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This paper presents a method for estimating the drag error in a computational

uid dynamics simulation using the adjoint property of entropy variables. The error
of interest is that caused by the numerical discretization in the calculation of drag,
including e�ects of �nite mesh size and approximation order. Since the entropy
variables are obtained by a direct transformation of the state, no separate adjoint
solution is required. The proposed error estimate applies to a drag calculation
that involves a far-�eld integration of the entropy. Error estimates are derived
separately for inviscid and viscous 
ows, and results are presented for examples in
two dimensions. These results show that the error estimate is consistently within
a factor of 1.0 and 1.5 of the true numerical error in the drag. The results also
indicate that the error estimate applies equally well to near-�eld drag calculations
on meshes adapted using the entropy adjoint approach. As such, this estimate
provides a useful stopping criterion for adaptation using the entropy adjoint.

I. Introduction

Numerical error due to �nite-dimensional discretization is present in virtually all practical com-
putational 
uid dynamics (CFD) solutions. In large, complex, simulations this error can be di�cult
to control, especially if computational resources are already taxed. Solution-based adaptive meth-
ods address this problem by allocating degrees of freedom to areas where they are deemed necessary
based on some automated interrogation of the solution, in order to produce numerically accurate
solutions at reduced computational cost. Even when these methods are used, however, solution
accuracy is not guaranteed. One complication is that accuracy can be measured in di�erent ways,
for example through norms of the residual or solution error, or through errors in scalar outputs. Yet
very few of the adaptive methods used today provide bounds or estimates of any of these measures
of accuracy. Indeed, many heuristic methods have been shown, at least in certain cases, to produce
remarkably incorrect solutions under one or more relevant accuracy measures.

A notable exception is output-based adaptation, in which error estimates are computed for
targeted scalar quantities during the adaptive process. These methods have been applied success-
fully to aerodynamic 
ows in two and three dimensions,1{5 resulting in robust solution procedures.
The output error estimates rely on adjoint solutions, which although not prohibitively expensive
computationally, do require code-intrusive changes and are not yet widely available.
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Recent work by the authors investigated an alternative adaptation method based on the \en-
tropy adjoint".6 This method appealed to the observation that the entropy state variables act as
an adjoint solution for an output that expresses an entropy balance statement in the computational
domain. The residual weighted by the entropy variables then provides an error estimate for this
output. That is, we can compute the numerical error in an output without calculating a separate
adjoint solution, as the entropy variables are calculated directly from the conservative or primitive
state vector.

Adaptation driven by the entropy adjoint approach was demonstrated to produce \all-around"
good solutions that competed with engineering output adjoint solutions in terms of output accuracy
for several representative aerodynamic cases. However, the entropy adjoint method did not provide
error estimates for these engineering outputs. Without the exact solution, we would not know
whether the adaptation converged to the right value and when the adaptation could be terminated.
The only measure of error in the entropy adjoint approach is the error in the entropy balance
output, which is generally not of direct engineering interest.

In this work we propose a relationship between the entropy-adjoint error estimate and an
estimate of one engineering output of interest: drag, which is the free-stream aligned force on
an object in an external 
ow. Drag is critical for analysis and design of aerospace vehicles, but it
is notoriously di�cult to predict. It is the subject of a large body of previous work,7{15 including
an ongoing workshop by the American Institute of Aeronautics and Astronautics.16{19 The present
work relies on the observation that drag in CFD, as in experiments, can be measured in more than
one way: in particular via a near-�eld and via a far-�eld integration. The latter can be expressed
in terms of entropy through a formula due to Oswatitsch,20 and it is this formula that provides the
basis for our relationship between drag and the entropy balance output. Moreover we show that for
the cases considered, entropy-adjoint adaptation produces meshes in which the near-�eld and far-
�eld drag errors are comparable, and we attribute this property to the conservative discretization
and to the targeting of areas of spurious entropy generation by the entropy adjoint indicator.

The organization of this paper is as follows. Section II presents the near-�eld and far-�eld
drag expressions, including Oswatitsch’s formula. The discretization of the Euler and compressible
Navier-Stokes equations used in this work is given in Section III. Section IV discusses the adjoint-
based numerical error estimation procedure using engineering output adjoints and using entropy
variables. Section V presents the mesh adaptation procedure used in this study. Results for inviscid
and viscous 
ows in two dimensions are given in Section VI.

II. Drag Calculation in Computational Fluid Dynamics

The drag force on a body in an external 
ow governed by the steady Navier-Stokes equations
can be calculated using a direct integration of the stress on the body surface, Sbody,

Dnear =

Z
Sbody

[pn� n � � ] � x̂ dS; (1)

where p is the pressure, � is the viscous stress tensor, n is the surface normal vector pointing
outward from the 
uid, and x̂ is the unit vector pointing along the x axis, which is aligned with the
free-stream. Figure 1 illustrates these de�nitions schematically. As the subscript on D indicates,
we will refer to Eqn. 1 as the near-�eld drag calculation.

By conservation of momentum in steady state, the drag on the body can also be computed
without approximation via an integral on the surface of a far-�eld control volume enclosing the
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V1 = jV1jx̂

V = velocity �eld
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� = viscous stress

p = pressure
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Figure 1. Schematic diagram for near- and far-�eld drag calculations.

body, S1,

Dfar =

Z
S1

[��uV � n� pnx + n � � � x̂] dS; (2)

where V is the velocity �eld, n is again the normal vector pointing outward from the 
uid, nx is
the x-component of n, and u is the velocity component in the x direction. Dnear and Dfar will be
identical for the exact solution and equivalent to machine precision for a discrete solution when
using a conservative scheme in which the residual is converged to machine precision.

In the case of no trailing vortices, if S1 is su�ciently far from the body such that p = p1 and
the 
ow is parallel to the free-stream, the far-�eld expression in Eqn. 2 can be re-written as,11

Dosw =

Z
S1

u1

"
1�

s
1 +

2

(
 � 1)M2
1

�
1� e�s=cp

�#
�V � n dS; (3)

where u1 is the x-component of the free-stream velocity, M1 is the free-stream Mach number, 

is the speci�c heat ratio, cp = 
R=(
� 1) is the speci�c heat at constant pressure, and R is the gas
constant. The entropy change is measured relative to the freestream,

�s � s� s1; s � cv ln p� cp ln �;

where cv = R=(
 � 1) is the speci�c heat at constant volume. Eqn. 3 will be referred to as the
exact Oswatitsch expression.20,21 It accounts for drag produced either by shocks or by boundary
layers. When the far-�eld boundary is not su�ciently far from the body, correction terms can be
added to account for \mid-�eld" changes in pressure and enthalpy. However, these terms will not
be considered in the present work.

Another di�erence between the drag values obtained using Eqns. 1 and 3 is due to numerical
error. While in an exact solution the drag computed using Eqn. 3 is equal, up to the above
assumptions, to that computed using Eqn. 1, this thermodynamic equivalence does not necessarily
hold for a discrete numerical solution. Speci�cally, most solution schemes do not conserve entropy,
so that the entropy measured downstream of the body is polluted by spurious entropy generation.
Eqn. 3 will then su�er the e�ects of this spurious entropy pollution.
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Under the additional assumption that �s=R� 1, a �rst-order Taylor-series expansion of Eqn. 3
yields the \approximate Oswatitsch" drag expression,20

Dosw �
u1


RM2
1

Z
S1

�s �V � n dS: (4)

In this integral �s can be replaced by s since the far-�eld surface is assumed to be closed and s1
is constant.

Finally, in two dimensions, we de�ne the non-dimensional drag coe�cient as

cd =
D

1
2�1jV1j2c

;

where D is the drag computed using any of the above formulas, �1 is the freestream density, V1
is the freestream velocity, and c is a characteristic length of the body. In the present results for an
airfoil, c is the airfoil chord length.

III. Discretization

We consider the steady compressible Navier-Stokes equations,

r � Fi(u)�r � Fv(u;ru) = 0; (5)

where u = [�; �V; �E] is the conservative state vector and Fi/Fv are the inviscid/viscous 
uxes,
respectively. In this work we discretize Eqn. 5 using a discontinuous Galerkin (DG) �nite element
method that employs the Roe approximate Riemann solver22 for the inviscid 
ux and the second
form of Bassi and Rebay for the viscous 
ux.23 The solution is obtained via a Newton-GMRES
implicit solver with element-line Jacobi preconditioning and local pseudo-time stepping. While
a DG �nite element method was used in this work, the conclusions are not strictly tied to the
discretization.

The result of the discretization is a system of nonlinear algebraic equations,

RH(uH) = 0; (6)

where uH is the discrete solution vector and RH is the discrete residual vector. This will be referred
to as the primal system.

The error estimation strategy outlined in the next section relies on output adjoint solutions.
In this work, a discrete adjoint  H corresponding to an output of interest J(uH) is obtained by
solving the linearized transpose system,�

@RH

@uH

�T
 H �

�
@J

@uH

�T
= 0; (7)

where the linearizations are performed about uH . We note that the sign on
�

@J
@uH

�T
in Eqn. 7

is arbitrary and is chosen to make the entropy variables correspond to the adjoint for the output
de�ned in Eqn. 12, as derived in.6 The same element-line Jacobi preconditioned GMRES solver
used in the primal solve is used for the linear adjoint solve.
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IV. Drag Error Estimation

In this work we are interested in estimating the numerical error in the calculation of drag from
a computational 
uid dynamics simulation. We consider two approaches:

� a direct adjoint-based error estimation applied directly to the drag expressions in Section II.

� an indirect error estimation based on the entropy adjoint method.

These approaches are outlined in the following subsections.

A. Output Adjoint Approach

The discretization discussed in the previous section yields a solution approximation, uH , in some
�nite dimensional space VH . We are interested in the e�ect of the solution approximation on
the error in a scalar output, J(uH). In the present work, this output will be the coe�cient
of drag computed using either Eqn. 1 or Eqn. 3. To make the error estimation tractable, we
resolve to compare J(uH) to the output calculated from a \�ne" solution, uh, on a richer space
Vh. In a discontinuous Galerkin discretization, the solution space can be enriched by increasing
the approximation order or by re�ning the elements, and in this work we consider increasing the
approximation order from p in VH to p+ 1 in Vh.

We denote by uHh the coarse solution injected into the �ne space. There is no additional
approximation in this injection as VH � Vh. The �ne-space residual computed with uHh will
generally not be zero. The adjoint on the �ne space weights this residual to yield an estimate of
the output error,5

�J � � ThRh(uHh ); (8)

where � h =  h � Hh ,  h is the �ne-space adjoint,  Hh is the injection of the coarse adjoint into
the �ne space, and Rh is the �ne-space residual of the coarse projection. If the discretization is
not equipped with Galerkin orthogonality, an additional computable correction term arises from
the inner product between  Hh and the residual.

A critical part of the error estimate in Eqn. 8 is the �ne-space adjoint solution,  h, and this
solution can be obtained in several ways. It can be reconstructed via least-squares or solved
approximately or exactly in the �ne space, linearizing about uHh or about an exact or approximate
uh. We compare an exact adjoint solve about the exact uh, a somewhat expensive proposition,
to an approximate adjoint solve about an approximate uh, where the approximate solve consists
of ��ne = 5 iterations of element-block Jacobi relaxation. The results show that an approximate
adjoint solution yields error estimates that are virtually indistinguishable from those obtained with
the exact adjoint solve for the cases tested, and this observation is supported by the fact that the
error estimate is insensitive to coarse-space errors in the adjoint.5

For the drag coe�cient based on the near-�eld calculation in Eqn. 1, we denote the correspond-
ing �ne-space output adjoint as  h;near. For the drag coe�cient based on the exact Oswatitsch
expression in Eqn. 3, the adjoint is  h;osw. The error estimates for the drag coe�cients when
computed with a discrete solution uH are then

Near-�eld drag error = �cd;near � � Th;nearRh(uHh ); (9)

Oswatitsch drag error = �cd;osw � � Th;oswRh(uHh ): (10)
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We note that due to discrete conservation of momentum, the adjoint for the far-�eld drag output in
Eqn. 2 is equal to the near-�eld drag adjoint. However, because entropy is generally not conserved
at the discrete level,  h;near and  h;osw will be di�erent.

B. Entropy Adjoint Approach

The Navier-Stokes equations admit an entropy function for which the corresponding entropy vari-
ables symmetrize both the inviscid and viscous terms.24 This entropy function, unique up to
additive and multiplicative constants, is

U = ��s=R; s = cv ln p� cp ln �;

where p is the pressure, � is the density, s is the entropy, and 
 is the ratio of speci�c heats.
Di�erentiating with respect to the conservative state u yields the entropy variables,

v = UTu =

�




 � 1
� s

R
� 1

2

�V 2

p
;
�V

p
; ��

p

�T
; (11)

where V 2 = V � V is the square of the velocity magnitude. Note that the entropy variables are
obtained via a nonlinear transformation of the conservative variables. The corresponding entropy

ux is F = VU = �s�V=R.

As shown in,6 the entropy variables satisfy an adjoint equation for one speci�c output,

J =

Z
@


F � n dS| {z }
Ji

�
Z



vTr � (Kru) d
;| {z }

Jv

(12)

where 
 is the computational domain with boundary @
, and K is the linearization of the viscous

ux with respect to the state gradient. This output is an entropy balance statement for the
computational domain: the inviscid contribution J i represents the net in
ow of physical entropy
through @
, while the viscous contribution Jv is the negative total generation (i.e. the destruction)
of entropy in 
. For the exact solution, J will be zero, and J i = Jv. However, for an approximate
solution J will generally not be zero due to spurious entropy generation.

We now make the observation that the \inviscid" portion of this output, J i, is directly related
to the approximate form of Oswatitsch’s drag formula, Eqn. 4,

Dosw �
u1


RM2
1

Z
S1

s�V � n dS = � u1

M2
1

Z
S1

F � n dS = � u1

M2
1

Z
@


F � n dS = � u1

M2
1
J i; (13)

where in the second-to-last step the integral of F � n over the body, Sbody, is zero due to no 
ow
through the body, so that the integral over S1 is equal to the integral over @
. The drag coe�cient
is then approximated by

cd;osw =
Dosw

1
2�u

2
1c
� � 2

�u1
M2
1c| {z }

K

J i: (14)

This is a direct relationship between the entropy balance output and an output of engineering
interest: the drag coe�cient measured using Oswatitsch’s approximate formula. Note that the
constant K depends only on freestream conditions.
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The error in the drag coe�cient is then approximated by

�cd;osw � K �J i: (15)

In the inviscid case, J = J i, and we can directly apply the adjoint-weighted residual formula using
the entropy variables as the adjoint,

�J i = �J � �vThRh(uHh )

�cd;osw � K�vThRh(uHh ) (inviscid case) (16)

That is, the output error obtained when using the entropy variables as adjoints corresponds approx-
imately to 1/K times the output error in the drag coe�cient computed using Oswatitsch’s formula.
Since the entropy variables are readily computable from the primal state, this error estimate has a
key advantage that it does not require a separate adjoint solution.

The viscous case is more complicated because the output J in Eqn. 12 consists of both J i and
Jv. The adjoint weighted residual gives us the error in J , but for drag error prediction via Eqn. 15,
we are interested in the error in J i. We can break up the discrete residual as

Rh(uHh ) = Ri
h(uHh ) + Rv

h(uHh ): (17)

However, we cannot just replace the residual in Eqn. 16 with the inviscid portion, because Ri
h(uh)

is not in general zero, as required in the derivation of the adjoint-weighted residual error estimate.5

With the understanding that Rh(uh) = 0, the complete form of the adjoint weighted residual is

�J � �vThRh(uHh )� �vThRh(uh)

= �vTh
�
Ri
h(uHh )�Ri

h(uh)
�| {z }

�Ji

+ �vTh
�
Rv
h(uHh )�Rv

h(uh)
�| {z }

�Jv

: (18)

Thus, the error estimate for �J i requires two inviscid residual evaluations on the �ne space, one
with the coarse solution and one with the �ne solution. We note that in this work we investigate the
performance of the error estimate when uh is solved only approximately, since the error estimate
becomes trivial when the exact uh is available. The drag coe�cient error estimate becomes

�cd;osw � K�vTh
�
Ri
h(uHh )�Ri

h(uh)
�

(viscous case) (19)

V. Mesh Adaptation

The output error estimate drives an adaptive process in which the problem is solved multiple
times on successively re�ned meshes. The iterative process begins with a forward solution, and if
necessary an adjoint solution, on a coarse mesh. The drag error is estimated using the formulas
described in the previous section, and if the error is below a speci�ed tolerance, the iterative process
terminates. Otherwise, the drag error is localized and the mesh is re�ned as described below.

Since the degrees of freedom in the discretization are associated with individual elements, the
inner products in Eqns. 9,10,16, and 19 can be written as a sum over elements. For example, in
the adjoint case,

�J � � ThRh(uHh ) =
X
k

� Th;kRh;k(u
H
h ) (20)
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where k is an element index that, as a subscript, indicates degrees of freedom restricted to that
element. The error indicator for element k is then de�ned as the absolute value of the contribution
to this sum from that element

�k =
���� Th;kRh;k(u

H
h )
���: (21)

The elemental adaptive indicator, �k, drives a �xed-fraction, isotropic, hanging-node adaptation
strategy. In this strategy, a fraction fadapt = 0:1 of the elements with the largest adaptive indicators
are marked for re�nement. Marked elements are adapted uniformly, with a maximum di�erence of
one level of re�nement between adjacent elements.

The steps involved in each adaptation iteration can be summarized as follows:

1. Solve the primal problem on the current mesh at order p to obtain uH . If adapting using a
drag adjoint, solve the adjoint problem to obtain  H .

2. Inject uH into an order p+ 1 space and either solve the primal problem exactly or iteratively
smooth ��ne times to obtain uh.

3. If adapting using a drag adjoint, solve or iterate the �ne-space adjoint problem to obtain
 h;near or  h;far. If instead adapting using entropy variables, compute vh(uh) using Eqn.11.

4. Calculate the adaptive indicator, ��, for each element using either the output adjoint or the
entropy adjoint approach.

5. Re�ne a fraction fadapt of the elements with the largest indicator.

6. Initialize the solution on the adapted mesh with a projection of uH and return to step 1.

VI. Results

The following results present two demonstrations of adaptation and error estimation using
output adjoints and using the entropy adjoint. The cases are both in two dimensions: the �rst is
inviscid 
ow, and the second is viscous 
ow.

A. Inviscid Flow

The �rst example is inviscid, subcritical 
ow over a NACA 0012 airfoil. Although drag prediction
for this 
ow is of no great engineering consequence, as we expect it to be zero, discretized simulations
will yield some spurious drag and the accuracy to which the above methods predict the correct
drag error is of interest in verifying the proposed approach.

The airfoil geometry for this example has a closed trailing edge, and the far-�eld is approximately
100 chord-lengths away from the airfoil. The initial mesh is illustrated in Figure 2, with Mach
number contours in the near-�eld view. This mesh consists of quadrilaterals, with cubic (q = 3)
elements representing the geometry. Although the initial mesh appears structured, this structure
disappears with the �rst adaptation iteration and the mesh storage is always fully unstructured.
For the following results, quadratic solution approximation, p = 2, is used in the discretization.

The free-stream Mach number for this case is M1 = 0:4, and the angle of attack is � = 5o.
Stagnation quantities and 
ow direction are speci�ed on the in
ow boundary, and static pressure is
speci�ed on the out
ow boundary. Figure 3 shows the convergence of the drag coe�cient calculated
using the near-�eld and Oswatitsch expressions. Three strategies for adaptation are compared:

� adjoint-based adaptation on the near-�eld drag coe�cient, cd;near,
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Figure 2. NACA 0012, M = 0:4, inviscid, � = 5o: far-�eld and near-�eld views of the initial mesh for
adaptation, together with Mach number contours.

� adjoint-based adaptation on the Oswatitsch drag coe�cient, cd;osw,

� entropy-adjoint based adaptation.

For each strategy, two adaptive runs are performed: one with an exact �ne-space solve (solid
lines) and one with an approximate �ne-space solve (dashed lines). As shown in Figure 3, there
is a di�erence between the exact values of the two drag coe�cients, and this is due to the �nite
distance of the far�eld from the body. The \exact" values are obtained by calculating the outputs
on the �nal output-adapted meshes that have been uniformly re�ned, using approximation order
p = 3. However, all of the adaptive methods produce nearly identical values for cd;near and for
cd;osw versus degrees of freedom.

The next question is whether the error estimates correctly predict the true error in the drag
coe�cients. Figure 4 shows the convergence of the near and Oswatitsch drag coe�cient errors with
adaptive iteration for each of the three strategies. Several observations deserve attention. First, all
of the methods result in monotonic drag coe�cient convergence of about 2.5 orders of magnitude cd
reduction for one order of magnitude increase in degrees of freedom. Second, for all of the strategies,
the errors in cd;near are virtually identical to the errors in cd;osw, so that an error estimate of the
near-�eld drag error does well for the Oswatitsch drag error, and vice-versa. Third, the entropy
adjoint error estimate is nearly as accurate (less than 10% di�erence) as the error estimates from
the output-adjoint strategies.

We emphasize that the entropy adjoint approach requires no separate adjoint solution. However,
it does require a �ne-space solution for the entropy variables, vh, and hence uh. One could argue
that for this e�ort, the output error is also available as the di�erence between the output computed
with the coarse solution and that computed with the �ne solution. To test this hypothesis, Figure 4
also plots precisely this quantity, cd(uH)�cd(uh). As shown, if the �ne space solution uh is obtained
through an exact solve (solid line), this quantity yields an accurate error estimate. However, if
uh is obtained only approximately (dashed line), a more reasonable proposition in practice, then
cd(uH) � cd(uh) is no longer an accurate error estimate, with di�erences of over 1-2 orders of
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Figure 3. NACA 0012, M = 0:4, inviscid, � = 5o: convergence of drag coe�cients computed using near
(cd;near) and Oswatitsch (cd;osw) drag formulas. Solid/dashed lines (indiscernible di�erence) indicate
exact/approximate �ne-space solutions, respectively.

magnitude compared to the true error. In contrast, the adjoint-weighted and entropy-variable
weighted residual error estimates perform equally well for the approximate and for the exact �ne
space solutions. This phenomenon can be explained by the observation that the error estimates
rely on � h or �vh, and these quantities often converge with only a few smoothing iterations, in
contrast to  h and vh which generally require a full solve to predict accurately.

Figure 5 shows the �nal (tenth iteration) adapted meshes from the three strategies. These are
shown for the adaptations using the exact �ne-space solve, but there was virtually no di�erence
between these meshes and those obtained using the approximate �ne-space solve. As shown, for
this problem, the three strategies yield nearly identical meshes, indicating that the localized error
estimates are targeting the same areas of the computational domain: the leading edge, trailing
edge, and upper surface of the airfoil.

B. Viscous Flow

The second example consists of a NACA 0012 airfoil in viscous 
ow at M1 = 0:5, Re = 5000, and
� = 0o. The initial mesh and Mach number distribution is illustrated in Figure 6. The far�eld
boundary is again located at approximately 100 chord-lengths away from the airfoil, and p = 1
solution approximation was used for these results.

Figure 7 shows the convergence of the drag coe�cient calculated using the near-�eld and Os-
watitsch expressions. The three adaptive strategies presented in the previous example are again
compared. In addition, runs with approximate and exact �ne space solves are compared for each
strategy. As shown in Figure 7, there is a di�erence of about 2 counts between the exact values of
the two drag coe�cients. This is again due to the �nite distance of the far�eld from the body, and
it could be reduced by introducing additional terms into Eqn. 3.
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Figure 4. NACA 0012, M = 0:4, inviscid, � = 5o: near (left) and Oswatitsch (right) drag coe�cient
errors for three adaptation strategies. Solid/dashed curves correspond to exact/approximate �ne-
space primal and adjoint solutions for error estimation.
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(a) Adapted on cd;near (b) Adapted on cd;near (zoom)

(c) Adapted on entropy adjoint (d) Adapted on entropy adjoint (zoom)

(e) Adapted on cd;osw (f) Adapted on cd;osw (zoom)

Figure 5. NACA 0012, M = 0:4, inviscid, � = 5o: far-�eld and near-�eld views of �nal (10th iteration)
meshes for three adaptation strategies.
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Figure 6. NACA 0012, M = 0:5, Re = 5000, � = 0: far-�eld and near-�eld views of the initial mesh for
adaptation, together with Mach number contours.
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Figure 7. NACA 0012, M = 0:5, Re = 5000, � = 0: convergence of drag coe�cients computed using
near (cd;near) and Oswatitsch (cd;osw) drag formulas.
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In this case, the adaptive strategies no longer produce exactly the same drag convergence
histories versus degrees of freedom. The entropy adjoint strategy and adaptation on cd;osw perform
equally well, by the last few iterations, for both outputs. Adaptation on cd;near performs slightly
better for cd;near, as expected, but signi�cantly worse in the far-�eld drag, cd;osw.

Figure 8 shows the convergence of the near and Oswatitsch drag coe�cient errors with adaptive
iteration for each of the three strategies. We make several observations. First, as in the previous ex-
ample, all of the methods yield monotonic drag coe�cient convergence after the �rst few iterations.
Second, the Oswatitsch drag error estimate yields an excellent prediction of both the near-�eld and
the far-�eld drag errors. That is, the error in cd;near is comparable to the error in cd;osw, and pre-
dicted well using the adjoint for cd;osw on the resulting adapted sequence of meshes. Third, the drag
error estimates provided by the entropy adjoint approach, K�vTh

�
Ri
h(uHh )�Ri

h(uh)
�
, perform very

well in predicting the error in cd;osw which is nearly identical to the error in cd;near. We note that
the simple approach of including the viscous term in the entropy adjoint drag error estimate, i.e.
using �J instead of �J i in Eqn. 15, results in a consistent over-estimation of the output error by a
factor of 4-5. Fourth, adapting on the near-�eld drag coe�cient produces the fastest convergence of
cd;near, but the slowest convergence of, and lack of a good error estimate for, cd;osw (see Figure 8b).
This result supports the intuitive conclusion that not all areas of the domain important for the
calculation of cd;osw (e.g. the wake) are important for the calculation of cd;near. Fifth, the drag
coe�cient errors computed simply via cd(uH) � cd(uh) are again seen to be accurate only when
the �ne space problem is solved exactly, in contrast to the weighted-residual error estimates which
remain accurate even if the �ne space solution is approximate.

Finally, Figure 9 shows the �nal (tenth iteration) adapted meshes from the three strategies.
Both of the output adjoint strategies allocate some cells to the stagnation streamline region well
in front of the airfoil, whereas the entropy adjoint strategy leaves this area relatively coarse. All
strategies target the leading edge, boundary layers, and at least some of the wake. The entropy
adjoint approach and the adaptation on cd;osw both target the wake, which is important for accurate
entropy propagation to the far�eld boundary. We note that the resolution of the wake does not
preclude re�nement near the airfoil, which is of interest as any spurious entropy production there
would pollute the solution downstream. Adaptation on cd;near does not target a large extent of the
wake, and as expected its cd;osw computations contain the most error.

VII. Conclusions

This paper presents a relationship between the error estimate computed in the entropy-adjoint
approach and the drag error in subcritical, two-dimensional simulations of the Euler and Navier-
Stokes equations. The relationship holds for the particular case of far-�eld drag calculated via
an integration of entropy, originally due to Oswatitsch. Speci�cally, this calculation casts the
momentum integration on the far-�eld boundary in terms of the local entropy and free-stream
quantities. We relate the leading order term in this drag expression to the entropy balance output
available from the entropy adjoint approach. In the inviscid case, the relationship is direct as the
entropy adjoint output is an integral of the entropy 
ux through the domain boundary. In the
viscous case, the inviscid residual term has to be treated separately from the viscous residual term
to produce an accurate drag error estimate.

In the two cases tested, the accuracy of the drag error estimate derived from the entropy adjoint
approach is on par with that from the output adjoints. Even though the entropy adjoint output
is associated with a far-�eld drag measurement, the near-�eld drag calculations on the entropy

14 of 18

American Institute of Aeronautics and Astronautics



10
4

10
5

10
−4

10
−3

10
−2

10
−1

10
0

Degrees of freedom

|D
ra

g
 c

o
e

ff
ic

ie
n

t 
e

rr
o

r|

 

 

c
d,near

(u
H
) − c

d,near
(u)

δ ψ
h,near

T
 R

h
(u

H
)

c
d,near

(u
H
) − c

d,near
(u

h
)

(a) Adapted on cd;near
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10
4

10
5

10
−4

10
−3

10
−2

10
−1

10
0

Degrees of freedom

|D
ra

g
 c

o
e

ff
ic

ie
n

t 
e

rr
o

r|

 

 

c
d,osw

(u
H
) − c

d,osw
(u)

K δ v
h

T
 R

h
(u

H
)

K δ v
h

T
 [R

h

i
(u

H
) − R

h

i
(u

h
)]

c
d,osw

(u
H
) − c

d,osw
(u

h
)

(d) Adapted on entropy adjoint

10
4

10
5

10
−4

10
−3

10
−2

10
−1

10
0

Degrees of freedom

|D
ra

g
 c

o
e

ff
ic

ie
n

t 
e

rr
o

r|

 

 

c
d,near

(u
H
) − c

d,near
(u)

δ ψ
h,osw

T
 R

h
(u

H
)

c
d,near

(u
H
) − c

d,near
(u

h
)

(e) Adapted on cd;osw

10
4

10
5

10
−4

10
−3

10
−2

10
−1

10
0

Degrees of freedom

|D
ra

g
 c

o
e

ff
ic

ie
n

t 
e

rr
o

r|

 

 

c
d,osw

(u
H
) − c

d,osw
(u)

δ ψ
h,osw

T
 R

h
(u

H
)

c
d,osw

(u
H
) − c

d,osw
(u

h
)

(f) Adapted on cd;osw

Figure 8. NACA 0012, M = 0:5, Re = 5000, � = 0: near (left) and Oswatitsch (right) drag coe�cient
errors for three adaptation strategies. Solid/dashed curves correspond to exact/approximate �ne-
space primal and adjoint solutions for error estimation.
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(a) Adapted on cd;near (b) Adapted on cd;near (zoom)

(c) Adapted on entropy adjoint (d) Adapted on entropy adjoint (zoom)

(e) Adapted on cd;osw (f) Adapted on cd;osw (zoom)

Figure 9. NACA 0012, M = 0:5, Re = 5000, � = 0: far-�eld and near-�eld views of �nal (10th iteration)
meshes for three adaptation strategies.
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adjoint adapted meshes show nearly the same error as the far-�eld calculations. This observation
can be reasoned by noting that the entropy adjoint approach targets areas of spurious entropy
production, and in a conservative scheme it is the spurious entropy production that is responsible
for the di�erence in the near-�eld and Oswatitsch drag evaluations. Although the proposed entropy
adjoint approach uses a �ne space state solution, uh, the drag error estimate is shown to perform
well when uh is calculated approximately, e.g. through inexpensive smoothing, in contrast to a
simple di�erence between the coarse-solution drag and one calculated with the approximate uh.
Most importantly, the adaptation and drag error estimation using the entropy adjoint approach does
not require adjoint solution capability in the code, as the required entropy variables are computed
directly from the conservative state vector.

The proposed drag error estimate could be applied to two dimensional, viscous simulations to
yield a useful stopping criterion for adaptation with the entropy adjoint approach. An area of future
work is extension to three dimensions, where induced drag plays a key role and drag decomposition
using a far�eld approach becomes desirable. The applicability of this approach to 
ows with shocks
will also be of interest, especially in the transonic regime.
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