Figure 1b. For a neural-network of ! hidden layers, the corresponding model can be written as,

h1 = f(�1x) ∈ R#1 ;

h; = f(�;h;−1) ∈ R#; , ; = 2, 3, ..., !;

y = 5 (�!+1h!).
(9)

The number of hidden layers, !, and the dimension of each hidden layer, #; , are hyper-parameters of the network, which
can be fine-tuned to achieve higher efficiency and better performance. The network trainable parameters (weights and
bias) �; , ; = 1, ..., ! + 1, are obtained by minimizing an objective function, often called the loss function, measuring the
deviation between the model outputs and the target values from the observed data.

C. Network Design
The goal of the current work is to construct a neural-network model 5 ==BA to approximate the super-resolution map

given in Eq. (7),
u′ℎ = 5BA (u�) ≈ 5 ==BA (u�). (10)

However, due to the convective nature of the flow, the coarse-scale solutions in the elements along the characteristics
should all affect the fine-scale components, resulting in a high-dimensional map that is extremely complex and difficult
to train. In order to increase the compactness of the network model, we assume that only the local coarse-scale solutions

3

Input layer

Hidden layer

Output layer

(a) single-layer FCNN

Input layer
Hidden layers

Output layer

(b) deep FCNN

Fig. 1 Structures of fully connected neural-networks (FCNNs).

on the element and its neighbors affect the super-resolved component. Consider a super-resolution model in discrete
form,

U′ℎ,4 = �BA (U�,4, {U�,=}), (11)
where U�,4 and U′

ℎ,4
are the basis coefficients of the coarse-scale solution and the fine-scale components in element 4,

and {U�,=} denotes a set of solution vectors from the neighboring elements. Two more parameters that dominate the
interactions between coarse and fine scales are also considered, which are the fluid kinematic viscosity a and the local
length scale (mesh size) Δ.

For the model to generalize well on unseen data, a nondimensionalization process, or in the machine learning
perspective, a data pre-processing procedure, is applied before the network training, resulting in a model in the form of

U′
ℎ,4

Urms
= �==BA

(
U�,4 − U<

Urms
,
{U�,= − U<}

Urms
, log

(
+rmsΔ

a

))
, (12)

where U< and Urms are the mean and the root mean square of the state solution, and +rms represents the flow speed, all
measured in element 4. The last input feature in Eq. (12) is the elemental Reynolds number, which is an indicator of the
under-resolution present in the local element. Due to the wide range of the elemental Reynolds number, a logarithm is
taken to help the model training.

In this work, we consider DG solutions on hexahedral meshes using tensor-product nodal basis functions. The
network is then trained on three-dimensional rectangular meshes. A simplified two dimensional version of the proposed
network structure for super-resolving one state component from ? = 1 to ? = 3 is sketched in Figure 2. A final input
data permutation step generates additional samples by rotating a given training sample through all positive volume
rotational symmetries of a cube to remove directional bias in the trained model.

IV. Adaptation Strategy
In the context of ILES, as no explicit sub-grid scale model is employed, the discretization error and the modeling

error are tightly coupled. Refining the mesh, which reduces the discretization error and hence the modeling error, would
yield asymptotically a DNS solution. However, for effective LES modeling, only scales that are large enough to affect
our quantities of interest, e.g., mean drag values, need to be well-resolved, while the smaller scales should be modeled.
Therefore, effective adaptive LES should be targeting areas that are most important for accurate output predictions.

A. Error Indicator
Since the super-resolution model estimates the difference between a coarse state and a fine state, the magnitude can

be used as an error indicator. Specifically, we have chosen to take the discrete !1 norm of the super-resolution output on
each element : .

4: = ‖�==BA (U�,:)Urms,: ‖1 (13)
The element-wise indicator allows localized element adaptation. The per-element indicator may be averaged over
statistically constant regions, such as wall normal layers in a turbulent channel, to reduce noise in the indicated error.

4

Re
p=1 p=3

Super-resolution NN

Fig. 2 Simplified 2D super-resolution neural-network model from ? = 1 to ? = 3.

We also average the error indicator over many snapshots to further reduce noise for statistically steady flows. This is a
fairly straightforward error indicator that will simply show error where under-resolution is present but not necessarily
indicate the cause. An adjoint-weighted residual indicator should address this issue and is the subject of future work.

V. Results

A. Data Generation and Network Training
Training data for the super-resolution neural-network are generated by capabilities we have added to NASA’s eddy

code[19, 20]. All training and test cases use hexagonal elements with tensor-product basis functions. In line with
eddy, all orders are listed in terms of # , the number of basis functions in each dimension of an element i.e. ? + 1
where ? is polynomial order. For super-resolution, the network input neighborhood consists of the central element of
interest and all elements directly across a face for a total of seven elements. The length scale used for element Reynolds
number generation is the length of the axis-aligned bounding box in each dimension. The training data are generated
by projecting cases simulated at high-order down to the relatively low-orders required for super-resolution. We have
generated training data by sampling an '4g = 950 turbulent channel case. Once we have adapted an initial constant
order solution there will be multiple solution orders in the same domain. This situation is handled by training a separate
neural-network for each potential order. When training data are generated, neighboring elements are always projected
down to a coarse order based on the solution order of the central element. We use the same core code for training and
adaptation, the only difference being when training, the input data are generated by projecting a high-order solution to
low-order and when online, the input data to the network are generated by the present simulation state.

B. Offline Flow Reconstruction Testing
Testing the network performance is tricky because in general we do not know how the high-resolution state should

behave. A scenario where this is not true involves projected data from a high-order solution. In order to test the network
we perform a process similar to training, where a high-resolution state is projected to two lower-orders. We are interested
in how well the super-resolution network is able to reproduce the higher-order projected state from the lower-order
projected state. We do not expect the network to perform perfectly but the network should perform better than the low
resolution baseline. Given the importance of turbulent energy spectra in the analysis of turbulent flow, we use the energy
spectrum to quantify the accuracy of our model.

One such test is shown in Figure 3. This figure shows the super-resolved spectrum between the high and low
resolution projected spectra as expected. While the network is trained on '4g = 950 data, the non-dimensionalization
allows the network to perform correctly on '4g = 395 input data as designed. For each sample in Figure 3 the energy
at the lowest wavenumber is slightly different. Since we are only sampling a plane of data parallel to the wall for

5

the spectrum, the turbulent spectra are subject to out-of-plane projection effects. This is acceptable however, since
we should expect super-resolution to handle out-of-plane regions of the same element correctly and move the # = 2
spectrum toward the # = 4 spectrum regardless. Wavenumbers consisting primarily of noise are cut off in Figure 3. It is
assumed that noise takes hold in the spectrum when the wave number exceeds half the number of degrees of freedom in
the sampling direction divided by the sampling distance.

100

wavenumber

10 6

10 5

10 4

en
er

gy

N = 8 (original)
N = 2 projection
N = 4 projection
super-resolution

(a) H/X = 0.3

100

wavenumber

10 6

10 5

en
er

gy

N = 8 (original)
N = 2 projection
N = 4 projection
super-resolution

(b) H/X = 0.7

Fig. 3 Streamwise turbulent energy spectra of a '4g = 395 turbulent channel simulated at N = 8 projected to
N = 4 and N = 2 with N = 4 super-resolution at two wall-normal locations.

C. Test Case: Turbulent Channel

1. Meshes
In a turbulent channel simulation mesh resolution will typically be focused near the walls where turbulent kinetic

energy is highest, with the channel size set such that two-point velocity correlations are small at half domain distance
in the periodic directions. Instead of biasing resolution toward the walls in our adapted cases, we have chosen to
begin adaptation on a mesh with uniformly spaced elements in all directions. Starting with uniform elements allows
the adaptation algorithm to determine a resolution distribution we can compare to prior knowledge of resolution
requirements. Comparing Table 1 to recommended wall-resolved LES resolutions in [21], the uniform channel meshes
should be adequately resolved in the streamwise and spanwise directions but element spacing at and near the wall
should be extremely lacking. For the channel size we have followed [22], 2cX in the streamwise direction and cX in the
spanwise direction, where X is the channel half height. At '4g = 395, these choices result in the mesh spacing shown in
Table 1. These are approximate spacings found by dividing element size in wall units by the number of one dimensional
degrees of freedom for that element.

Table 1 Approximate grid spacing in wall units for uniformly spaced meshes.

ΔG+ ΔI+ ΔH+

N = 4 78 39 12
N = 8 39 20 6

2. Adapted Results
The initial condition is a uniform velocity field with sine wave variation of various frequencies in all velocities

and in all directions. This field is integrated forward in time until a linear profile of total shear stress, D′E′ − `mD̄/mH,
is achieved as discussed in [23]. Averaging over the streamwise and spanwise directions is employed to accelerate
convergence of the statistical profiles. Once a low-order solution has reached statistically steady state it is used to seed

6

high-order solutions which undergo the same process with an improved initial condition. The initial # = 4 solution is
adapted for three iterations with approximately 20% of elements incremented by two polynomial approximation orders
each iteration. While the error indicator is computed for each element, the adaptation takes advantage of the statistical
streamwise homogeneity, spanwise homogeneity, and center-line mirror of the channel case. This means all elements at
a particular wall normal distance are aggregated when determining adaptation groups.

After three adaptation iterations, the adapted solution uses 243,712 degrees of freedom. The uniform # = 4 solution
uses 65,536, and the uniform # = 8 solution uses 524,288. To emphasize the degree of under-resolution at # = 4,
notice that the bump in the # = 4 velocity profile in Figure 4 around H+ = 50 marks the end of the element bordering
the wall. The adapted solution removes this bump and remains close to the # = 8 solution until around H+ = 100 where
the higher resolution solution predicts higher velocity in the bulk of the channel in line with the DNS result from [22].

The turbulence intensity proves difficult to resolve correctly. The # = 4 profile barely resembles the final profile in
the first element between H+ = 0 and H+ = 50. Despite significant improvement, the # = 8 solution also struggles in the
first element, showing significant oscillations. The first element of the adapted solution at # = 10 performs significantly
better than the uniform # = 8 solution near the wall despite continued oscillation. Closer to the center of the channel,
both the adapted and # = 8 solutions continue to underestimate the turbulence intensity in similar fashion.

Reynolds stress proves to be the easiest statistical profile to match. Beyond the first element, even the # = 4 solution
is reasonable. The # = 8 solution shows oscillations around the DNS profile while the adapted solution shows little
deviation at all at less than half the computational expense of # = 8.

10 1 100 101 102

y +

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

u
+

N = 4
N = 8
adapted
Moser et al.

0 50 100 150 200 250 300 350 400
y +

0.0

0.5

1.0

1.5

2.0

2.5

3.0
u

+ rm
s

N = 4
N = 8
adapted
Moser et al.

0 50 100 150 200 250 300 350 400
y +

1.5

1.0

0.5

0.0

0.5

R
+ uv

N = 4
N = 8
adapted
Moser et al.

Fig. 4 Normalized velocity, turbulence intensity, and Reynolds stress profiles for the '4g = 395 turbulent
channel case.

The aggregation of elements for adaptation leads to the banded adaptation pattern shown in Figure 5. As expected,
the error indicator targets the edges of the channel domain, reaching # = 10 in the first layer, followed by three layers at
= 6, and all remaining layers at # = 4.

D. Demonstration Case: Cooling Slot
To demonstrate our method, we have chosen a turbulent mixing test case meant to mimic a cooling slot in

turbomachinery, presented in [24]. This case uses auxiliary domains to produce a turbulent boundary condition at

7

Fig. 5 '4g = 395 turbulent channel adapted order distributions. From top left to bottom right: high resolution
velocity field for visual reference, order field after 1, 2, and 3 adaptive iterations. Adapted orders range from
= 4 to # = 10 by two.

the inlet. The upper auxiliary domain is a one-way coupled periodic boundary layer simulation where boundary
layer thickness is maintained by a specialized forcing field. Source terms are added to the Navier-Stokes equations
corresponding to the mean gradient of each state according to a log-law and wake profile. The lower auxiliary domain is
a one-way coupled turbulent channel driven by a simple constant body force. The lower auxiliary domain connects
directly to the cooling slot of height H2 . Inflow from the auxiliary domains is initially separated by a small lip in the
main computational domain before mixing, as shown in Figure 6. The end of the lip is positioned at G/H2 = 0.

Each adaptation iteration refines approximately 20% of elements. Since the problem is statistically homogeneous in
the spanwise direction by construction, elements sharing spanwise faces are grouped and adaptation is performed in an
effectively two dimensional space with these element groups. Only elements with a downstream distance less than
approximately G/H2 = 32 are adapted to ensure there is no excessive downstream refinement.

The flow-through time scale for the main computational domain is C = 80H2/*∞. In all cases, averaging is started
after waiting at least 50.6C from the initial condition and averaging takes place for at least 10.1C, all at a time step of
approximately 5 × 10−4C. This integration time exceeds that of [24], which used 2 − 3C. This ensures that the difference
between the profile at half averaging time and full averaging time is small relative to the difference between profiles for
different simulations. The profile at each station is generated from the average of 20 spanwise velocity samples and all
simulations from this paper use the same high resolution (N = 8) inlet regions.

Figure 7 shows that after two adaptive iterations the velocity profiles notably improve at each station except the
first. The adapted velocity field performs slightly worse than # = 6 at all stations but uses approximately a third fewer
degrees of freedom. In Figure 7, statistics from [24] are provided where available, showing the present simulations are
still thoroughly under-resolved.

As shown in the order plot of Figure 6, the adaptation has primarily focused on the region immediately behind the
lip. It is surprising that relatively little emphasis has been placed on the flow separation at the corners of the lip but a
better error indicator could solve this issue.

Table 2 Slot case degree of freedom counts in primary computational domain. The adapted result has
undergone two adaptive iterations.

N = 4 adapted N = 6 N = 8
592,640 1,313,600 2,000,160 4,741,120

VI. Conclusion and Future Work
Large eddy simulation, as a high-fidelity modeling tool for turbulent flows, offers more accurate outputs and extra

physical insights compared to widely used RANS models. Despite the excellent accuracy, the computational cost for

8

Fig. 6 Mixed # = 4, 6, 8 adapted order distribution and reference velocity field.

well-resolved LES remains intractable for practical problems. In order to enable LES modeling in industry-relevant
problems, the computational efficiency has to be improved for traditional LES. Actively adapting the computational
mesh using a machine-learning based error indicator has been considered as a potential solution in this work.

Neural-network models are designed to reconstruct high polynomial approximation order turbulent flow solutions
using low-order approximations. Properly trained networks perform well on reconstructing the solution field. With
careful design of the network input and output features, the network generalizes well to unseen data.

The network structure considered so far is relatively simple, and more complicated architectures can be used to
improve the super-resolution model. The error indicator used in this work is also a very simple state difference. We
are working on an entropy-adjoint based weighted-residual indicator to improve performance. The testing of the
super-resolution model is not yet complete and the model performance on various flow conditions and geometries will
also be assessed in the future.

9

0.0 0.2 0.4 0.6 0.8 1.0
u/u

0

1

2

3

4

y/
y c

Garai et al.
N = 4
N = 6
N = 8
adapted

0.0 0.2 0.4 0.6 0.8 1.0
u/u

0

1

2

3

4

y/
y c

Garai et al.
N = 4
N = 6
N = 8
adapted

0.0 0.2 0.4 0.6 0.8
u/u

0

1

2

3

4

y/
y c

N = 4
N = 6
N = 8
adapted

0.0 0.2 0.4 0.6 0.8
u/u

0

1

2

3

4

y/
y c

N = 4
N = 6
N = 8
adapted

Fig. 7 Normalized velocity profiles for the slot case at various downstream stations. From top left to bottom
right the stations are G/H2 = 4, G/H2 = 10, G/H2 = 20 and G/H2 = 30.

10

Acknowledgments
The authors acknowledge the support of NASA, grant number 80NSSC18M0149, with technical monitor Gary

Coleman.

References
[1] Singh, A. P., and Duraisamy, K., “Using field inversion to quantify functional errors in turbulence closures,” Physics of Fluids,

Vol. 28, No. 4, 2016, p. 045110. https://doi.org/10.1063/1.4947045, URL https://doi.org/10.1063/1.4947045.

[2] Parish, E. J., and Duraisamy, K., “A paradigm for data-driven predictive modeling using field inversion and machine
learning,” Journal of Computational Physics, Vol. 305, 2016, pp. 758–774. https://doi.org/10.1016/j.jcp.2015.11.012, URL
https://doi.org/10.1016/j.jcp.2015.11.012.

[3] Ling, J., Kurzawski, A., and Templeton, J., “Reynolds averaged turbulence modelling using deep neural networks with embedded
invariance,” Journal of Fluid Mechanics, Vol. 807, 2016, pp. 155–166. https://doi.org/10.1017/jfm.2016.615.

[4] Gamahara, M., and Hattori, Y., “Searching for turbulence models by artificial neural network,” Physical Review Fluids, Vol. 2,
No. 5, 2017. https://doi.org/10.1103/physrevfluids.2.054604, URL https://doi.org/10.1103/physrevfluids.2.054604.

[5] Yang, X. I. A., Zafar, S., Wang, J.-X., and Xiao, H., “Predictive large-eddy-simulation wall modeling via physics-informed
neural networks,” Physical Review Fluids, Vol. 4, No. 3, 2019. https://doi.org/10.1103/physrevfluids.4.034602, URL
https://doi.org/10.1103/physrevfluids.4.034602.

[6] Wang, Z., Luo, K., Li, D., Tan, J., and Fan, J., “Investigations of data-driven closure for subgrid-scale stress in large-
eddy simulation,” Physics of Fluids, Vol. 30, No. 12, 2018, p. 125101. https://doi.org/10.1063/1.5054835, URL https:
//doi.org/10.1063/1.5054835.

[7] Beck, A., Flad, D., and Munz, C.-D., “Deep neural networks for data-driven LES closure models,” Journal of Computational
Physics, Vol. 398, 2019, p. 108910. https://doi.org/10.1016/j.jcp.2019.108910, URL https://doi.org/10.1016/j.jcp.2019.108910.

[8] Xie, C., Wang, J., Li, K., and Ma, C., “Artificial neural network approach to large-eddy simulation of compressible
isotropic turbulence,” Physical Review E, Vol. 99, No. 5, 2019. https://doi.org/10.1103/physreve.99.053113, URL https:
//doi.org/10.1103/physreve.99.053113.

[9] Xie, C., Li, K., Ma, C., and Wang, J., “Modeling subgrid-scale force and divergence of heat flux of compressible isotropic
turbulence by artificial neural network,” Physical Review Fluids, Vol. 4, No. 10, 2019. https://doi.org/10.1103/physrevfluids.4.
104605, URL https://doi.org/10.1103/physrevfluids.4.104605.

[10] Fukami, K., Fukagata, K., and Taira, K., “Super-resolution reconstruction of turbulent flows with machine learning,” Journal of
Fluid Mechanics, Vol. 870, 2019, pp. 106–120. https://doi.org/10.1017/jfm.2019.238, URL https://doi.org/10.1017/jfm.2019.
238.

[11] Deng, Z., He, C., Liu, Y., and Kim, K. C., “Super-resolution reconstruction of turbulent velocity fields using a generative
adversarial network-based artificial intelligence framework,” Physics of Fluids, Vol. 31, No. 12, 2019, p. 125111. https:
//doi.org/10.1063/1.5127031, URL https://doi.org/10.1063/1.5127031.

[12] Liu, B., Tang, J., Huang, H., and Lu, X.-Y., “Deep learning methods for super-resolution reconstruction of turbulent flows,”
Physics of Fluids, Vol. 32, No. 2, 2020, p. 025105. https://doi.org/10.1063/1.5140772, URL https://doi.org/10.1063/1.5140772.

[13] Reed, W., and Hill, T., “Triangular mesh methods for the neutron transport equation,” Tech. rep., Los Alamos Scientific Lab,
October 1973. Available: https://www.osti.gov/servlets/purl/4491151.

[14] Bassi, F., and Rebay, S., “A High-Order Accurate Discontinuous Finite Element Method for the Numerical Solution of
the Compressible Navier–Stokes Equations,” Journal of Computational Physics, Vol. 131, No. 2, 1997, pp. 267–279.
https://doi.org/10.1006/jcph.1996.5572.

[15] Cockburn, B., and Shu, C.-W., “Runge–Kutta discontinuous Galerkin methods for convection-dominated problems,” Journal of
Scientific Computing, Vol. 16, No. 3, 2001, pp. 173–261. https://doi.org/10.1023/a:1012873910884.

[16] Hartmann, R., and Houston, P., “Adaptive Discontinuous Galerkin Finite Element Methods for the Compressible Euler
Equations,” Journal of Computational Physics, Vol. 183, No. 2, 2002, pp. 508–532. https://doi.org/10.1006/jcph.2002.7206.

[17] Rosenblatt, F., Priciples of neurodynamics; perceptrons and theory of brain mechanics, Spartan Books, Washington, D.C.,
1962.

11

https://doi.org/10.1063/1.4947045
https://doi.org/10.1063/1.4947045
https://doi.org/10.1016/j.jcp.2015.11.012
https://doi.org/10.1016/j.jcp.2015.11.012
https://doi.org/10.1017/jfm.2016.615
https://doi.org/10.1103/physrevfluids.2.054604
https://doi.org/10.1103/physrevfluids.2.054604
https://doi.org/10.1103/physrevfluids.4.034602
https://doi.org/10.1103/physrevfluids.4.034602
https://doi.org/10.1063/1.5054835
https://doi.org/10.1063/1.5054835
https://doi.org/10.1063/1.5054835
https://doi.org/10.1016/j.jcp.2019.108910
https://doi.org/10.1016/j.jcp.2019.108910
https://doi.org/10.1103/physreve.99.053113
https://doi.org/10.1103/physreve.99.053113
https://doi.org/10.1103/physreve.99.053113
https://doi.org/10.1103/physrevfluids.4.104605
https://doi.org/10.1103/physrevfluids.4.104605
https://doi.org/10.1103/physrevfluids.4.104605
https://doi.org/10.1017/jfm.2019.238
https://doi.org/10.1017/jfm.2019.238
https://doi.org/10.1017/jfm.2019.238
https://doi.org/10.1063/1.5127031
https://doi.org/10.1063/1.5127031
https://doi.org/10.1063/1.5127031
https://doi.org/10.1063/1.5140772
https://doi.org/10.1063/1.5140772
https://www.osti.gov/servlets/purl/4491151
https://doi.org/10.1006/jcph.1996.5572
https://doi.org/10.1023/a:1012873910884
https://doi.org/10.1006/jcph.2002.7206

[18] Nair, V., and Hinton, G. E., “Rectified linear units improve restricted boltzmann machines,” Proceedings of the 27th international
conference on machine learning (ICML-10), 2010, pp. 807–814.

[19] Diosady, L., and Murman, S., “Design of a Variational Multiscale Method for Turbulent Compressible Flows,” 21st AIAA
Computational Fluid Dynamics Conference, 2013.

[20] Diosady, L., and Murman, S., “Higher-Order Methods for Compressible Turbulent Flows Using Entropy Variables,” 53rd AIAA
Aerospace Sciences Meeting, 2015.

[21] Georgiadis, N. J., Rizzetta, D. P., and Fureby, C., “Large-eddy simulation: current capabilities, recommended practices, and
future research,” AIAA journal, Vol. 48, No. 8, 2010, pp. 1772–1784.

[22] Moser, R. D., Kim, J., and Mansour, N. N., “Direct numerical simulation of turbulent channel flow up to Ret=590,” Physics of
Fluids, Vol. 11, No. 4, 1999.

[23] Kim, J., Moin, P., and Moser, R., “Turbulence statistics in fully developed channel flow at low Reynolds number,” Journal of
Fluid Mechanics, Vol. 177, 1987, pp. 133–166.

[24] Garai, A., Murman, S., and Nateri, M., “Scale-Resolving Simulations of a Fundamental Trailing-Edge Cooling Slot Using
a Discontinuous-Galerkin Spectral-Element Method,” Proceedings of ASME Turbo Expo 2019: Turbomachinery Technical
Conference and Exposition, 2019.

12

	Introduction
	Spatial Discretization
	Super-Resolution Neural-Network
	Super-Resolution Model
	Fully Connected Neural-Networks
	Network Design

	Adaptation Strategy
	Error Indicator

	Results
	Data Generation and Network Training
	Offline Flow Reconstruction Testing
	Test Case: Turbulent Channel
	Meshes
	Adapted Results

	Demonstration Case: Cooling Slot

	Conclusion and Future Work

