
A Machine-Learning Anisotropy Detection Algorithm

for Output-Adapted Meshes

Krzysztof J. Fidkowski*, and Guodong Chen�

Department of Aerospace Engineering, University of Michigan, Ann Arbor, MI 48109, USA

This paper presents a machine-learning approach for determining the optimal
anisotropy in a computational mesh, in the context of an output-based adaptive
solution procedure. An artificial neural network is used to predict the desired
element aspect ratio from readily accessible features of the primal and adjoint solu-
tions. Whereas the sizing of the element is still based on an adjoint-weighted resid-
ual error estimate, the network augments this information with element stretch-
ing magnitude and direction, at lower computational and implementation costs
compared to a more rigorous approach: mesh optimization through error sam-
pling and synthesis (MOESS). The network is trained to provide a correction of
the anisotropy information relative to a primal Hessian-based calculation, com-
puted from the Mach number field, by incorporating adjoint anisotropy features.
MOESS optimized meshes for a variety of steady aerodynamic flows governed by
the Reynolds-averaged Navier-Stokes equations in two dimensions provide data for
training the multi-layer perceptron network. The network is then deployed and
tested by driving complete mesh adaptation sequences, and the results show im-
provements in mesh efficiency compared to pure primal Hessian-based anisotropy
detection.

I. Introduction

Anisotropic meshes are important for efficiently resolving certain flow features, such as bound-
ary layers and shocks, in computational fluid dynamics. However, determining the optimal mesh
anisotropy, i.e. one that produces the most cost-effective meshes for a chosen error measure, is
not a trivial task. Heuristics based on flow features, such as the Hessian of a scalar quantity,1–10

can perform well for many cases but are not generally optimal for a wide range of flow fields and
approximation orders. They are also difficult to extend to systems of equations, in which multiple
quantities are approximated.

A more rigorous approach for determining mesh anisotropy, and the mesh sizing, involves sam-
pling the effects of element subdivision and regressing a model for the error behavior.11–13 Such an
approach directly addresses the error/cost optimization problem in the presence of unknown local
convergence rates but is computationally more complex and requires non-trivial mesh operations
for its implementation.

In this work, we investigate the idea of using a machine-learning approach to predict the optimal
mesh anisotropy. The goal is to design an algorithm that produces results similar to MOESS,
at lower implementation and computational costs, on par with feature-based detection methods.
The machine-learning algorithm must be trained on a large amount of data, and for this we use

*Associate Professor, AIAA Senior Member
�Graduate Student Research Assistant, AIAA Student Member

1 of 21

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d

by
 K

rz
ys

zt
of

 F
id

ko
w

sk
i o

n
A

pr
il

11
, 2

02
0

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
02

0-
03

41

 AIAA Scitech 2020 Forum

 6-10 January 2020, Orlando, FL

 10.2514/6.2020-0341

 Copyright © 2020 by Krzysztof Fidkowski and Guodong Chen. Published by the American Institute of Aeronautics and Astronautics, Inc., with permission.

 AIAA SciTech Forum

http://crossmark.crossref.org/dialog/?doi=10.2514%2F6.2020-0341&domain=pdf&date_stamp=2020-01-05

element-specific results of many MOESS iterations. The solution features used as inputs to the
machine-learning algorithm are based on both the primal and the adjoint solution, motivated by
the fact that this is the same information that is used to compute the error indicator.

For the machine-learning method, we use an artificial neural network (ANN). ANNs are a pop-
ular scientific machine learning approach for modeling nonlinear mappings between vector inputs
and outputs.14–17 They emulate biological systems through connected layers of neurons that are
activated under sufficiently-strong input signals. They have been used for many scientific and en-
gineering purposes, primarily for interpolation and data-driven modeling, both of which involve
mapping inputs to desired outputs.18,19 Such a map does not contain physics of the problem and is
therefore often viewed as “black box.” Nevertheless, the map can effectively “learn” relationships
between inputs and outputs that may be difficult to discern mathematically from first principles.

The outline for the remainder of this paper is as follows. Section II presents the numerical
approach used in this work, a discontinuous finite-element discretization. Section III summarizes
output-based error estimation, which is used to drive the adaptation algorithms presented in Sec-
tion IV. Section V introduces the new machine-learning approach for identifying the correct mesh
anisotropy during adaptation. Finally, Sections VI and VII present results of the training and
deployment of the neural network, and Section VIII concludes with a summary and a discussion of
future directions.

II. Discretization

We present the adaptive approach in the context of a discontinuous Galerkin (DG) finite element
discretization.20–22 We consider a system of partial differential equations in conservative form,

∂tu +∇ · ~F(u,∇u) + S(u,∇u) = 0, (1)

where u ∈ Rs is the s-component state vector, ~F ∈ Rd×s is the flux vector, d is the spatial
dimension, and S is a source term associated with turbulence modeling closure equations, in this
work RANS-SA.23,24

We assume a subdivision, Th, of the computational domain, Ω, into Ne non-overlapping ele-
ments, Ωe, and on each element we approximate the state by an order p polynomial. Specifically,
the state approximation is uph ∈ Vp

h = [Vph]s, where

Vph ≡ {u ∈ L2(Ω) : u|Ωe ∈ Pp ∀Ωe ∈ Th} . (2)

The subscript h indicates a specific domain subdivision, i.e. the collective size/shape distribution
of all of the elements, and Pp is the set of order-p polynomials a.

Multiplying Eqn. 1 by test functions vph ∈ Vp
h, integrating by parts on each element, and

using the Roe25 convective flux and the second form of Bassi and Rebay (BR2)26 for the viscous
treatment, we obtain the following semilinear weak form:

Rph(uph,v
p
h) = 0. (3)

Choosing bases for the trial and test spaces results in a system of nonlinear equations that is solved
using a Newton-Raphson procedure. The sparse Jacobian matrix is fully stored, and the linear
solves are preformed using GMRES, preconditioned by an element-line iterative solver.22

aThe polynomials are defined in reference space and for curved elements they may not remain order p polynomials
after the mapping to physical space.

2 of 21

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d

by
 K

rz
ys

zt
of

 F
id

ko
w

sk
i o

n
A

pr
il

11
, 2

02
0

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
02

0-
03

41

III. Output Error Estimation

We use an adjoint-based output error estimate to drive the mesh optimization. Theoretical
details can be found in previous works.27–29 For a scalar output, J (uph), the discrete adjoint field
ψph ∈ Vp

h is the linearized sensitivity of J to residual source perturbations, δR(·) : Vph → R added
to the left-hand side of Eqn. 3,

δJ = δR(ψph), (4)

where the equality assumes infinitesimal perturbations. We obtain the adjoint field by solving the
following linear equation,

R′ ph [uph](vph,ψ
p
h) + J ′[uph](vph) = 0, ∀vph ∈ Vp

h, (5)

where the prime denotes Fréchét linearization with respect to the argument in square brackets.
Output error estimation relies on a finer discretization space, which in this work is Vp+1

h : order
p+ 1 approximation on elements of the same domain subdivision, Th. The original (coarse) primal
state uph does not generally satisfy the fine-space weak form; instead it satisfies a perturbed weak

form, with a residual source of δR(·) = −Rp+1
h (uph, ·). If we have a fine-space adjoint, ψp+1

h , we
can then estimate the error in J due to using the coarse primal instead of the (never calculated)
fine-space primal,

output error = δJ ≡ J (uph)− J (up+1
h) ≈ −Rp+1

h (uph,ψ
p+1
h). (6)

The approximation sign indicates that the adjoint-weighted residual (last term) is an estimate of
the error between the spaces when the equations or output are not linear, since we are using linear
sensitivities with non-infinitesimal perturbations. The calculation in Eqn. 6 is also only an estimate
of the true numerical error, i.e. compared to the exact solution, since it uses an approximate, finite-
dimensional, fine space. The richer the fine space, the better the error estimate. We rely on the
fact that both the primal and the adjoint solutions are used to compute the error estimate when
selecting features for the machine-learning approach presented in Section V.

IV. Adaptation

We note that Eqn. 6 can be localized to elemental contributions,

δJ ≈
Ne∑
e=1

−Rp+1
h (uph,ψ

p+1
h

∣∣
Ωe

), Ee ≡ |Rp+1
h (uph,ψ

p+1
h

∣∣
Ωe

)|. (7)

Ee ≥ 0 in the above equation is the error indicator for element e. During mesh adaptation, this
indicator information provides information to adapt the computational mesh. However, as just one
scalar quantity per element, the error indicator is not sufficient to provide information about mesh
anisotropy. This information can come from heuristics, or from a sampling approach, as described
below.

IV.A. Hessian-Based Anisotropy Detection

One dominant approach for detecting the anisotropy is to estimate the directional interpolation
error of the solution,1,30 and we describe here an extension of such an approach that incorporates
output error adaptive indicators.5,9 For linear approximation, i.e., p = 1, the interpolation error of

3 of 21

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d

by
 K

rz
ys

zt
of

 F
id

ko
w

sk
i o

n
A

pr
il

11
, 2

02
0

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
02

0-
03

41

a scalar solution u over an edge E in the mesh, with unit tangent vector ~s and length h, is given
by

δu,E ∝ |~sTH~s|h2, (8)

where H is the solution Hessian matrix,

Hi,j =
∂u2

∂xi∂xj
, i, j ∈ [1, ..., d], (9)

and d is the spatial dimension. The second derivatives can be estimated by a quadratic reconstruc-
tion of the linear solution. The scalar u used in this work is the Mach number as it has been found
to be effective for many types of flows, although more sophisticated quantities can also be used.

A geometric interpretation of Eqn. 8 is that the interpolation error over an edge depends on
the squared edge length under the measure of |H|, which is a symmetric positive definite (SPD)
matrix defined by taking the absolute values of its eigenvalues Λ while keeping the eigenvectors Q
the same, |H| = QT |Λ|Q. For higher-order approximations, the interpolation error is characterized
by the p + 1st derivatives, and the first d largest directional derivatives can be used to determine
the principal directions Q and the corresponding stretching Λ.9 In this work, however, we only
consider using the Hessian matrix of second derivatives, regardless of the solution approximation
order.

Error equidistribution suggests equally distributing the squared edge length under |H|. Consider
two principal directions ~ei and ~ej from Q. Error equidistribution yields the mesh stretching as

hi
hj

=
(
|u~ej |/|u~ei |

)1/(p+1)
= (|λj |/|λi|)1/(p+1) , (10)

where u~ei is the p + 1st derivate along the direction ~ei, or equivalently the magnitude of the ith

eigenvalue λi. They key idea of Hessian-based mesh adaptation with output error estimation is
to use Eqn. 10 to control the mesh stretching (relative mesh size) while using the output error
indicator in Eqn. 7 to determine the absolute mesh sizes.

IV.B. Element Sizing using A Priori Rate Estimates

In order to perform the mesh adaptation, we need to predict the desired element sizes, or the
number of the elements Nf in the adapted (fine) mesh. Let nk, not necessary an integer, be the
number of the adapted mesh elements contained in element k at the original mesh. Denoting the
current element size by hci and the requested element size hfi , where i again indexes the principal
directions, nk can be approximated as

nk =
d∏
i

(hci/h
f
i). (11)

The current sizes hci are calculated as the singular values of the mapping from a unit equilateral
triangle to element k.5 Given an output error tolerance e0, to satisfy the error equidistribution,
each fine-mesh element is allowed an error e0/Nf , which means that each element k is allowed an
error of nke0/Nf . We relate the growth in the number of elements to an error reduction factor
through an a priori estimate

nk
e0

Nf︸ ︷︷ ︸
allowable error

= Eck

(
hfi
hci

)p̄k+1

︸ ︷︷ ︸
a priori estimate

, (12)

4 of 21

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d

by
 K

rz
ys

zt
of

 F
id

ko
w

sk
i o

n
A

pr
il

11
, 2

02
0

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
02

0-
03

41

where Eck indicates the current error indicator in element k, p̄k = min(pk, γk), and γk is the lowest
order of any singularity within element k. Substituting Eqn. 11 into Eqn. 12 yields a relation
between nk and Nf

nk
e0

Nf
= Eck

[∏
i

(
hfi
hci

)](p̄k+1)/d

= Eckn
−(p̄k+1)/d
k ⇒ n

1+(p̄k+1)/d
k =

Eck
e0/Nf

. (13)

Substituting Eqn. 13 into Nf =
∑

k nk, we can solve for Nf if p̄k is constant on the entire mesh,
otherwise it is solved iteratively. Adaptation stops when we meet the error tolerance, ε ≡

∑
k εk ≤

e0. In practice, the maximum allowable error e0 can be modified or fixed-growth refinement strategy
can also be adopted to control the mesh adaptation.9

IV.C. Sampling-Based Mesh Optimization

The goal in this method, MOESS, is to optimize the computational mesh, Th, in order to minimize
the output error at a prescribed computational cost. We present the approach introduced by
Yano,12 which iteratively determines the optimal change in the mesh metric field given a prescribed
metric-cost relationship and a sampling-inferred metric-error relationship.

IV.C.1. Metric-Based Meshing

A Riemannian metric field, M(~x), is a field of symmetric positive definite (SPD) tensors that can
be used to encode information about the desired size and stretching of a computational mesh.
At each point in physical space, ~x, the metric tensor M(~x) provides a “yardstick” for measuring
the distance from ~x to another point infinitesimally far away, ~x + δ~x. After choosing a Cartesian
coordinate system and basis for physical space, M can be represented as a d × d SPD matrix.
The set of points at unit metric distance from ~x is an ellipse: eigenvectors of M give directions
along the principal axes, while the length of each axis (stretching) is the inverse square root of the
corresponding eigenvalue. The aspect ratio is the ratio of the largest stretching magnitude to the
smalleset.

A mesh that conforms to a metric field is one in which each edge has the same length, to some
tolerance, when measured with the metric. An example of a two-dimensional metric-conforming
mesher is the Bi-dimensional Anisotropic Mesh Generator (BAMG),31 and this is used to obtain
the results in the present work.

BAMG generates a mesh given a metric field, which is specified at nodes of a background
mesh – the current mesh in an adaptive setting. The optimization determines changes to the
current, mesh-implied, metric, M0(~x). Affine-invariant32 changes to the metric field are made via
a symmetric step matrix, S ∈ Rd×d, according to

M =M
1
2
0 exp(S)M

1
2
0 . (14)

Note that S = 0 leaves the metric unchanged, while diagonal values in S of ±2 log 2 halve/double
the metric stretching sizes.

IV.C.2. Error Convergence Model

The mesh optimization algorithm requires a model for how the error changes as the metric changes.
We consider one element, Ωe, with a current error Ee0, the absolute value of the element’s contri-
bution to Eqn. 7, and a proposed metric step matrix of Se. The error on Ωe following refinement
with this step matrix is given by

Ee = Ee0 exp [tr(ReSe)] , (15)

5 of 21

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d

by
 K

rz
ys

zt
of

 F
id

ko
w

sk
i o

n
A

pr
il

11
, 2

02
0

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
02

0-
03

41

where Re is a symmetric rate tensor. The total error over the mesh is the sum of the elemental
errors, E =

∑Ne
e=1 Ee. The rate tensor, Re, is determined separately for each element through a

sampling procedure.13

IV.C.3. Cost Model

To measure the cost of refinement, we use degrees of freedom, dof, which on each element just
depends on the approximation order p, assumed constant over the elements. By Eqn. 14 and
properties of the metric tensor, when the step matrix Se is applied to the metric of element e, the
area of the element decreases by exp

[
1
2tr(Se)

]
. Equivalently, the number of new elements, and

hence degrees of freedom, occupying the original area Ωe increases by this factor. So the elemental
cost model is

Ce = Ce0 exp

[
1

2
tr(Se)

]
, (16)

where Ce0 = dofe0 is the current number of degrees of freedom on element e. The total cost over
the mesh is the sum of the elemental costs, C =

∑Ne
e=1Ce.

IV.C.4. Metric Optimization Algorithm

Given a current mesh with its mesh-implied metric (M0(~x)), elemental error indicators Ee0, and
elemental rate tensor estimates, Re, the goal of the metric optimization algorithm is to determine
the step matrix field, S(~x), that minimizes the error at a fixed cost.

The step matrix field is approximated by values at the mesh vertices, Sv, which are arithmetically-
averaged to adjacent elementsb:

Se =
1

|Ve|
∑
v∈Ve

Sv, (17)

where Ve is the set of vertices (|Ve| is the number of them) adjacent to element e. The optimization
problem is to determine Sv such that the total error E is minimized at a prescribed total cost C.

First-order optimality conditions require derivatives of the error and cost with respect to Sv.
We note that the cost only depends on the trace of the step matrix; i.e. the trace-free part of Se
stretches an element but does not alter its area. We therefore separate the vertex step matrices
into trace (svI) and trace-free (S̃v) parts, with I the identity tensor,

Sv = svI + S̃v. (18)

The optimization algorithm is then the same as presented by Yano:12

1. Given a mesh, solution, and adjoint, calculate Ee, Ce,Re for each element e.

2. Set δs = δsmax/nstep, Sv = 0.

3. Begin loop: i = 1 . . . nstep

(a) Calculate Se from Eqn. 17, ∂Ee
∂Se from Eqn. 15, and ∂Ce

∂Se from Eqn. 16.

(b) Calculate derivatives of E and C with respect to sv and S̃v.
(c) At each vertex form the ratio λv = ∂E/∂sv

∂C/∂sv and

� Refine the metric for 30% of the vertices with the largest |λv|: Sv = Sv + δsI
� Coarsen the metric for 30% of the vertices with the smallest |λv|: Sv = Sv − δsI

bThere is no need for an affine-invariant average because entries of S are coordinate system independent.

6 of 21

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d

by
 K

rz
ys

zt
of

 F
id

ko
w

sk
i o

n
A

pr
il

11
, 2

02
0

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
02

0-
03

41

(d) Update the trace-free part of Sv to enforce stationarity with respect to shape changes
at fixed area: Sv = Sv + δs(∂E/∂S̃v)/(∂E/∂sv).

(e) Rescale Sv → Sv +βI, where β is a global constant calculated from Eqn. 16 to constrain

the total cost to the desired dof value: β = 2
d log

Ctarget
C , where Ctarget is the target cost.

Note, λv is a Lagrange multiplier in the optimization. It is the ratio of the marginal error to
marginal cost of a step matrix trace increase (i.e. mesh refinement). The above algorithm iteratively
equidistributes λv globally so that, at optimum, all elements have the same marginal error to
cost ratio. Constant values that work generally well in the above algorithm are nstep = 20 and
δsmax = 2 log 2.

In practice, the mesh optimization and flow/adjoint solution are performed several times at a
given target cost, Ctarget, until the error stops changing. Then the target cost is increased to reduce
the error further if desired.

V. Machine-Learning Anisotropy Detection

As an alternative to mesh subdivision sampling and regression to determine the anisotropy
information, we present an approach that uses a neural network to determine anisotropy from
relevant features of the primal and adjoint solution. A key choice in the design of the neural network
is the set of features from which the anisotropy information can be detected. For generality across
problems, the features should be insensitive to scaling of the problem and the choice of physical
units. The Mach number Hessian matrix provides such information from the primal solution,
specifically when it is used to determine anisotropy and stretching directions. Note that the element
size is obtained from the output error estimate in all cases in this work.

The output error estimation formula involves both the primal (via the residual) and the adjoint
(as a weight) solutions, and we therefore seek to incorporate features of the adjoint solution into the
anisotropy measure. Our choice for the adjoint features is motivated by the success of the primal
Hessian, even in the context of high-order solutions. Without an obvious equivalent all-purpose
scalar such as the Mach number in the adjoint solution, we compute and use Hessian information
from all of the adjoint variables as the features.

Denote by Hψ
k the Hessian of the kth adjoint variable,[

Hψ
k

]
i,j

=
∂ψ2

k

∂xi∂xj
, i, j ∈ [1, ..., d], (19)

where k ∈ [1, . . . , s] ranges over the state rank. In two spatial dimensions, to normalize the Hessian,
we compute the aspect ratio and direction of the first eigenvector,

AR =
√
λH2 /λ

H
1 , θ = arg(~v1), (20)

where λH1 ≤ λH2 are the Hessian eigenvalues and ~v1 is the eigenvector corresponding to λH1 . The
normalized Hessian metric is then

Mψ
k =

[
λ1 cos2 θ + λ2 sin2 θ (λ1 − λ2) sin θ cos θ

(λ1 − λ2) sin θ cos θ λ1 sin2 θ + λ2 cos2 θ

]
, where λ1 =

1

AR
, λ2 = AR. (21)

Note that this matrix does not encode sizing, which is not a meaningful quantity from the Hessian
matrix, and hence has only two independent quantities (e.g. AR and θ). This gives a total of 2s
adjoint features for use in the machine-learning algorithm.

An artificial neural network is used to map the adjoint features to a measure of the element’s
anisotropy and orientation. Inputs into neural networks should generally be normalized to not bias

7 of 21

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d

by
 K

rz
ys

zt
of

 F
id

ko
w

sk
i o

n
A

pr
il

11
, 2

02
0

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
02

0-
03

41

the training towards extreme cases, e.g. in this case to elements of large aspect ratio. In addition,
care must be taken when using an angle as an input, due to the equivalence of 0 and 2π. To address
both problems, we do not use the adjoint metrics as defined in Eqn. 21 directly as inputs. Nor
do we use AR and θ. Instead, we rely on non-dimensional step matrices computed relative to a
baseline metric, M0, which we take as the Mach number Hessian. These step matrices are defined
as

Sψk = log

(
M
− 1

2
0 Mψ

kM
− 1

2
0

)
. (22)

Since we use normalized metrics (unit size), the step matrices are trace-free and have only two in-
dependent components: one on-diagonal and one off-diagonal in two dimensions. This is consistent
with the expected 2s inputs from the s adjoint features.

Figure 1 shows the structure of the network, which is a multi-layer perceptron. It consists of
one hidden layer, x1, between the input layer, i.e. the features, x0, and the output layer, x2. The
output layer contains the desired anisotropy information, as encoded by a step matrix from the
baseline (Hessian) metric, M0. This step matrix is also trace free so that the number of outputs
is only 2, x2 ∈ R2. The size of the hidden layer is chosen to be twice the size of the input layer,
x1 ∈ Rn1 , where n1 = 2n0, x0 ∈ Rn0 , and n0 = 2s.

Output layer
ρν̃

ρE

ρv

ρu

ρ

a
d
jo
in
t
va
ri
a
bl
e
a
n
is
o
tr
o
p
y
fe
a
tu
re
s

x2

x0

x1

Input layer

Hidden layer

x2 = WT
2 x1 + b2x1 = σ(WT

1 x0 + b1)

Figure 1. Structure of the artificial neural network used for predicting element anisotropy and orientation.

The network is fully-connected, and the formulas for computing the states within each layer
are shown in Figure 1. The map from the input to the hidden layer involves an entry-wise sigmoid
activation function, σ(x) = 1/(1 + e−x), whereas no activation function is used for the output layer
calculation. The parameters associated with the network consist of the weights and biases,

W1 ∈ Rn0×n1 , b1 ∈ Rn1 , W2 ∈ Rn1×n2 , b2 ∈ Rn2 .

The values of these parameters are determined using an optimization procedure, the Adam algo-
rithm in TensorFlow,33 that minimizes the mean squared error loss function between predicted and
actual output layer values. The actual values come from training data, which are obtained from

8 of 21

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d

by
 K

rz
ys

zt
of

 F
id

ko
w

sk
i o

n
A

pr
il

11
, 2

02
0

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
02

0-
03

41

multiple MOESS iterations on prototypical cases. Each MOESS iteration produces one “training
point” for each element of the mesh, so for meshes with many elements, a large amount of data
can be obtained with a relatively small number of MOESS iterations.

Once the network is trained, it is implemented in the adaptive code as a replacement for
the Hessian-only metric anisotropy and stretching calculation in the a priori output-based mesh
refinement method. Figure 2 illustrates the entire calculation process from primal and adjoint
features to the desired element anisotropy, encoded by the metric M presented on the lower-left
in the figure. This metric then replaces the Mach Hessian in an otherwise equivalent adaptive
procedure.

ψρ Hessian ψρu Hessian ψρv Hessian ψρE Hessian ψρν̃ Hessian

Mψ
ρν̃M0 Mψ

ρ Mψ
ρEMψ

ρvMψ
ρu

Sψρ Sψρu Sψρv SψρE Sψρν̃

M = M
1
2
0 e

SM
1
2
0

S = step matrix from Hessian to MOESS

Mach Hessian

primal features adjoint features

S = log
(
M

− 1
2

0 MM
− 1

2
0

)

Neural network

Figure 2. Flowchart of neural-network implementation.

VI. Neural Network Training

Several prototypical aerodynamic flow cases are run to provide training data for the anisotropy
prediction neural network. Table 1 describes these cases and includes figures of the primal and
adjoint solutions, and of the optimized meshes. All cases are two-dimensional and use the Reynolds-
averaged Navier-Stokes equations. A variety of flow Mach numbers are included, ranging from
subcritical to supersonic. The Reynolds numbers are representative of aircraft flight conditions,
O(106). Force outputs, drag and lift, are considered for error estimation and adaptation. In some
cases, for a given flow condition, both outputs yield two different adaptation sequences.

Adapted meshes are generated at a chosen target degree-of-freedom cost using MOESS, at a
solution approximation order of p = 2. The meshes for the different cases are not all made to be of
the same size, but the number of adaptive iterations collected is chosen such that the total amount
of training data (product of mesh size and number of iterations) is approximately the same among
the cases. Data collection begins once the mesh size and outputs stabilize following initialization
of MOESS iterations with a user-generated, sub-optimal mesh. Specifically, data from ten MOESS

9 of 21

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d

by
 K

rz
ys

zt
of

 F
id

ko
w

sk
i o

n
A

pr
il

11
, 2

02
0

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
02

0-
03

41

Table 1. Neural network training cases

Flat plate: M∞ = 0.2, 0.5, Re = 105, 106, output = drag (images scaled 100x vertically)

Mach contours drag adjoint (x-momentum) Optimized mesh (700 elem)

NACA 0012: M∞ = 0.8, α = 1.25◦, Re = 5× 106, outputs = drag, lift

Mach contours lift adjoint (x-momentum) Optimized mesh (2700 elem)

MDA 30P/30N: M∞ = 0.2, α = 5◦, Re = 106, outputs = drag, lift

Mach contours lift adjoint (x-momentum) Optimized mesh (5300 elem)

RAE 2822: M∞ = 0.734, α = 2.79◦, Re = 6.5× 106, outputs = drag, lift

Mach contours drag adjoint (x-momentum) Optimized mesh (2600 elem)

Diamond airfoil: M∞ = 1.5, α = 2◦, Re = 106, output = lift

Mach contours lift adjoint (energy) Optimized mesh (3900 elem)

10 of 21

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d

by
 K

rz
ys

zt
of

 F
id

ko
w

sk
i o

n
A

pr
il

11
, 2

02
0

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
02

0-
03

41

iterations are discarded before collection.
The input data, which consist of the normalized Mach number and adjoint variable Hessian

matrices, are computed from the current-space primal and adjoint solutions for each element. For
p = 2, these matrices are constant across elements, whereas for p > 2, the matrices would be
averaged across the element interiors. The output data are computed using the normalized grid-
implied metric, since we are using MOESS to generate the meshes, converted to a step matrix
relative to the normalized Mach number Hessian.

The total number of training data points (elements) over all cases and adaptive iterations is
121,840. These data are randomized and split 70%/30% into training and test categories. The
training data are used to drive the optimization, whereas the test data are used to monitor the loss
on untrained data. The training data are broken into mini-batches of size 500 for the optimizer,
and the learning rate is set to .001. Several tens of thousands of optimization iterations typically
lead to a stabilization of the mean-squared error, as shown in Figure 3. Typically, an order of
magnitude drop in the loss is observed, without a significant difference between training and test
data loss. This indicates that we are not over-fitting the data, which would be arguably difficult to
do with the small neural network size presently considered. Furthermore, the results of the training
were not found to be overly sensitive to the choices of the mini-batch size or the learning rate.

0 2000 4000 6000 8000 10000

10
-1

10
0

Minibatch iteration

M
e

a
n

-s
q

u
a

re
d

 e
rr

o
r

lo
s
s

Mini-batch loss

Training set loss

Validation set loss

Figure 3. Neural network training loss history, using a 70% training, 30% test split.

VII. Adaptive Simulation Results

This section presents results obtained by implementing the trained neural network in an adaptive
solution process and using it to generate adapted meshes for various flow cases at different degrees of
freedom. When using the network to determine anisotropy information, the same a-priori element
sizing technique, described in Section IV.B, is used as in the Hessian-based approach. The neural
network results are compared to both Mach number Hessian-based adaptation and MOESS.

VII.A. NACA 0012 airfoil

This test case consists of RANS fully-turbulent flow over a NACA 0012 airfoil at M∞ = 0.8,
α = 1.25◦, and Re = 5×106. The computational domain consists of a square farfield boundary 100
chords away from the airfoil. An adiabatic no-slip wall boundary conditions is imposed on the airfoil.
Shock capturing is performed using element-based artificial viscosity.34 The output of interest is

11 of 21

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d

by
 K

rz
ys

zt
of

 F
id

ko
w

sk
i o

n
A

pr
il

11
, 2

02
0

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
02

0-
03

41

the drag coefficient on the airfoil. A hand-generated initial isotropic mesh of 2800 elements is
constructed with sufficient boundary-layer resolution to enable a converged RANS solution.

Adaptive simulations are performed at p = 2 solution approximation order for three target
degree-of-freedom (dof) costs: 8000, 16000, 32000. At each target dof, 10 adaptive iterations are
performed, using the final mesh from the previous target dof as the starting mesh. The three
adaptive methods compared are MOESS, Mach-number Hessian, and neural-network-augmented
Hessian.

Figure 4 presents the output convergence history obtained from the adaptive runs. For each
method, only one data point is shown at a given dof target: this is the average output at the
average dof value computed over the last 4 adaptive iterations at that target dof. An “exact”
value is also indicated, obtained by running a MOESS simulation at the same approximation order
but a target dof set to four times the finest dof in the study.

5000 10000 15000 20000 25000 30000 35000
0.0258

0.026

0.0262

0.0264

0.0266

0.0268

Degrees of freedom

D
ra

g
 c

o
e

ff
ic

ie
n
t

MOESS

Hessian

Neural Network

Exact

Figure 4. NACA 0012, M∞ = 0.8, α = 1.25◦, Re = 5× 106: output convergence history.

We see that at all target dof, the adaptive results using neural-network anisotropy are closer to
the exact value compared to those using the Mach number Hessian anisotropy. As both methods are
driven by the same output-based element sizing information, the observed error reduction is made
possible by more efficient meshes resulting from improved anisotropy information. Specifically,
correct anisotropy identification allows for optimal use of degrees of freedom to reduce the output
error.

The neural network approach can achieve more optimal mesh anisotropy because it incorporates
information not only from the primal (Mach Hessian), but also from the adjoint (all variables).
The network was trained to reproduce the element stretching obtained from MOESS, and hence
the slightly-improved performance of the network over MOESS is likely not generalizable – it could
be due to a problem-specific sub-optimality of the output-based error indicator.

Figures 5–7 show the final adapted meshes at the highest target dof for the three adaptive
approaches tested. The flow is transonic with a strong shock on the upper surface, a weaker shock
on the lower surface, and rapid boundary-layer growth in the vicinity of the shocks. From the three
figures, we see that the resolution of the shock, which is minimal to start with in the output-based
setting, is similar among the methods, with the neural-network indicator exhibiting slightly less
primal-based anisotropy compared to the Hessian indicator and MOESS. The resolution for the
foot of the lower shock is strongest for the Hessian-based method.

12 of 21

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d

by
 K

rz
ys

zt
of

 F
id

ko
w

sk
i o

n
A

pr
il

11
, 2

02
0

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
02

0-
03

41

Figure 5. NACA 0012: MOESS final adapted mesh.

Figure 6. NACA 0012: final Hessian adapted mesh.

Figure 7. NACA 0012: final neural-network adapted mesh.

13 of 21

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d

by
 K

rz
ys

zt
of

 F
id

ko
w

sk
i o

n
A

pr
il

11
, 2

02
0

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
02

0-
03

41

As shown in Table 1, the adjoint variable possesses a λ structure variation on the upper surface,
and both the neural-network anisotropy measure and MOESS show evidence of its resolution. The
Mach number Hessian measure does not align elements to this structure, which is specific to the
adjoint. The most notable difference is the leading-edge stagnation streamline anisotropy, which is
again an adjoint feature that is resolved by MOESS and the neural network. Although the extent
to which this feature needs to be resolved for accurate output prediction is still a point of debate,
it is reassuring to see the neural network reproduce the MOESS behavior, for which it was trained.
Finally, near the trailing edge, the Hessian-based measure shows more flow-aligned anisotropy, due
to the primal wake, which is not as apparent in MOESS and the neural-network approach.

VII.B. Diamond airfoil

This test case consists of RANS supersonic flow over a diamond airfoil at M∞ = 1.5, α = 2◦, and
Re = 1×106. The leading and trailing edge corner angles are both 2 tan−1(.05). The computational
domain consists of a square farfield boundary 100 chords away from the diamond. An adiabatic no-
slip wall boundary conditions is imposed on the airfoil. Shock capturing is again performed using
element-based artificial viscosity.34 The output of interest is the lift coefficient on the airfoil. A
hand-generated initial isotropic mesh of 1500 elements is constructed with sufficient boundary-layer
resolution to enable a converged RANS solution.

Adaptive simulations are performed at p = 2 solution approximation order for three target
degree-of-freedom (dof) costs: 10000, 20000, 40000. At each target dof, 10 adaptive iterations are
performed, using the final mesh from the previous target dof as the starting mesh. As in the
previous case, MOESS, Mach-number Hessian anisotropy, and neural-network-augmented Hessian
anisotropy methods are compared.

Figure 8 presents the output convergence history obtained from the adaptive runs, where again
averaging has been performed over the last 4 iterations at each target dof. The “exact” value is
also indicated, obtained from a four-times finer-mesh run at the same approximation order.

10000 15000 20000 25000 30000 35000 40000 45000
0.126

0.1262

0.1264

0.1266

0.1268

0.127

Degrees of freedom

L
if
t
c
o
e
ff

ic
ie

n
t

MOESS

Hessian

Neural Network

Exact

Figure 8. Diamond airfoil, M∞ = 1.5, α = 2◦, Re = 1× 106: output convergence history.

We see that at all target dof, the adaptive results using neural-network anisotropy are much
closer to the exact value compared to those using the Mach number Hessian anisotropy. In this
case, the difference between Hessian-based anisotropy and MOESS is significant, and the machine-
learning approach follows the MOESS results quite closely. As in the previous case, the accuracy

14 of 21

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d

by
 K

rz
ys

zt
of

 F
id

ko
w

sk
i o

n
A

pr
il

11
, 2

02
0

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
02

0-
03

41

improvement is made possible by a more optimal distribution of degrees of freedom due to correct
anisotropy in regions where the output error is more sensitive to resolution in one direction than
another. In this case, the performance of MOESS and the neural-network are quite close in terms
of output accuracy versus degrees of freedom.

Figures 9–11 show the final adapted meshes at the highest target dof for the three adaptive
approaches tested. As shown, the meshes among the three approaches are drastically different in
their placement of anisotropic elements.

Figure 9. Diamond airfoil: final MOESS adapted mesh.

Figure 10. Diamond airfoil: final Hessian adapted mesh.

Figure 11. Diamond airfoil: final neural-network adapted mesh.

The flow over the diamond airfoil is supersonic, with oblique shocks emanating from the lead-

15 of 21

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d

by
 K

rz
ys

zt
of

 F
id

ko
w

sk
i o

n
A

pr
il

11
, 2

02
0

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
02

0-
03

41

ing and trailing edges, and expansions originating from the mid-chord corners. The Hessian-based
primal anisotropy detection approach places shock/expansion-aligned stretched elements in these
areas. In contrast, MOESS symmetrically places anisotropic elements in these areas and the corre-
sponding adjoint features, which mimic the primal shock/expansion structure but in reverse (right
to left instead of left to right). The result is a balanced primal/adjoint resolving anisotropic mesh.
Finally, the neural network anisotropy detection appears to prefer the adjoint features, as it places
anisotropic elements mostly in these areas, with more isotropic (and less pronounced overall) reso-
lution of the primal features.

We note the top/bottom asymmetry of the resolution is expected due to the presence of an
angle of attack. In addition, all methods target the boundary layer with anisotropic elements,
although the Hessian-based approach places more emphasis on anisotropy away from the wall near
the trailing edge/wake compared to the other two methods. Combined with the excessive resolution
of the shocks and expansions due to a primal-only anisotropy measure there, this leads to a less
efficient distribution of degrees of freedom, and hence larger error for a given target dof.

VII.C. MDA 30P/30N airfoil

The third test case consists of subcritical RANS flow over the McDonnell Douglas Aerospace (MDA)
30P/30N three-element airfoil at M∞ = 0.2, α = 5◦, and Re = 5×106. The computational domain
consists of a C-shaped farfield boundary that is 100-200 main-element chords away from the airfoil.
An adiabatic no-slip wall boundary conditions is imposed on the airfoil main element, the leading-
edge slat, and the trailing-edge flap. The flow is subcritical and hence no shock capturing is
employed. The output of interest is the lift coefficient on the airfoil. An Euler-flow adapted initial
isotropic mesh of 3000 elements is constructed with sufficient boundary-layer resolution to enable
a converged RANS solution.

Adaptive simulations are performed at p = 2 solution approximation order for three target
degree-of-freedom (dof) costs: 8000, 16000, 32000. At each target dof, 10 adaptive iterations are
performed, using the final mesh from the previous target dof as the starting mesh. Again, MOESS,
Mach-number Hessian anisotropy, and neural-network-augmented Hessian anisotropy methods are
compared.

Figure 12 presents the output convergence history obtained from the adaptive runs, where again
averaging has been performed over the last 4 iterations at each target dof. The “exact” value is
also indicated, obtained from a four-times finer-mesh run at the same approximation order.

We see that the Hessian-based anisotropy detection method yields meshes that have the lift
output closer to the exact value, although the prediction undershoots the exact value on the way to
convergence. On the other hand, the neural network approach closely follows the MOESS results
for the latter two dof targets, with monotonic convergence from below the exact value.

Figures 13–15 show the final adapted meshes at the highest target dof for the three adaptive
approaches tested. The meshes among the three approaches are similar in this case. The most
notable difference is the placement of anisotropy on the leading-edge stagnation streamline, which
occurs in the MOESS and particularly the neural-network approach. The Hessian-based approach
resolves this region instead with isotropic elements, as its anisotropy detection is insensitive to the
adjoint variables. A similar situation occurs, in the extension of this streamline underneath the
main element on the way to the flap leading edge: the MOESS and neural-network approaches
employ anisotropic elements due to the adjoint anisotropy, whereas the Mach number Hessian
approach uses isotropic elements.

In this high-lift configuration case, the stagnation streamline is a large adjoint feature exhibiting
anisotropy. Both MOESS and the neural-network method target it with anisotropic elements, at
a non-trivial dof cost due to small element size in the direction of large adjoint variation. If the

16 of 21

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d

by
 K

rz
ys

zt
of

 F
id

ko
w

sk
i o

n
A

pr
il

11
, 2

02
0

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
02

0-
03

41

5000 10000 15000 20000 25000 30000 35000
1.516

1.518

1.52

1.522

1.524

1.526

1.528

Degrees of freedom

L
if
t
c
o

e
ff
ic

ie
n

t

MOESS

Hessian

Neural Network

Exact

Figure 12. MDA 30P/30N, M∞ = 0.2, α = 5◦, Re = 5× 106: output convergence history.

Figure 13. MDA 30P/30N airfoil: final MOESS adapted mesh.

Figure 14. MDA 30P/30N airfoil: final Hessian adapted mesh.

17 of 21

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d

by
 K

rz
ys

zt
of

 F
id

ko
w

sk
i o

n
A

pr
il

11
, 2

02
0

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
02

0-
03

41

Figure 15. MDA 30P/30N airfoil: final neural-network adapted mesh.

full resolution of this feature is not in fact critical to the output, but instead an artifact, e.g. of an
imperfect adjoint approximation, then additional cost savings in MOESS and the neural network
may be possible. We do note, however, that the neural network approach does appear to favor
anisotropy in adjonit features more than primal features, relative to the more balanced MOESS
meshes.

VII.D. Extrapolation test: diamond airfoil at M∞ = 2.0

Finally, we test the proposed neural network anisotropy detection approach on an “extrapolation”
case, i.e. one for which the network was not trained. We choose the diamond airfoil geometry but at
a higher Mach number, M = 2.0, and a different angle of attack, α = 0. We also consider the drag
output instead of the lift. Note that the training data only included one lift prediction simulation
at a different flow condition. Aside from these changes, the rest of the case setup remains the same
as described in Section VII.B.

Figure 16 presents the output convergence history obtained from the adaptive runs, where again
averaging has been performed over the last 4 iterations at each target dof. The “exact” value is
also indicated, obtained from a four-times finer-mesh run at the same approximation order.

10000 15000 20000 25000 30000 35000 40000 45000
0.01185

0.0119

0.01195

0.012

0.01205

Degrees of freedom

D
ra

g
 c

o
e

ff
ic

ie
n
t

MOESS

Hessian

Neural Network

Exact

Figure 16. Diamond airfoil, M∞ = 2.0, α = 0◦, Re = 1× 106: output convergence history.

We see that at all target dof, the adaptive results using neural-network anisotropy are closer

18 of 21

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d

by
 K

rz
ys

zt
of

 F
id

ko
w

sk
i o

n
A

pr
il

11
, 2

02
0

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
02

0-
03

41

to the exact value compared to those using the Mach number Hessian anisotropy. The difference
is particularly noticeable on the coarser meshes, where the neural network performance is closer to
MOESS. The improvement is on par with the previous results for cases within the training data.

Figure 17 shows the final adapted meshes at the highest target dof for the three adaptive
approaches tested. As in the previous supersonic result, the meshes among the three approaches are
drastically different in their placement of anisotropic elements: the Mach number Hessian approach
focuses on the primal anisotropy, MOESS evenly addresses the primal and adjoint anisotropy,
whereas the neural network focuses more on the adjoint anisotropy. With more work on the
training and feature selection, the neural network mesh can likely be made to more closely follow
the MOESS result.

(a) MOESS (b) Hessian (c) Neural network

Figure 17. Diamond airfoil at M∞ = 2.0: final adapted meshes.

VIII. Conclusions

This paper introduces a machine-learning approach for determining the optimal anisotropy in a
mesh, in the context of an output-based adaptive solution procedure. An artificial neural network
is used to predict the desired element stretching ratio and direction from features of the adjoint
solution. The network is trained to reproduce anisotropy calculated by MOESS, using features
that are more easily calculated than the mesh-refinement sampling procedure of MOESS. These
features consist of aspect ratio and direction data computed from the Hessian of each of the adjoint
variables. They are invariant to scaling of the equations or outputs, and hence generalizable across
different flow conditions and unit choices.

A variety of RANS cases, including transonic and supersonic flows, provides training data for
the neural network, which consists of a simple structure with one small hidden layer of size twice
that of the input layer. Training of the network yields a reduction in the mean-squared loss of
about one order of magnitude, where the loss is measured over two independent components of the
non-dimensional step matrix between the Hessian metric and the optimal MOESS metric.

The test cases compare the proposed neural-network anisotropy detection approach to the Mach
number Hessian anistotropy detection and to MOESS. When used to drive adaptation, the neural-
network approach yields output errors that more closely follow the MOESS results, and which
are generally more accurate than the Hessian anisotropy approach. However, we note that this
agreement with MOESS does not always extend to the computational meshes. The results indicate
that the present neural network favors adjoint features over primal features, leading to meshes
that anisotropically/heavily resolve leading-edge stagnation streamlines and adjoint shocks, at the
expense of less anisotropy/resolution in primal-specific features such as shocks.

The improved anisotropy detection results hold not only for cases within the training data set,
but also for an extrapolation simulation outside the training set, indicating the generalizability of

19 of 21

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d

by
 K

rz
ys

zt
of

 F
id

ko
w

sk
i o

n
A

pr
il

11
, 2

02
0

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
02

0-
03

41

the approach. As only one neural network structure and feature choice is studied in the present
work, a natural next step is to investigate the impact of the neural network architecture and
input features on the mesh quality. By incorporating more primal features, it should be possible
to shift the focus from adjoint-dominated anisotropy to a balanced combination, as observed in
MOESS. This would then even better align the outputs of the network-driven results to MOESS.
Furthermore, the network should be tested on general outputs, approximation orders, and flow
conditions that are not part of the training data, to assess generalizability.

Acknowledgments

The authors acknowledge support from the Department of Energy under grant DE-FG02-
13ER26146/DE-SC0010341, and from The Boeing Company, with technical monitor Dr. Mori
Mani.

References

1Castro-Diaz, M. J., Hecht, F., Mohammadi, B., and Pironneau, O., “Anisotropic unstructured mesh adaptation
for flow simulations,” International Journal for Numerical Methods in Fluids, Vol. 25, 1997, pp. 475–491.

2Buscaglia, G. C. and Dari, E. A., “Anisotropic mesh optimization and its application in adaptivity,” Interna-
tional Journal for Numerical Methods in Engineering , Vol. 40, No. 22, November 1997, pp. 4119–4136.

3Habashi, W. G., Dompierre, J., Bourgault, Y., Ait-Ali-Yahia, D., Fortin, M., and Vallet, M.-G., “Anisotropic
mesh adaptation: towards user-independent, mesh-independent and solver-independent CFD. Part I: general princi-
ples,” International Journal for Numerical Methods in Fluids, Vol. 32, 2000, pp. 725–744.

4Xia, G., Li, D., and Merkle, C. L., “Anisotropic Grid Adaptation on Unstructured Meshes,” AIAA Paper
2001-0443, 2001.

5Venditti, D. A. and Darmofal, D. L., “Anisotropic grid adaptation for functional outputs: application to
two-dimensional viscous flows,” Journal of Computational Physics, Vol. 187, No. 1, 2003, pp. 22–46.

6Park, M. A., “Three–Dimensional Turbulent RANS Adjoint–Based Error Correction,” AIAA Paper 2003-3849,
2003.

7Schall, E., Leservoisier, D., Dervieux, A., and Koobus, B., “Mesh adaptation as a tool for certified computa-
tional aerodynamics,” International Journal for Numerical Methods in Fluids, Vol. 45, No. 2, 2004, pp. 179–196.

8Formaggia, L., Perotto, S., and Zunino, P., “An Anisotropic a posteriori error estimate for a convection-diffusion
problem,” Computing and Visualization in Science, Vol. 4, 2001, pp. 99–104.

9Fidkowski, K. J. and Darmofal, D. L., “A triangular cut-cell adaptive method for high-order discretizations of
the compressible Navier-Stokes equations,” Journal of Computational Physics, Vol. 225, 2007, pp. 1653–1672.

10Yano, M., Modisette, J., and Darmofal, D., “The Importance of mesh adaptation for higher-order discretizations
of aerodynamics flows,” AIAA Paper 2011-3852, 2011.

11Yano, M. and Darmofal, D., “An Optimization Framework for Anisotropic Simplex Mesh Adaptation: Appli-
cation to Aerodynamic Flows,” AIAA Paper 2012-0079, 2012.

12Yano, M., An Optimization Framework for Adaptive Higher-Order Discretizations of Partial Differential Equa-
tions on Anisotropic Simplex Meshes, Ph.D. thesis, Massachusetts Institute of Technology, Cambridge, Massachusetts,
2012.

13Fidkowski, K. J., “A Local Sampling Approach to Anisotropic Metric-Based Mesh Optimization,” AIAA Paper
2016–0835, 2016.

14Werbos, P., Beyond Regression: New Tools for Prediction and Analysis in the Behavioral Science, Ph.D. thesis,
Harvard University, 1974.

15LeCun, Y., Bengio, Y., and Hinton, G., “Learning representations by back-propagating errors,” Nature,
Vol. 323, October 1986, pp. 533–536.

16Khosravi, A., Nahavandi, S., Creighton, D., and Atiya, A. F., “Comprehensive Review of Neural Network-
Based Prediction Intervals and New Advances,” IEEE Transactions on Neural Networks, Vol. 22, No. 9, Sep. 2011,
pp. 1341–1356.

17Shanmuganathan, S. and Samarasinghe, S., Artificial Neural Network Modelling , Springer International Pub-
lishing, Switzerland, 2016.

20 of 21

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d

by
 K

rz
ys

zt
of

 F
id

ko
w

sk
i o

n
A

pr
il

11
, 2

02
0

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
02

0-
03

41

18Faller, W. E. and Schreck, S. J., “Unsteady Fluid Mechanics Applications of Neural Networks,” Journal of
Aircraft , Vol. 34, No. 1, 1997, pp. 48–55.

19Huang, R., Hu, H., and Zhao, Y., “Nonlinear Reduced-Order Modeling for Multiple-Input/Multiple-Output
Aerodynamic Systems,” AIAA Journal , Vol. 52, No. 6, 2014, pp. 1219–1231.

20Reed, W. and Hill, T., “Triangular Mesh Methods for the Neutron Transport Equation,” Los Alamos Scientific
Laboratory Technical Report LA-UR-73-479, 1973.

21Cockburn, B. and Shu, C.-W., “Runge-Kutta discontinuous Galerkin methods for convection-dominated prob-
lems,” Journal of Scientific Computing , Vol. 16, No. 3, 2001, pp. 173–261.

22Fidkowski, K. J., Oliver, T. A., Lu, J., and Darmofal, D. L., “p-Multigrid solution of high–order discontinuous
Galerkin discretizations of the compressible Navier-Stokes equations,” Journal of Computational Physics, Vol. 207,
2005, pp. 92–113.

23Allmaras, S., Johnson, F., and Spalart, P., “Modifications and Clarifications for the Implementation of the
Spalart-Allmaras Turbulence Model,” Seventh International Conference on Computational Fluid Dynamics (ICCFD7)
1902, 2012.

24Ceze, M. A. and Fidkowski, K. J., “High-Order Output-Based Adaptive Simulations of Turbulent Flow in Two
Dimensions,” AIAA Paper 2015–1532, 2015.

25Roe, P., “Approximate Riemann solvers, parameter vectors, and difference schemes,” Journal of Computational
Physics, Vol. 43, 1981, pp. 357–372.

26Bassi, F. and Rebay, S., “Numerical evaluation of two discontinuous Galerkin methods for the compressible
Navier-Stokes, equations,” International Journal for Numerical Methods in Fluids, Vol. 40, 2002, pp. 197–207.

27Becker, R. and Rannacher, R., “An optimal control approach to a posteriori error estimation in finite element
methods,” Acta Numerica, edited by A. Iserles, Cambridge University Press, 2001, pp. 1–102.

28Fidkowski, K. J. and Darmofal, D. L., “Review of Output-Based Error Estimation and Mesh Adaptation in
Computational Fluid Dynamics,” AIAA Journal , Vol. 49, No. 4, 2011, pp. 673–694.

29Fidkowski, K., “High-Order Output-Based Adaptive Methods for Steady and Unsteady Aerodynamics,” 37th

Advanced CFD Lectures series; Von Karman Institute for Fluid Dynamics (December 9–12 2013), edited by H. De-
coninck and R. Abgrall, von Karman Institute for Fluid Dynamics, 2013.

30Peraire, J., Vahdati, M., Morgan, K., and Zienkiewicz, O. C., “Adaptive remeshing for compressible flow
computations,” Journal of Computational Physics, Vol. 72, 1987, pp. 449–466.

31Borouchaki, H., George, P., Hecht, F., Laug, P., and Saltel, E., “Mailleur bidimensionnel de Delaunay gouverné
par une carte de métriques. Partie I: Algorithmes,” INRIA-Rocquencourt, France. Tech Report No. 2741, 1995.

32Pennec, X., Fillard, P., and Ayache, N., “A Riemannian framework for tensor computing,” International
Journal of Computer Vision, Vol. 66, No. 1, 2006, pp. 41–66.

33Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G. S., Davis, A., Dean, J., Devin,
M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M.,
Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever,
I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M.,
Wicke, M., Yu, Y., and Zheng, X., “TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems,” 2015,
Software available from tensorflow.org.

34Persson, P.-O. and Peraire., J., “Sub-cell shock capturing for discontinuous Galerkin methods,” AIAA Paper
2006-112, 2006.

21 of 21

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d

by
 K

rz
ys

zt
of

 F
id

ko
w

sk
i o

n
A

pr
il

11
, 2

02
0

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
02

0-
03

41

	Introduction
	Discretization
	Output Error Estimation
	Adaptation
	Hessian-Based Anisotropy Detection
	Element Sizing using A Priori Rate Estimates
	Sampling-Based Mesh Optimization
	Metric-Based Meshing
	Error Convergence Model
	Cost Model
	Metric Optimization Algorithm

	Machine-Learning Anisotropy Detection
	Neural Network Training
	Adaptive Simulation Results
	NACA 0012 airfoil
	Diamond airfoil
	MDA 30P/30N airfoil
	Extrapolation test: diamond airfoil at M = 2.0

	Conclusions

