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This paper investigates the feasibility and accuracy of field inversion and machine learning
for correcting an algebraic transitionmodel in moderate Reynolds-number flows. An algebraic
model is chosen for simplicity and to keep simulation costs low by avoiding additional equations.
The discretization is a high-order discontinuous finite-elementmethod. The inverse problem for
the correction field is solved using gradient-based optimization with adjoint sensitivities. Data
for the inversion comes fromunsteady turbulence simulations and, for the purpose of this initial
assessment, experiments. The goal of the study is to assess suitability of the algebraic transition
model for use in optimization and adaptation of unsteady turbulent flows using the method
of dynamic closures. We show that the algebraic model does yield correct local sensitivities
for the cases tested. In addition, we identify the need for a new correction approach that
incorporates parameter optimization into the field inversion problem to improve learnability
of the correction field in the machine-learning stage. The results compare dynamic corrections
for RANS with the transition model and without it, and the latter is shown unable to reliably
predict transition in spite of the similarity between the turbulent production correction and
the intermittency function.

I. Introduction
Whereas advances in computational power have made scale-resolving turbulence simulations more prevalent, the

cost of these simulations still prohibits their use in fast-turnaround analyses and designs of practical aerospace vehicles.
Furthermore, the chaotic nature of unsteady turbulence prevents a direct application of the adjoint method for local
sensitivity calculations, which are required for efficient optimization, uncertainty quantification, and mesh adaptation.
Against this backdrop, cheaper turbulence modeling techniques such as RANS remain of high value, despite their
inaccuracies. Mitigating these inaccuracies motivates the present work in model corrections.

In our previous work, we have shown how RANS can be augmented with dynamic corrections, driven by unsteady
simulations [1, 2]. The dynamic corrections allow for stable adjoint-based sensitivities, which are calculated from the
steady RANS model. They also keep the costs of optimization and adaptation simulations low: multiple iterations of
optimization/adaptation are done using RANS, whereas unsteady simulations are only needed a few times to rebase the
correction.

The accuracy of the adjoint-based sensitivities depends on the suitability of the RANS model, i.e. its proximity to
the unsteady simulation, which can be assessed by the magnitude of the correction and whether or not it lends itself to a
model that is a function of the local resolved states. In this sense, fully-turbulent RANS models such as Spalart-Allmaras
are suitable for correction at high-Reynolds numbers. For moderate Reynolds numbers in the transitional regime,
fully-turbulent RANS models become less suitable, requiring larger corrections that, as we show here, cannot always be
robustly modeled from the state. Hence, in this work, we investigate field inversion and machine learning for RANS
with a transition model.

We apply FIML to the algebraic SA-BCM transition model [3, 4]. For the correction field, we investigate the
standard multiplicative factor on the production term, and we demonstrate the need for parameter optimization during
inversion to effectively move the transition location. We show that fully turbulent RANS can predict integrated quantities
well, but that, as expected, it does not predict the transitional pressure or skin friction distribution. A correction based
on an integrated quantity improves the measure of that quantity, but not of the flowfield or surface qunatities. Inverting
on a distribution improves the prediction of surface stress, yet a local model for this correction is inaccurate for the small
networks tested. In contrast the transition model can predict both integrated quantities and surface distributions well,
although its accuracy depends on closure coefficients used. A correction mitigates this dependency and remains accurate
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with a local model. However, a multiplicative correction is insufficient for controlling production when the intermittency
is low, and hence the need for an alternative correction procedure or optimization of the transition parameters. In this
work we take the latter approach by including parameter calibration during field inversion.

In this paper, Section II presents the RANS and transition models used in this work. Section III describes the model
correction approaches and the field-inversion algorithm for obtaining the correction field. Section IV presents the
machine-learning model for the correction and the training approach. Results in Section V demonstrate the feasibility of
applying FIML to several transitional flows, and the resulting local sensitivities. Section VI concludes with a summary
and future directions.

II. Model and Discretization
In this work, we discretize the compressible Reynolds-Averaged Navier-Stokes (RANS) equations with the

Spalart-Allmaras (SA) closure [5] and an algebraic intermittency model [3, 4], using a discontinuous finite-element
method.

A. Baseline Turbulence Model
The RANS-SA equations written in index notation with implied summation are

mC d + m 9 (dD 9 ) = 0
mC (dD8) + m 9 (dD 9D8 + ?X8 9 ) − m 9g8 9 = 0
mC (d�) + m 9 (dD 9�) − m 9 (D8g8 9 − @ 9 ) = 0
mC (dã) + m 9 (dD 9 ã) − m 9

[ 1
f
d(a + ã 5=)m 9 ã

]
= (ã

(1)

where the source term for the turbulence model ã equation is

(ã = W̃V% − � −
1
f
(a + ã 5=)m 9 dm 9 ã +

212d

f
m 9 ãm 9 ã. (2)

In the above equations, d is the density, dD 9 is the momentum, � is the total energy, � = � + ?/d is the total enthalpy,
? = (W − 1)

(
d� − 1

2 dD8D8

)
is the pressure, W is the ratio of specific heats, % is the turbulence production, � is the

turbulence destruction, W̃ is an intermittency function, V is a production correction term, and 8, 9 index the spatial
dimension, dim. The viscous stress, g8 9 , is

g8 9 = 2(` + `C )n̄8 9 , n̄8 9 =
1
2
(m8D 9 + m 9D8) −

1
3
m:D:X8 9 , (3)

where ` is the laminar dynamic viscosity, which is here treated as constant but could also be calculated using Sutherland’s
law [6]. The eddy viscosity, `C , is

`C =

{
dã 5E1 ã ≥ 0
0 ã < 0

5E1 =
j3

j3 + 23
E1
, j =

ã

a
. (4)

The heat flux, @ 9 , is computed from the temperature gradient, @ 9 = (^ + ^C )m8) , where the laminar and turbulent thermal
conductivities are ^ = �?`/%A and ^C = �?`C/%AC respectively. %A and %AC are the laminar and turbulent Prandtl
numbers, and �? is the specific heat at constant pressure. The production term, %, is

% =

{
211(̃dã j ≥ 0
211(dã j < 0

, (5)

where the modified vorticity (̃ is written as

(̃ =


( + ( ( ≥ −2E2(

( +
((22

E2( + 2E3()
(2E3 − 22E2)( − (

( < −2E2(
, ( =

ã 5E2

^232 , 5E2 = 1 − j

1 + j 5E1
. (6)
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In Eqn. 6, ( =
√

2Ω8 9Ω8 9 is the vorticity magnitude (summation implied on 8, 9), Ω8 9 =
1
2 (m8E 9 − m 9E8) is the vorticity

tensor, and 3 is the distance to the closest wall. The destruction term, �, is given by

� =


2F1 5F

dã2

32 j ≥ 0

−2F1
dã2

32 j < 0
, 5F = 6

(
1 + 26

F3

66 + 26
F3

)1/6

, 6 = A + 2F2 (A6 − A), A =
ã

(̃^232
. (7)

Finally, the multiplier on adding ã in Eqn. 1 is 5= = 1 for positive ã and

5= =
2=1 + j3

2=1 − j3 , when j < 0. (8)

The baseline closure coefficients used in this work are

211 = 0.1355 2F1 =
211

^2 +
1 + 212
f

2E1 = 7.1

212 = 0.622 2F2 = 0.3 ^ = 0.41
f = 2/3 2F3 = 2 %AC = 0.9
2=1 = 16 2E2 = 0.7 2E3 = 0.9

B. Transition Model
The intermittency function W̃ in Eqn. 2 attenuates turbulent production to maintain laminar flow until transition to

turbulence. Various methods exist for modeling W̃, many relying on additional equations. Presently, we use an algebraic
model, BCM [4], named after the initial authors. This model is heavily empirical and contains tunable factors, but
it is inexpensive and simple to implement. Our goal is to assess whether the BCM model is suitable for predicting
sensitivities after correction with FIML.

In the BCM model, the intermittency is

W̃ = 1 − exp
(
−
√
)1 −

√
)2

)
, (9)

where

)1 =
max('4\ − '4\2 , 0)

2C1'4\2
, )2 = max

(
aC

2C2a
, 0

)
. (10)

The momentum thickness Reynolds number is correlated to the vorticity Reynolds number, '4( through [4],

'4\ =
'4(

2.193
, '4( =

32(

a
, (11)

and hence can be measured locally without any integration. The critical momentum thickness Reynolds number is
based on the empirical formula

'4\2 = 803.73 ()D∞ + 0.6067)−1.027 , (12)

where )D∞ is the freestream turbulence level that need not correlate directly to ã∞ [7].
The closure coefficients used in this work are

2C1 = 0.002, 2C2 = 50, )D∞ = .01. (13)

Finally, V that appears in Eqn. 2 is the FIML production correction factor that is applied independently of the
intermittency.
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C. Finite-Element Discretization
We use a discontinuous Galerkin (DG) finite-element spatial discretization [8], with the Roe [9] convective flux and

the second form of Bassi and Rebay (BR2) [10] for the viscous treatment. The state is approximated on an unstructured
mesh of non-overlapping elements using polynomials of order ?. The semi-discretized form of the equations is

M
3U
3C
+ R(U) = 0, (14)

where U ∈ R# is the discrete state vector, # is the total number of unknowns including the state rank, R(·) ∈ R#×# is
the nonlinear spatial residual, and M ∈ R#×# is the block-element sparse mass matrix. For steady simulations, the
time derivative term drops out, although pseudo-time continuation remains in the solver to drive the steady residual to
zero [11]. The solver consists of a Newton-Raphson method with the generalized minimum residual (GMRES) [12]
linear solver, preconditioned by an element-line Jacobi smoother with a coarse-level (? = 1) correction [13, 14]. For
unsteady simulations, we use a third-order modified extended backward difference formula [15] applied to the the
semi-discrete form.

Solving a field inversion problem efficiently requires an adjoint, which here is calculated in discrete form. For a
scalar output � (U), the discrete steady adjoint vector, 	 ∈ R# , is the local sensitivity of � to perturbations in the steady
residual, R [16]. Linearization of the residual and output shows that the adjoint satisfies the following linear equation,(

mR
mU

))
	 +

(
m�

mU

))
= 0. (15)

This equation is solved using the same preconditioned-GMRES method used in the primal solver.

III. Correction Field Inversion
We perform field inversion to obtain the correction field V(®G) that appears in Eqn. 2. The objective for the field

inversion arises from matching higher-fidelity data, either experimental or numerical, in the form of integrated scalars,
surface distributions, or entire flow-fields. In this work we consider both integrated forces and surface-stress distributions.

A. High-Fidelity Data
One way to obtain higher-fidelity data is through unsteady, e.g. scale-resolving, simulations, which can be

appropriately averaged for training steady RANS models [1, 2]. Let Ū be a statistically-steady flow state computed from
the time-average of the unsteady simulation after initial transients,

Ū =
1

) 5 − )8

∫ )5

)8

U(C) 3C, (16)

where )8 is the start time, taken sufficiently large to minimize startup transient effects, and ) 5 is the final time, taken
sufficiently larger than )8 to yield an adequate statistical mean. The goal of field inversion is to determine the V(®G) that
makes the corrected RANS solution match Ū or a functional of it.

The field-inversion error, F , measures the accuracy of this match, and presently we consider both scalar and
distribution measures,

F output (U(V), Ū) =
1
2
(� (U(V)) − � (Ū))2, (17)

F dist (U(V), Ū) =
1
2

∫
airfoil
‖2(U(V)) · ®= − 2(Ū) · ®=‖2 3B, (18)

where � (U) is a scalar output, such as a drag coefficient, 2 is the stress tensor, and ®= is the unit normal vector on the
surface, which is an airfoil in the problems considered here. Instead of the time-averaged unsteady solution, experimental
data can also be used in the above error measures.

B. Field Inversion
We represent the correction field using a ? = 1 Lagrange DG basis on each element, with a nominal value of 1.

Denoting by # the vector of basis coefficients in the approximation, the field inversion becomes a discrete optimization
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problem,

min
#

� inv ≡ F (U(#), Ū) + W
V

2
(# − 1)) M(# − 1)

s.t. R(U, #) = 0,
(19)

where F is either the output or distribution measure, and the additional term in the objective is a continuous Tikhonov
regularization that makes the inverse problem well-posed by penalizing large deviations of the correction field from the
nominal value of one. M is the mass matrix from the spatial discretization, and WV is a small user-prescribed parameter
set to 10−5, although a wide range of values was found to yield nearly identical results.

The field inversion problem is solved using 20 iterations of a limited-memory Broyden–Fletcher–Goldfarb–Shanno
(L-BFGS) algorithm [17], with a history of 10 updates for approximating the inverse Hessian. Each iteration amounts to
a steady RANS solution, which is not expensive as the solution from each iteration provides the initial guess for the state
at the next iteration. An adjoint is used to evaluate the objective gradient, and the residual linearization with respect to
# is calculated efficiently using finite differences and only a few residual evaluations [1].

C. Parameter Inversion
Turbulence and transition models have empirical parameters, which may be considered tunable to a certain degree.

This is particularly true for the BCM model, which is algebraic and which exhibits a large sensitivity to the parameters
2C1 and 2C2. Correction of these parameters can be incorporated into the inverse problem, without much additional
expense since these are scalars, not fields. We apply a multiplicative correction to the parameters to keep the correction
dimensionless, and hence invariant with respect to the units used. This assumes that the tunable parameters do not
switch signs, which is typically not restrictive.

Let P denote the vector of multiplicative corrections applied to parameters considered tunable and participating in
the inversion problem. The inversion objective in Eqn. 19 becomes

min
#,P

� inv ≡ F (U(#), Ū) + W
V

2
(# − 1)) M(# − 1) + W

%

2
(P − 1)) (P − 1)

s.t. R(U, #,P) = 0
(20)

The regularization for P, W% , may differ from that on #, WV , although presently we take these as equal. The result of
solving Eqn. 20 is the correction field together with scalar values for the parameters. We take these values as locally
valid and hold them fixed, as opposed to # for which we create a machine-learning model that is a function of the state.

IV. Machine Learning

A. Overview
The correction field obtained from field inversion is static and specific to the geometry and flow conditions used in

the inversion. We write it as V(®G) to denote that it only depends on the spatial coordinates. In applications such as
design optimization and mesh adaptation, we are interested in changes to the geometry and discretization, and hence a
static correction field loses utility. We therefore seek a model for V in terms of local flow information, similarly to other
terms in the turbulence model.

Wemodel themapping between local state information and the correction field using an artificial neural network [1, 18–
21]. The inputs are the local state (u), its gradient (∇u), and the wall distance function (3). In choosing these inputs,
which are not scale invariant, we do not aim to derive a general-purpose turbulence model. We instead seek to create
a locally-valid corrected model that reproduces the behavior of a higher-fidelity model at geometries, meshes, and
conditions that are close to the training case. We expect to retrain the model as an optimization or adaptation progresses,
and the utility of the model comes from its ability to yield accurate gradients – this is what we are assessing in the
present study of transitional flows.

B. Network Architecture
The neural network maps local flowfield information to the scalar correction field. Figure 1 shows the structure of

the network used in this work, which is a single-hidden-layer perceptron. The hidden layer, x1, contains =1 neurons,
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between the input layer, i.e. the features, x0, and the output layer, which consists of the scalar correction factor, V. The

     

x0

Input layer

β

x1

Hidden layer

∂u

∂x

∂u

∂y Output layer

d

u

x1 = σ(W1x0 + b1) β = Woutx1 + bout

Fig. 1 Structure of the artificial neural networks used to predict the correction field.

map from the input to the hidden layer involves an entry-wise sigmoid activation function, f(G) = 1/(1 + 4−G), whereas
no activation function is used for the output layer calculation. The parameters associated with the network consist of the
weights and biases, W8 ∈ R=8×=8−1 , b8 ∈ R=8 , where =8 is the number of neurons in layer 8.

The input into the network consists of the state, u, its gradient, ∇u, and the wall distance, 3, for a total of (1+dim)B+1
neurons. Based on results of our previous studies [1], the size of the hidden layer was set to =1 = 30. The weights and
biases of the network were trained using the adaptive moment (Adam) algorithm in TensorFlow [22]. The true V values
for training come from the field inversion correction field for one simulation: V is sampled at the quadrature points of
the elements. The training data are broken into mini-batches of size 1000 for the optimizer, and the learning rate is set
to .001. Prior to training, the weights and biases are initialized randomly from a unit normal distribution. 500,000
optimization iterations are taken in each training session for all of the presented results, although the mean-squared error
typically stabilizes well before this number. Two to three orders of magnitude drop in the loss are usually observed.

C. Implementation
Once a network is trained, it is implemented as a physics model in the RANS turbulence source calculation. No

changes to the inputs to this calculation are required, since the turbulent source already uses the state, its gradient,
and the wall distance function. The network is differentiated with respect to the state and its gradient for the Newton
solver and the discrete adjoint solver. Due to the nonlinear nature of the network, higher-order accurate quadrature
rules are used for the corrected RANS model. Presently, a constant order increment of 2 is added to the baseline 2? + 1
integration order requirement in the code.

V. Results
This section presents results obtained when using the SA-BCM model in an FIML setting for an Eppler 387 airfoil,

for which experimental data are available at various Reynolds numbers [23]. For the field inversion objective, both
experimental and unsteady numerical data are used. Comparisons are made between FIML applied to SA versus
SA-BCM, in terms of the accuracy of the corrected state and surface distributions, and the magnitude of the correction.
We use a free-stream SA working variable of ã∞ = 3a for the fully-turbulent SA model and ã∞ = 0.1a for the SA-BCM
model [7].

Figure 2 illustrates the computational mesh used in all calculations, which consists of 3584 curved& = 3 quadrilateral
elements and extends approximately 100 chord lengths away from the airfoil. The approximation order used is ? = 2,
and the freestream Mach number is 0.1.
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(a) Farfield view (b) Zoom near airfoil

Fig. 2 Mesh used for the Eppler 387 airfoil simulations.

A. Eppler Airfoil, '4 = 200:
We first perform tests at a Reynolds number of '4 = 200: . Running the baseline RANS model (SA) and the

transitional model (SA-BCM) at different angles of attack produces the lift and drag polars shown in Figure 3. We focus
on moderate angles of attack, but not stall, in which both models do not perform well, in part due to their steady nature
compared to the large-scale unsteadiness of stall. The results indicate that both models are accurate at predicting the
lift, which is not overly difficult when the flow is attached. On the other hand, they generally over-predict the drag,
albeit for different reasons: the fully-turbulent SA model over-predicts skin friction drag as it misses the laminar flow
before transition, while the SA-BCM model over-predicts pressure drag due to the flow not transitioning to turbulence
sufficiently quickly, leaving a larger region of separated flow.

5.0 2.5 0.0 2.5 5.0 7.5 10.0 12.5 15.0
angle of attack

0.0

0.2

0.4
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drag coefficient
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SA ML
SA-BCM
SA-BCM ML

Fig. 3 Eppler airfoil lift and drag polar at '4 = 200,000.

For both the SA and SA-BCM models, we run field inversion at U = 6◦, using the experimental drag coefficient as
the objective, with regularization, WV = 10−5. We then generate machine-learning models using the baseline network
architecture: 1 hidden layer of 30 neurons. These corrected models, SA-V and SA-BCM-V, are used in the same angle
of attack sweep, and Figure 3 includes these results. The lift coefficient does not change much and still agrees with the
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experiment. The drag coefficient decreases as expected given the lower objective drag for the field inversion. Both
models predict the experimental/target 23 at U = 6◦ well – we note that exact agreement is not guaranteed, due to
differences between the machine learning and field inversion corrections. At larger angles of attack, neither model
does a good job at predicting the drag dip, which is caused in the experiments by a decrease in pressure drag due to the
disappearance of the laminar separation bubble (LSB). However, at lower angles of attack, the SA-BCM results follow
the experimental drag polar better, in value and particularly the slope, than SA alone.

0.0 0.2 0.4 0.6 0.8 1.0

1.0

0.5

0.0

0.5

1.0

1.5

pr
es

su
re

 c
oe

ffi
cie

nt

x/c

SA
SA ML
SA-BCM
SA-BCM ML
McGhee exp

(a) U = 4◦
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(b) U = 6◦
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Fig. 4 Eppler airfoil pressure coefficient distributions at '4 = 200,000. The corrected (V) results all use the
machine-learning model obtained from field inversion at U = 6◦.

To further compare the results, we look at the pressure coefficient distributions, shown in Figure 4 for three angles of
attack. Transition appears in these plots due to the effect of the LSB on the pressure coefficient. The SA (fully turbulent)
model does not predict transition, and its correction barely changes the 2? – it does affect the skin friction, however. The
SA-BCM model without correction transitions to turbulence slightly too late, and too slowly at both of the lower angles
of attack. Correction moves this transition earlier, virtually on top of the experimental data, through higher V values
near the transition location, and this results in lower pressure drag values for SA-BCM-V. We observe improvement at
U = 4◦ even though the inversion and ML training were performed at U = 6◦, and this illustrates that the correction
remains valid locally. The extension to the larger angle of attack, U = 8◦, is not as accurate due to a regime change: the
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experimental results no longer show the laminar separation bubble, whereas SA-BCM-V still predicts it.
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(a) U = 4◦
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(b) U = 6◦
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(c) U = 8◦

Fig. 5 Eppler airfoil skin friction coefficient distributions at '4 = 200,000. The corrected (V) results all use the
machine-learning model obtained from field inversion at U = 6◦.

The skin friction results in Figure 5 indicate a large drop in 2 5 for SA-V compared to SA alone, caused by suppression
of turbulent production (low V) in what is supposed to be the laminar region. The resulting profiles still differ from the
transition model, as they are without an LSB or transition. Only the average 2 5 , together with the pressure distribution,
are consistent with the drag objective, as enforcing matching of an integrated quantity does not guarantee matching of
the distribution. For SA-BCM-V, the shift in the transition location on the upper surface is apparent and consistent with
the 2? result.

Finally, Figure 6 shows the Mach number and V field plots. The fully-turbulent SA Mach number contours indicate
a thin boundary layer without transition. The correction in SA-V reduces the skin friction through low V values,
particularly on the front upper portion of the airfoil. The effect on the boundary layer thickness is minimal, and hence
the negligible change observed in the 2? distribution. On the other hand, the SA-BCM boundary layer is thicker after
the laminar separation. The correction consists of a high V at transition to accelerate the reattachment. This leads to a
smaller LSB in SA-BCM-V, and hence less pressure drag.

B. Eppler Airfoil, '4 = 60:
As a second test case, we consider the same Eppler 387 airfoil at a lower Reynolds number, '4 = 60: , and one

angle of attack, U = 8◦. The flow is now more likely to separate earlier, and transition is important in keeping the flow
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(a) SA: Mach (0, 0.18) (b) SA-BCM: Mach (0, 0.18)

(c) SA: V (-0.3, 1.3) (d) SA-BCM: V (0, 3)

(e) SA-V: Mach (0, 0.18) (f) SA-BCM-V: Mach (0, 0.18)

Fig. 6 Eppler airfoil Mach and correction-field contours at '4 = 200,000 and U = 6◦.

attached. In addition to experimental data [23], we also generate higher-fidelity numerical data by running an unsteady
two-dimensional simulation using the Navier–Stokes equations without any additional models. The pressure distribution
from the time-average of the unsteady state actually agrees very well with the experimental data, as shown in Figure 7.
This agreement suggests that at this Reynolds number, the dominant transition mechanism is well-approximated by a
two-dimensional flow assumption.

Figure 7 also shows the results of the SA and SA-BCM models for this case. SA does well at predicting the average
pressure distribution but misses the LSB and transition, as it assumes fully-turbulent flow. SA-BCM does quite poorly:
the flow separates in the laminar portion and never re-attaches. Hence, the pressure distribution is vastly different from
the other results.

Figure 8 shows the Mach number and correction factor field plots for the various simulations. First, the unsteady
plots illustrate the breakdown of the laminar flow and transition at approximately the half-chord location. The SA
boundary layer remains thin due to the fully-turbulent assumption, whereas the SA-BCM flowfield exhibits massive
separation on the upper surface due to transition not occurring sufficiently early.

In this case, due to the availability of the time-averaged unsteady flowfield data, the airfoil surface stress distribution
is used for the field inversion objective. This is more information than just the drag alone, which was used in the
previous set of results. Hence, we expect better agreement in the corrected flowfield. Indeed, both Figures 7 and 8 show
that this is the case. The pressure distributions for SA-V and SA-BCM-V are nearly identical to the unsteady data, which
was the target. For SA-BCM, we observe a massive difference in the flowfield, as the correction causes reattachment and
a large change in the pressure distribution. Note the large values of V near the transition location that are responsible for
the earlier/faster transition and associated re-attachment. For SA, the change in the flowfield is also noticeable, as the
LSB appears. This is caused by suppression of turbulent production, with V playing the role of the transition model
intermittency, followed by an increase in V at the desired transition location.

In this case, we see that field inversion produces good results with appropriate corrections for both SA and SA-BCM.
A practically-critical question, however, is whether this correction can be learned and computed from the local state
information. And this is where we observe failure, for both SA and SA-BCM. The first red flag occurs during the neural
network training: the loss function only drops an order of magnitude for the baseline small network consisting a single
30-neuron hidden layer. Increasing the size and/or number of hidden layers helps with the training loss. However, when
subsequently used online, these larger networks fail to produce a converged flow solution.

Both SA and SA-BCM fail, but for different reasons. In the case of SA, it is difficult to learn the sudden low-to-high
swing in V at transition. This is because the state and wall distance do not change much over a small chord-wise
distance. Arguably, by the approximation properties of sufficiently-large neural networks, it should be possible to create
a correction function neural network model that produces the desired transition behavior: indeed, this is what the
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Fig. 7 Eppler airfoil pressure coefficient distributions at '4 = 60,000, U = 8◦.

(a) Unsteady: instantaneous state Mach (0, 0.2) (b) Unsteady: time-averaged state Mach (0, 0.2)

(c) SA: Mach (0, 0.2) (d) SA-BCM: Mach (0, 0.2)

(e) SA: V (-15, 15) (f) SA-BCM: V (-5, 15)

(g) SA-V: Mach (0, 0.2) (h) SA-BCM-V: Mach (0, 0.2)

Fig. 8 Eppler airfoil Mach and correction-field contours at '4 = 60,000 and U = 8◦.
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algebraic intermittency model does. However, the small changes in the flow state are drowned out by numerical errors,
both from the discretization and the field inversion. Hence, the correction field obtained is not suitable for approximation
with an ML model.

In the case of SA-BCM, we see massive separation without correction due to a large region of laminar flow caused
by the intermittency staying low for too long. As the V correction is multiplicative, it cannot effectively correct the
model in the region of low intermittency. Instead, the recourse is a massive increase in the production (large V) around
the transition location that re-attaches the flow, followed by negative V downstream to undo some of this production.
This extreme low-to-high-to-low swing in V is difficult to learn and prevents a stable model. In addition, the task of
re-attaching the flow poses solver continuation challenge.

C. Transition Model Parameter Sensitivity
The machine-learning stage failed in the previous example because of inadequacy in the baseline model. SA-BCM

with the default parameters did not predict the flow well for the particular test case of '4 = 60: , U = 8◦. However, by
changing the parameters, we can obtain improved performance. In particular, the 2C2 parameter that appears in Eqn. 13
has a strong effect on the location of transition. If it is not set appropriately for the case being simulated, the flowfield
may be incorrect to a sufficiently high degree that the field inversion yields large-magnitude, unlearnable corrections.

Figure 9 shows the effect of varying 2C2 on the solutions for the Eppler airfoil at U = 6◦ for two Reynolds numbers,
'4 = 200: and '4 = 60: . We see that for '4 = 200: , the low value of 2C2 = 1 makes the flow transition earlier,
eliminating the separation bubble and reducing the drag by about 10% relative to 2C2 = 50. In the '4 = 60: case, the
lower 2C2 value moves the transition earlier, causing a 20% change in drag, but does not eliminate the separation on the
upper surface.
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Fig. 9 Effect of the BCM parameter 2C2 on Eppler airfoil solutions at U = 6◦.
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Although changing 2C2 from 50 to 1 has a minor effect on the flow solution at '4 = 60: , this change is sufficient
to offload some of the correction from the V field and make the machine learning of the dynamic correction possible.
Figure 10 shows the initial (uncorrected) Mach number contours and the correction field after field inversion for 2C2 = 1.
Compared to the V contours in Figure 8, we now see significantly smaller-magnitude corrections.

(a) SA-BCM: Mach (0, 0.2) (b) SA-BCM: V (0.9, 3.7)

Fig. 10 Eppler airfoil Mach and correction-field contours at '4 = 60,000 and U = 8◦, using 2C2 = 1.

Figure 11 shows the corresponding field inversion and machine learning results when using 2C2 = 1. Unlike in the
case of 2C2 = 50, machine learning is now possible with the BCM model, and hence this result is shown in the figure. It
agrees well with the experimental data and the time-averaged unsteady result. Correction of the baseline SA model
without the BCM transition model remains unlearnable for machine learning, due to large swings in V in regions where
the state does not change much.
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Fig. 11 Eppler airfoil pressure coefficient distributions at '4 = 60,000, U = 8◦, using 2C2 = 1.

Applying the field inversion and parameter optimization approach presented in Section III.C, we obtain 2C2 of
approximately 1 for the '4 = 60: , U = 8◦ case. The correction field also has smaller magnitudes, similarly to what
is shown in Figure 10. This result demonstrates the ability of the combined field/parameter inversion to produce
dynamically-corrected models with small-magnitude V fields that are amenable to learning as functions of the local state.
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VI. Conclusions
This paper extends field inversion and machine learning to transitional flows. The governing equations are RANS

with an intermittency multiplier on the production term. The intermittency is a function of the local state through
an algebraic expression, so that no additional equations are needed in its calculation. This model, SA-BCM, can
predict transition but has tunable constants, in particular the freestream turbulent intensity and a factor that scales the
SA working variable. The effect of these tunable parameters can be mitigated to an extent via turbulent production
correction, V, used in FIML. The present results for the Eppler 387 airfoil indicate that the corrected SA-BCM results are
more accurate than the corrected SA results when inverting on an integrated quantity, such as the drag coefficient. This
improvement includes more accurate integrated quantities at nearby conditions, and more accurate surface distributions.
When inverting on distribution data, e.g. surface stress, the SA correction is not easily learnable from the local data, due
to the need for a large change in the correction from small changes in the state. The SA-BCM correction shows more
promise due to the built-in transition model, but the success of the field inversion and machine learning still depends on
the applicability of the model, as dictated by its tunable factors. The multiplicative combination of the intermittency and
the FIML correction prevents the field production correction from moving the transition location when the intermittency
suppresses production. Hence, in addition to solving for a correction field, we have incorporated parameter optimization
into the inversion problem. Optimized parameters offload work from the correction field, which then becomes smaller
in magnitude and more easily learnable in the machine-learning stage.
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