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This paper presents output-based high-order adaptive simulations of a three-
dimensional benchmark problem for turbulence model verification. The flow over a
smooth bump is modeled using the Reynolds-averaged compressible Navier-Stokes
equations, with a negative-viscosity formulation of the Spalart-Allmaras (SA) one-
equation closure. The initial high-order, curved, hexahedral mesh for the adaptive
runs is generated manually with sufficient boundary layer resolution to enable ro-
bust convergence at the approximation orders tested. Thereafter, resolution is
added using fixed-fraction, hanging-node refinement driven by an output error in-
dicator, calculated from a discrete adjoint-weighted residual. A comparison of the
output convergence results to previous data verifies the methods used and demon-
strates the benefit of high-order approximation for this case. In addition, several
implementation details are discussed, including quality curved-mesh generation,
wall distance calculation, hanging-node refinement, snapping of boundaries to the
geometry, and a nonlinear Newton continuation strategy.

I. Introduction

The Reynolds-averaged Navier-Stokes (RANS) equations remain an invaluable model routinely
used in analysis and design of aerospace vehicles. RANS simulations are computationally cheap
compared to other options for simulation turbulence because they take advantage of anisotropic
meshes that reduce the degrees of freedom required to accurately resolve thin boundary and shear
layers. However, realizing this advantage is not always straightforward, especially for high-order
methods that use curved elements. Maintaining mesh validity in these cases, particularly in adaptive
three-dimensional simulations, remains a challenging task and a subject of ongoing research.

The combination of high-order approximation and mesh adaptation offers an attractive solution
strategy for RANS simulations, which generally contain both smooth and singular features.1 In
addition, output-based adaptive methods2–5 offer a systematic approach for identifying regions
of the domain that require more resolution for the prediction of scalar outputs of interest. These
methods also return error estimates that can improve the robustness of solution verification and the
efficiency uncertainty quantification studies. It is for these reasons that we consider output-based
methods in the present study.

In this paper, we apply a high-order adaptive solution technique to a three-dimensional bench-
mark test case modeled using the RANS equations, closed with a negative-turbulent-viscosity modi-
fication of the Spalart-Allmaras (SA) one-equation model.6 Many previous works have investigated
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the RANS-SA equations, including in a high-order adaptive setting.1,7–10 The majority of the latter
work has focused on demonstrating benefits of adaptive refinement and/or high-order over uniform
or heuristic refinement for such flows. More recently, the authors and several other groups have
compared RANS results across discretizations and mesh types/refinement techniques, for several
two-dimensional benchmark problems.11 In the present work we extend the verification to three
dimensions, with an in-depth study of one simulation: flow over a smooth three-dimensional bump.

The remainder of this paper is organized as follows. Section II presents the compressible Navier-
Stokes equations closed with the RANS-SA model, and Section III discusses their discretization
with a high-order discontinuous finite-element method. Section IV details several implementation
aspects specific to three-dimensional RANS simulations. Section V describes the output error esti-
mation and adaptation techniques, and Section VI presents results for the several benchmark cases
considered. Section VII concludes with a summary and a discussion of possible future directions.

II. The Reynolds-Averaged Compressible Navier-Stokes Equations

The model equations in this work are compressible Navier-Stokes, Reynolds-averaged with a
version of the Spalart-Allmaras turbulence model that is modified for improved stability for negative
values of the turbulence working variable, ν̃.6 The resulting Reynolds-averaged Navier-Stokes
(RANS) equations are, using index notation with implied summation on repeated indices,

∂tρ + ∂j(ρuj) = 0

∂t(ρui) + ∂j(ρujui + pδij) − ∂jτij = 0

∂t(ρE) + ∂j(ρujH) − ∂j(uiτij − qj) = 0

∂t(ρν̃)︸ ︷︷ ︸
unsteady

+ ∂j(ρuj ν̃)︸ ︷︷ ︸
convective

− ∂j

[
1

σ
ρ(ν + ν̃fn)∂j ν̃

]
︸ ︷︷ ︸

diffusive

+ Sν̃︸︷︷︸
source

= 0

(1)

where the terms have been split according to their treatment in the discretization, and where source
term for the ν̃ equation is

Sν̃ =
1

σ
(ν + ν̃fn)∂jρ∂j ν̃ −

cb2ρ

σ
∂j ν̃∂j ν̃ − P +D.

In the above equations, ρ is the density, ρuj is the momentum, E is the total energy, H = E + p/ρ
is the total enthalpy, p = (γ − 1)

(
ρE − 1

2ρuiui
)

is the pressure, γ is the ratio of specific heats, P
is the turbulence production, D is the turbulence destruction, and i, j index the spatial dimension,
dim. The Reynolds stress, τij , is

τij = 2(µ+ µt)ε̄ij , ε̄ij =
1

2
(∂iuj + ∂jui)−

1

3
∂kukδij .

µ is the laminar dynamic viscosity, obtained using Sutherland’s law,

µ = µref

(
T

Tref

)1.5(Tref + Ts

T + Ts

)
, (2)

where T = p/(ρR) is the temperature, R is the gas constant for air (the difference in specific heats),
and the eddy viscosity, µt, is

µt =

{
ρν̃fv1 ν̃ ≥ 0

0 ν̃ < 0
fv1 =

χ3

χ3 + c3
v1

, χ =
ν̃

ν
.
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The heat flux, qj , is given by

qj = (κ+ κt)∂iT, κ = Cpµ/Pr, κt = Cpµt/Prt,

where Pr and Prt are the laminar and turbulent Prandtl numbers, and Cp is the specific heat at
constant pressure. The production term, P , is

P =

{
cb1S̃ρν̃ χ ≥ 0

cb1Sρν̃ χ < 0
,

where the modified vorticity S̃ is written as

S̃ =


S + S S ≥ −cv2S

S +
S(c2

v2S + cv3S)

(cv3 − 2cv2)S − S
S < −cv2S

, S =
ν̃fv2

κ2d2
, fv2 = 1− χ

1 + χfv1
. (3)

In Eqn. 3, S =
√

2ΩijΩij is the vorticity magnitude (summation implied on i, j), and Ωij =
1
2(∂ivj − ∂jvi) is the vorticity tensor. d is the distance to the closest wall. The destruction term,
D, is given by

D =


cw1fw

ρν̃2

d2
χ ≥ 0

−cw1
ρν̃2

d2
χ < 0

, fw = g

(
1 + c6

w3

g6 + c6
w3

)1/6

, g = r + cw2(r6 − r), r =
ν̃

S̃κ2d2
.

Finally, in Eqn. 1, fn = 1 for positive ν̃ and

fn =
cn1 + χ3

cn1 − χ3
, when χ < 0. (4)

Relevant closure coefficients are

cb1 = 0.1355 cw1 =
cb1
κ2

+
1 + cb2
σ

cv1 = 7.1

cb2 = 0.622 cw2 = 0.3 κ = 0.41

σ = 2/3 cw3 = 2 Prt = 0.9

cn1 = 16 cv2 = 0.7 cv3 = 0.9

III. Discontinuous Galerkin Discretization

We discretize Eqn. 1 using a discontinuous Galerkin (DG) finite element method.9,12 Defining
the state vector as u = [ρ, ρui, ρE, ρν̃]T , we write Eqn. 1 in compact conservative form,

∂tu +∇ · ~F(u,∇u) + S(u,∇u) = 0, (5)

where ~F is the combined inviscid/viscous flux vector, and S is the source term associated with the
turbulence closure equation. We approximate the state in a finite dimensional space, uh ∈ Vh,
where Vh is the space of element-wise discontinuous polynomials of order p. Choosing a basis for
Vh yields the following state approximation on element k,

u(~x)
∣∣
k

=

n(p)∑
j=1

Ukjφj(~x),
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where Ukj are the six unknowns associated with basis function j on element k. We denote by U =
{Ukj} all of these unknowns rolled into one vector. By virtue of the discontinuous approximation
space inherent to DG, the basis functions used to approximate the state need not correspond to the
geometrical shape of the element. For example, whereas tensor product basis functions are typically
used on hexahedral elements, in DG one can also use full-order “tetrahedral” basis functions. This
results in a significant savings in degrees of freedom for the same nominal order of convergence: for
example, a p = 4 tensor product basis requires 125 unknowns per element, while a p = 4 full-order
basis only requires 35 unknowns per element. This yields storage savings factors of over 3.5 for the
state and 12 for the residual Jacobian matrix.

Multiplying Eqn. 5 by test functions in Vh, which are the same as the basis functions for DG,
integrating by parts on each element, and using the Roe13 convective flux and the second form of
Bassi and Rebay (BR2)14 for the viscous treatment, we obtain the following system of nonlinear
equations,

R(U) = 0. (6)

III.A. Symmetry boundary conditions

The bump case presently considered requires symmetry boundary conditions on several boundaries.
In the continuous limit, symmetry requires vanishing normal state derivatives. A finite-dimensional
solution will generally violate these requirements pointwise, so we must enforce the BC weakly. This
enforcement involves transforming the state and gradient, similarly to methods in previous works,15

though we construct a state/gradient on the boundary instead of employing a ghost cell. Starting
with the state, we require that at a symmetry boundary all vectors in the state (e.g. a velocity) have
their normal components zeroed out. This results in a linear transformation from the interior (u+)
to the boundary (ub) state vector, which reads ub = Au+. A is the identity matrix for all states
except the momentum, which transforms as (ρ~v)b = V (ρ~v)+, where V = I − ~n⊗ ~n = δij − ninj . ~n
is the outward-pointing normal, and I = δij is the dim×dim identity matrix.

The state gradient transformation must account for possibly nonzero normal velocity com-
ponents. We first consider a hypothetical ghost state (u−) and gradient (∇u−), obtained by
reflecting the velocity about the symmetry plane. Specifically, u− = Bu+, where B is an iden-
tity matrix for all states except the momentum, which transforms as (ρ~v)− = W (ρ~v)+, where
W = I − 2~n ⊗ ~n = δij − 2ninj . Note that B = 2A − I and that W = 2V − I. Differentiating
the expression for u− in space gives the gradient, which we must reflect by applying W , so that
∇u− = B∇u+W T . Finally, we obtain the gradient at the boundary, ∇ub, by averaging the interior
and exterior gradients – this is consistent with what would happen in the viscous flux calculation
if there were actually a symmetrical mesh on the other side of the symmetry line. So we have

∇ub =
1

2

(
∇u+ +∇u−

)
=

1

2

(
∇u+ + B∇u+W T

)
=

1

2

(
∇u+ + (2A− I)∇u+(2V T − I)

)
= ∇u+ + A∇u+(2V T − I)−∇u+V = ∇u+~n⊗ ~n+ A∇u+(I − 2~n⊗ ~n).

III.B. Scaling of ν̃

The SA working variable, ν̃, will generally be orders of magnitude smaller than the other state
components. We use scaling or “non-dimensionalization” of ν̃ to make its range of numerical values
similar to the other state components. This proves to be effective in improving the performance of
the linear and nonlinear solvers.12 We store the scaled quantity, ρν̃ ′, given by

ρν̃ ′ =
ρν̃

κSAµ∞
,
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where κSA is a scaling factor, typically O(
√
Re), and µ∞ is the free-stream laminar dynamic

viscosity. In addition, the SA ν̃ equation is divided by κSAµ∞.

IV. Implementation

IV.A. Mesh Generation

A curved, hexahedral mesh was generated manually as a starting mesh for the adaptive runs. High-
order curved elements provide geometric fidelity that is essential for robust and accurate solutions
via the discontinuous Galerkin method, even at solution approximation orders of p = 1.16 In this
work, we employ curved elements throughout the domain, as the presence of highly-anisotropic
elements near the wall precludes the use of just one layer of curved elements. The anisotropy
is motivated by efficiency: RANS simulations require much higher resolution, i.e. smaller length
scales, perpendicular to the wall compared to parallel to the wall, so that anisotropic “pancake”
elements reduce the total degrees of freedom without sacrificing accuracy.

In this work, each hexahedron in physical space is obtained by mapping a unit reference cube
via tensor-product polynomials of order q, as shown in Figure 1. Nodal Lagrange basis functions,
with equal node spacing in reference space, yield curved elements that interpolate the provided
nodes, (q + 1)3 total. This property is useful for defining curved hexahedra via the coordinates of
their (q + 1)3 nodes.

X

Y

Z

y

x

z

reference space global space

~x =
∑n(q)

j=1 ~xjφj(
~X)

Figure 1. Reference-to-global mapping for a hexahedral elements, shown for q = 2 geometry approximation
with 27 nodes.

The high-order nodes inside the elements should be spaced roughly uniformly in physical space,
unless attempting to optimize the elements’ approximation power,17 to minimize skewness and
avoid the risk of negative mapping Jacobians. However, the elements themselves should ideally
be distributed non-uniformly over the domain to provide efficient solution approximation. In this
work we use logarithmic spacing for the element corner nodes, and linear spacing for the in-between
high-order nodes, as illustrated in Figure 2. For the present bump problem, these spacings are
prescribed for a uniform lattice in a featureless duct, which is then deformed and blended to fit the
given geometry.

Several remarks about the high-order meshes are in order. First, the meshes are watertight by
virtue of the uniqueness of edge and face approximations. That is, each edge is fully defined by the
nodes on that edge, regardless of the positions of the other nodes in the element. The same is true
for the faces. Second, although we use high-order curved elements, slope/normal continuity is not
explicitly enforced at inter-element boundaries. However, the mismatch in the slope, along with
the geometry errors in general, diminish as the mesh is refined. Third, curved elements require
non-canonical mass matrices, and these are computed via quadrature and stored for the duration of
the run. Finally, when a mesh is adapted, new nodes placed on the curved boundary are snapped to
the geometry. This demands sufficient resolution from the initial mesh to prevent element inversion,
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Figure 2. To increase resolution near the bump wall, elements (the boundaries of which are denoted by black
lines) are spaced logarithmically away from the wall. However, to minimize element skewness, the nodes inside
each element (identified by the blue triangulation) are spaced uniformly.

as only the first layer of elements adjacent to the boundary is affected by the snapping.

IV.B. Wall Distance Calculation

The distance to the closest wall, d, is required for the Spalart-Allmaras turbulence model. This
distance is used at every quadrature point, during the construction of the residual and resid-
ual Jacobian matrix. Rather than separately storing the distance at every quadrature point, the
wall distance is approximated by a polynomial of order pwd on each element. This polynomial is
constructed by evaluating the wall distance at each Lagrange node used in the polynomial approx-
imation on an element.

The wall distance is calculated at each order pwd Lagrange node of each element using the
following procedure. First, the distance to each boundary node is calculated via a brute-force
procedure to pre-select the closest boundary faces, which are those adjacent to the closest node.
For each of these boundary faces, which can generally be curved, the wall distance is computed
by first subdividing the high-order face into linear triangles, with 2(q + 1) subdivisions along each
edge. Thus, a quadrilateral boundary face would be split into 2[2(q+1)]2 = 8(q+1)2 triangles. The
distance to each of these triangles is computed by projection, and the closest triangle is selected.
The minimum distance to the linear triangles could be used as an estimate of the wall distance,
though it could be insufficiently accurate for highly-curved faces. Rather, the projection of the point
in question onto the closest triangle defines reference-space coordinates on the original face that
are used to “snap” the projection to the curved face geometry via the reference-to-global geometry
mapping, as illustrated in Figure 3. The distance to this snapped projection then defines the wall
distance. For further accuracy, the projection could serve as an initial guess for Newton-Raphson
iterations to minimize the distance on the curved face, though this extra step has not been found
to produce additional accuracy gains above the geometry approximation error of the curved faces,
as indicated by the wall distance error study in Figure 4.
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 actual wallcalculated
wall distance distance

point of interest

sp

s = 2/3

s = 1s = 0

s = 1/3

position on face
s = reference space

linear facets

curved face

(a) Wall-distance calculation (b) Contours of the wall-distance function

Figure 3. Schematic showing the process by which the wall distance is calculated on curved faces. Projection
to a linear panel representation of the face defines the reference-space face coordinates, which are then used to
calculate a more accurate projection on the true curved face. The wall distance is stored using a polynomial
representation on each element.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
−4

0

50

100

150

200

250

300

350

400

Error in wall distance or geometry

O
c
c
u
rr

e
n
c
e
s

maximum
geometry
error

(a)

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
−5

0

100

200

300

400

500

600

700

Error in wall distance or geometry

O
c
c
u
rr

e
n
c
e
s

maximum

geometry

error

(b)

Figure 4. Histograms of error in the wall distance calculation at quadrature points in the first layer of elements
adjacent to the wall, shown for a baseline mesh (left) and a uniform refinement of the baseline mesh (right).
The error is calculated relative to a true wall distance obtained by a Newton-Raphson projection to the true
geometry. For most of the points, the error in the wall distance is dominated by the maximum error in the
geometry representation (via high-order curved elements), indicated by the vertical red line in each plot. In
addition, the error decreases with mesh refinement as expected.
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IV.C. Nonlinear Solver

The DG discretization yields a system of nonlinear equations, R(U) = 0, that must be solved
for the unknown solution approximation coefficients, U. We use a Newton-Raphson method with
pseudo-transient continuation for robustness when not close to the root. Specifically, at each New-
ton iteration, the following linear system is solved (via the restarted generalized minimal residual
method – GMRES): (

M

∆ta
+
∂R

∂U

∣∣∣
U0

)
∆U + R(U0) = 0, (7)

where U0 is the solution guess, M is the block-diagonal mass matrix, and ∆ta is an element-specific
artificial time step given by

∆ta = CFL
h

cmax
,

with h = volume/(surface area), and cmax the maximum characteristic speed over the quadra-
ture points of the element. CFL is a global Courant-Friedrichs-Lewy number that starts low and
progressively increases according to an evolution strategy, described next, as the solution converges.

When not close to the root, the solution to Eqn. 7 may produce an update that makes U0 +∆U
non-physical. We therefore under-relax the update according to the following line-search strategy:

1. Given: U0 and ∆U, the solution to Eqn. 7.

2. Compute ωphys = maximum fraction such that U0 +ωphys∆U remains physical. This involves
checks at quadrature points of each element.

3. Set ω = min(1, ωphys). If ω < 1, set ω = ωβphys, where βphys < 1 is a buffer reduction factor
that keeps the solution from being borderline non-physical.

4. While ω > ωmin and ‖R(U0 + ω∆U)‖ > βresidual‖R(U0)‖: set w = wβline, where βline < 1.

5. If ω < ωmin, do not take the update. Instead, set CFL = CFLβCFL,decrease and return to the
first step.

6. If ω ≥ ωmin, take the update: U = U0 +ω∆U. Furthermore, if ω = 1, raise the CFL number:
CFL = CFLβCFL,increase. Return to the first step.

The parameters do not need much tuning, and the ones below used in this study also work for
many other problems.

βphys = 0.5, βresidual = 2.0, βline = 0.5, ωmin = 0.24, βCFL,increase = 1.2, βCFL,decrease = 0.1.

To accelerate the solver during adaptive iterations, when a good guess is available from the solution
on the previous mesh, the CFL increase factor is raised to βCFL,increase = 5.0. In all runs, the starting
CFL number is 1.0.

V. Mesh Adaptation

V.A. Error Estimation

We use an adjoint-based output error estimate to drive mesh adaptation. The discrete system of
nonlinear equations reads R(U) = 0, where the state and residual vectors are both in RN . For a
scalar output, J(U), the discrete adjoint vector, Ψ ∈ RN , is the sensitivity of J to perturbations
in R.5 It satisfies the following linear equation,(

∂R

∂U

)T
Ψ +

(
∂J

∂U

)T
= 0. (8)
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The adjoint vector provides an estimate of the error in the output when computing on a finite-
dimensional approximation space. Consider two finite-dimensional spaces: a coarse approximation
space, VH , on which we calculate the state and output, and a fine space, Vh (obtained by incre-
menting the approximation order by 1), on which we compute the adjoint and relative to which we
estimate the error. We would like to measure the output error in the coarse solution relative to the
fine space,

output error: δJ ≡ JH(UH)− Jh(Uh). (9)

We assume that the fine approximation space contains the coarse approximation space, so that a
lossless state injection, UH

h ≡ IHh UH , exists, where IHh is the coarse-to-fine state injection (prolon-
gation) operator. The fine-space solution, Uh ∈ RNh , solves Rh(Uh) = 0, but the injected state
will generally not give zero fine-space residuals, Rh(UH

h ) 6= 0. Instead, the injected coarse state
solves a perturbed fine-space problem, Rh(U′h) − Rh(UH

h ) = 0, and the fine-space adjoint, Ψh,
tells us to expect an output perturbation given by the inner product between the adjoint and the
residual perturbation,

δJ ≈ −ΨT
hRh(UH

h ). (10)

This estimate assumes small perturbations in the state when the output or equations are nonlinear.
It does not require the fine-space primal solution, Uh, but it does require the fine-space adjoint. In
this work, we fully converge the fine-space adjoint about the injected state, UH

h , storing the fine-
space Jacobian and using ΨH

h ≡ IHh ΨH as a initial guess in the GMRES iterative solver for Ψh.
For the three-dimensional problem considered in this work, this does add non-trivial additional
computational cost and memory overhead. However, we do this to minimize additional sources
of error. In practice, techniques such as iterative smoothing or reconstruction can be used to
approximate the fine-space adjoint and reduce the cost.5,9, 12

In an adjoint-consistent formulation, the discrete adjoint vector Ψ, consists of expansion co-
efficients that, when combined with the finite element basis vectors, approximate the continuous
adjoint vector. We can therefore visualize the adjoint in the same way as the state. Figure 5(a)
shows one of the adjoint components for the three-dimensional bump problem under consideration.
This field quantity should be interpreted as, at every point in space, the sensitivity of the output,
in this case drag, to residual perturbations in one of the conservation equations, in this case x mo-
mentum. We note that in this work, the discretization is not strictly adjoint consistent, as the state
gradients required for the turbulence source term are computed directly from the element-interior
state, not accounting for the inter-element jumps. However, the impact of this inconsistency on
the adaptive refinement has previously been shown to not be very large.7

V.B. Error Localization

The adjoint-weighted residual error estimate in Eqn. 10 can be localized to the elements, indexed
by k, according to

JH(UH)− Jh(Uh) ≈ −ΨT
hRh(UH

h ) = −
∑
k

ΨT
hkRhk(U

H
h ) ⇒ εk =

∣∣ΨT
hkRhk(U

H
h )
∣∣ ,

where the subscript k indicates degrees of freedom associated with element k, and the adaptive
indicator εk is the absolute value of the elemental contribution. Figure 5(b) shows the distribution
of error indicators for one of the adaptive iterations in the bump case. High values of the error
indicator denote elements that contribute the most to the output error, and these should be targeted
for refinement to reduce their residual and to improve their approximation of the adjoint.

9 of 19

American Institute of Aeronautics and Astronautics



(a) Drag adjoint (b) Adaptive indicator

Figure 5. Flow over a three-dimensional bump: the conservation of x-momentum component of the drag adjoint
on a medium resolution mesh, and the localized output error which serves as the adaptive indicator.

V.C. Hanging-Node Hexahedral Mesh Refinement

The mesh refinement strategy used in this work is hanging-node subdivision of elements in an ini-
tially structured hexahedral mesh.9,12,18 In this strategy, a fixed fraction, f frac = .03, of elements
with the highest error indicator is flagged for refinement. For the present results, we consider
isotropic refinement in which each hexahedron is subdivided uniformly into eight hexahedra, as
illustrated in Figure 6. This refinement is done in each element’s reference space by employing the
reference-to-global coordinate mapping in calculating the refined elements’ geometry node coordi-
nates. The refined elements inherit the same geometry approximation order and quadrature rules
as the parent coarse element.

Elements created in a hanging-node refinement can be marked for h-refinement again in sub-
sequent adaptation iterations. In this case, neighbors are divided in the minimal possible fashion,
generally anisotropically, to keep one level of refinement difference between adjacent cells, as illus-
trated in Figure 6.

element targeted for refinement

forced refinement of neighbor

Figure 6. Hanging-node refinement of hexahedral elements, with a maximum of one level of refinement sepa-
rating two elements. Following refinement of the bottom-left hexahedron, the neighbor element is refined in a
minimal way to maintain a maximum of one level refinement difference between the elements.

On curved boundaries, new nodes are snapped to the geometry, a perturbation that is usually
small when high-order curved elements are used. This perturbation is propagated into the interior
of the first layer of elements adjacent to the boundary by a linear weight that drops to zero on the
face opposite the boundary. A caveat of snapping to geometry with three-dimensional hanging-
node meshes is that it is easy to generate invalid, non water-tight, meshes. Figure 7 illustrates this
problem at a hanging node face when all boundary nodes are snapped to the geometry.
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edge mismatch after snapping

Figure 7. Snapping all boundary nodes to the true geometry can create non water-tight meshes for hanging-
node meshes in three dimensions. Shown are adjacent boundary faces, the one on the right refined one more
level compared to the one on the left.

The issue here is that when the nodes of the small elements on the refined side of the hanging-
node face get snapped to the geometry, their edges and faces may no longer match the edges and
face of the coarse-side element. One could constrain the perturbations of these fine-side nodes a
priori to follow the perturbations of the coarse side, a constraint that would have to propagate to
the affected faces as well. However, we employ a somewhat simpler a posteriori water-tightness fix
to the mesh: following the snapping of boundary nodes and propagation to element interiors, we
loop over all hanging node faces in the mesh and set all nodes of the fine-side elements on the face
to match the geometry approximation on the coarse-side neighbors. A free-stream residual test,
which would not pass for a non-water-tight mesh, verifies the validity of this fix.

VI. Results

VI.A. Problem Description

Figure 8 illustrates the setup of the present problem, flow over a three-dimensional bump. The free-
stream Mach number is 0.2, the Reynolds number based on unit length, L = 1, is ReL = 3×106, and
the Prandtl number is Pr = 0.72. A temperature-dependent viscosity is used, with the Sutherland
reference temperature Tref = 300K and temperature constant Ts = 110.33K in Eqn. 2. The free-
stream turbulent viscosity level is set to 3 times the free-stream laminar viscosity.

The boundary conditions consist of total temperature and pressure at the inlet and static pres-
sure at the outlet. An adiabatic no-slip condition is imposed on the wall boundary, and symmetry
conditions are enforced on all other boundaries. The bottom wall extends horizontally from xLE(y)
to 1.5xLE(y), where xLE(y) = 0.3[sin(πy)]4. That is, the leading and trailing edges of the wall vary
in y. The vertical displacement of the bump is given by

z(x, y) =

{
.05 [sin (π(x− xLE(y)− 0.3)/.9)]4 0.3 < x− xLE(y) < 1.2

0 otherwise

The outputs of interest are the lift and drag coefficients on the bump wall, which are calculated as
the force normalized by the free-stream dynamic pressure and the reference area, Sref = 1.5.

Figure 9 shows the initial mesh of the bump used for the adaptive runs. It consists of 864 q = 3
elements, with uniform spacing in the y direction, uniform spacing in the x direction across the
bump wall, logarithmic spacing in x in the pre-wall and post-wall regions extending to the farfield,
and logarithmic spacing in the z direction. The first layer of elements adjacent to the wall has a
∆z of 0.00108.
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Figure 8. Setup for the bump problem.

(a) Zoomed-out view (b) Zoomed-in view

Figure 9. Initial mesh used for the adaptive simulations, consisting of 864 q = 3 elements.
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VI.B. Output Convergence

Starting from the initial mesh, solutions at prescribed orders, p, were converged using the nonlinear
solver outlined in Section IV.C with βCFL,increase = 1.2. A full-order “tetrahedral” basis was used
to reduce the size of the systems at high orders compared to the tensor-product “hexahedral”
basis. Order continuation was used, where the solution at order p was used to initialize the state
at order p + 1. Free-stream initial conditions were used for p = 1. Following convergence on the
initial mesh, adaptive refinements were performed at each order p using the hanging node strategy
described in Section V.C with f frac = .03. Both lift and drag output adjoints were used to drive
separate refinement sequences. Since the solution was not expected to change much between the
adaptive iterations, a more aggressive CFL increase factor of βCFL,increase = 5 was used to speed
up convergence.

Figure 10 shows the convergence of the drag and lift coefficients with adaptive refinement. The
data are shown as output versus h, which is a measure of the mesh size defined as h = (dof)−1/3. For
a mesh with isotropic elements, all of the same size, this would correspond to the mesh diameter.
For our adapted and anisotropic meshes, this is no longer the case, and instead h is a surrogate
measure of the number of degrees of freedom: the larger the h the fewer the degrees of freedom,
the cheaper the cost. In addition to the raw output data at each order p, Figure 10 also shows
the “corrected” outputs, which are obtained by subtracting the adjoint-weighted residual output
error estimate, δJ in Eqn. 10, from the computed output. In the asymptotic regime and when the
adjoint is solved to sufficient accuracy, this correction should yield a faster converging output.

As shown in Figure 10 the DG results in this work appear to eventually, for fine meshes and
high orders, converge to the same results obtained using the CFL3D and FUN3D codes, the data
for which was provided on the NASA turbulence modeling resource website. At order p = 1,
the convergence is not yet apparent and from the trend would require many more iterations (a
much smaller h) to converge. The corrected p = 1 result is closer to the expected true value,
but its convergence is also not very rapid. Order p = 2 performs better, with a more rapid
convergence, especially for the lift output at the finer meshes. In addition, the corrected p = 2
result appears competitive with the CFL3D and FUN3D data at similar degrees of freedom. As the
order increases, the convergence improves further, with the p = 4 raw and corrected data showing
very good convergence to the results predicted by the fine CFL3D and FUN3D runs.

VI.C. Adapted Meshes

The adaptive refinement strategy selectively increases resolution in areas where nonzero residuals
are present and affect the output of interest the most. The resulting adapted meshes are specific to
the output calculated and to the order of approximation used. We take a close look at the meshes
obtained at the 10th adaptive iteration, for the drag and lift outputs, using approximation orders
p = 1 an p = 4.

Figures 11 and 12 show the meshes adapted to the drag and lift outputs respectively, at p = 1
approximation order. We see similar, though not identical, refinement patterns. Both outputs are
sensitive to the leading-edge region and to the crest of the bump. The regions before and after the
bump are refined in slightly different fashions: the drag-adapted mesh shows increased resolution
in these regions, especially near the wall at the x = 1.2 cut.

Figures 13 and 14 show the drag- and lift-adapted meshes for order p = 4. These are also at
the 10th adaptive iteration, and given the same adaptive refinement fraction, they have a number
of elements similar to the p = 1 meshes. However, the distribution of resolution at p = 4 differs
markedly from that at p = 1. We see much less resolution added away from the wall at the higher
order, indicating that this region is relatively well-resolved compared to the region near the wall,
where the density of elements is high for p = 4. This translates into more surface refinement and
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Figure 10. Convergence of drag and lift coefficients with mesh size, measured as the inverse third root of the
degrees of freedom, for adaptive refinements on drag and lift outputs at various orders p. “Corrected” results
denote outputs adjusted using the adjoint-weighted residual error estimate. CFL3D and FUN3D convergence
histories are shown for comparison.

14 of 19

American Institute of Aeronautics and Astronautics



(a) 3D view (b) Cuts at x = 0.3 (top), x = 0.75, and x = 1.2

Figure 11. Mesh at the 10th drag-based adaptive iteration (6213 elements) using p = 1 approximation.

(a) 3D view (b) Cuts at x = 0.3 (top), x = 0.75, and x = 1.2

Figure 12. Mesh at the 10th lift-based adaptive iteration (6357 elements) using p = 1 approximation.
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more refinement of the boundary layer just off the wall at p = 4. Also, comparing the drag- and
lift-adapted meshes, we see that the drag output requires more resolution on the bump crest and
aft of the bump, whereas the lift output requires more resolution at the leading-edge region and
in regions further away from the wall. The refinement patterns are relatively smooth, suggesting
that the effect of the adjoint inconsistency in the turbulent source term treatment on the mesh
refinement is not strong.

(a) 3D view (b) Cuts at x = 0.3 (top), x = 0.75, and x = 1.2

Figure 13. Mesh at the 10th drag-based adaptive iteration (6280 elements) using p = 4 approximation.

(a) 3D view (b) Cuts at x = 0.3 (top), x = 0.75, and x = 1.2

Figure 14. Mesh at the 10th lift-based adaptive iteration (6627 elements) using p = 4 approximation.

VI.D. Field Plots

Figure 15 shows a selection of field quantities for a relatively well-resolved mesh, using p = 4
approximation order. The pressure contours are smooth and show the expected trend of low
pressure over the crest of the bump and pressure buildup near the leading-edge regions. The
turbulent viscosity contours at various x locations show an increasingly thicker turbulent viscosity
layer, with three-dimensional structure – a strong core in the center at x = 2.4 downstream of the
bump wall. The Mach number contours show the expected no-slip boundary condition at the bump
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wall, and a thin boundary layer region that increases in thickness aft of the bump. Finally, the
entropy contours show generation of entropy over the surface of the wall, with larger levels on the
bump crest.

(a) Pressure coefficient, cp (-0.64 to 0.22) (b) ν̃ at x = 0.3(top), 1.2, 2.4; (0 to 60/240/750ν∞)

(c) Mach contours (0 to 0.25) (d) Entropy contours

Figure 15. Plots of several field quantities on a fine mesh, using p = 4 approximation order.

VII. Conclusions

This paper has presented the results of adaptive simulations for Reynolds-averaged turbulent
flow over a three-dimensional bump, using a high-order discontinuous Galerkin finite element dis-
cretization. Details on the fluid model and the discretization were presented, notably regarding
generation of curved meshes, calculation of the wall distance, and solution of the nonlinear system
via pseudo-time stepping. Adaptive refinement was driven by an adjoint-weighted residual, with
the output-specific discrete adjoint solution computed on a finer space providing residual sensitivity
information. Hanging-node adaptation was employed to increase resolution, with a water-tightness
enforcement to ensure mesh validity when snapping boundary points to the true geometry. The
three-dimensional runs were performed on hexahedral elements but using a tetrahedral, full-order,
basis in order to significantly reduce the size of the system for the same formal convergence order.

The adaptive results show that when using high-order approximation, both the drag and lift
outputs converge to the asymptotic values predicted by previous CFL3D and FUN3D runs. De-
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pending on the accuracy tolerance, there is an advantage of the high-order DG simulations of up
to an order of magnitude in degrees of freedom (slightly more than a factor of two in h) over the
CFL3D and FUN3D runs. However, this advantage does not directly extend to computational time,
as degrees of freedom in high-order DG simulations are generally more computationally expensive
than those for second-order finite volume simulations. We also note that the incorporation of the
output error estimate improves the convergence of the output, but that there is still a large pre-
asymptotic region in which the output is far away from the truth value and the correction, based
on linearized theory, does not uncover all of the error. This effect is strongest at the lower orders,
suggesting another reason for using high-order approximation.

Further benefits in adaptive three-dimensional simulations will likely be achieved by more gen-
eral adaptive mechanics, e.g. using fully-unstructured tetrahedral meshes, or hybrid prismatic and
tetrahedral meshes, for which the impact of the initial mesh quality is not as limiting. In addi-
tion, even for hanging-node refinement, anisotropic h refinement and combined h and p refinement
should provide noticeable improvements compared to the isotropic h strategy employed in this
work. Nevertheless, this study verified both the fluid model and the ability of adjoint-based refine-
ment to successfully target the desired output with incremental resolution in small portions of the
three-dimensional domain.
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