
42nd AIAA Aerospace Sciences Meeting and Exhibit, Paper Number 2004-0436

Reno, NV

January 5–8, 2004

DEVELOPMENT OF A HIGHER-ORDER SOLVER FOR

AERODYNAMIC APPLICATIONS

Krzysztof J. Fidkowski∗

David L. Darmofal†

We present the results from the development of a higher-order discontinuous Galerkin
finite element solver using p-multigrid with line Jacobi smoothing. The line smoothing al-
gorithm is presented for unstructured meshes, and p-multigrid is outlined for the nonlinear
Euler equations of gas dynamics. Analysis of 2-D advection shows the improved perfor-
mance of line implicit versus point implicit relaxation. Through a mesh refinement study,

we determine that the accuracy of the discretization is the optimal O(hp+1) for three dif-
ferent smooth problems. The multigrid convergence rate is found to be independent of the
polynomial order but does depend weakly on the grid size. Timing studies for each prob-
lem indicate that higher order is advantageous over grid refinement when high accuracy is
required.

INTRODUCTION

WHILE CFD has achieved significant maturity dur-
ing the past decades, computational costs are

extremely large for aerodynamic simulations of aerospace
vehicles. In this applied aerodynamics context, the dis-
cretization of the Euler and/or Navier-Stokes equations
is almost exclusively performed by finite volume algo-
rithms. The pioneering work of Jameson began this
evolution to the status quo.1–3 During the 1980’s, up-
winding mechanisms were incorporated into these finite
volume algorithms leading to increased robustness for
applications with strong shocks, and perhaps more im-
portantly, to better resolution of viscous layers due to
decreased numerical dissipation in these regions.4–8 The
1990’s saw major advances in the application of finite
volume methods to Navier-Stokes simulations (in par-
ticular the Reynolds-Averaged Navier-Stokes equations).
Significant gains were made in the use of unstructured
meshes and solution techniques for viscous problems.9–12

While these algorithmic developments have resulted in
an ability to simulate aerodynamic flows for very com-
plex problems, the time required to achieve sufficient
accuracy in a reliable manner places a severe constraint
on the application of CFD to aerospace design.

The accuracies of many of the finite-volume methods
currently used in aerodynamics are at best p = 2, i.e. the
error decreases as O(hp) where h is a measure of the grid
spacing. As a practical matter, however, the accuracy of
these methods on more realistic problems appears to be
less than this, ranging between 1 ≤ p ≤ 2. The develop-
ment of a practical higher-order solution method could
result in a significant decrease in the computational time
required to achieve an acceptable error level. To better
demonstrate the potential of higher-order methods, we
make the following assumptions.

• The error, E, in the solution (or an output of the
solution) is O(hp).

• The number of elements, Nel, in the grid is related

∗Research Assistant. Email: kfid@mit.edu
†Associate Professor, Senior Member AIAA. 77 Massachusetts

Ave. 37-401, Cambridge, MA 02139. Ph. (617) 258-0743. Email:
darmofal@mit.edu

Copyright c© 2004 by the American Institute of Aeronautics and
Astronautics, Inc. All rights reserved.

to the cell size by Nel = O(h−d), where d is the
spatial dimension of the problem.

• Higher-order accuracy is achieved by increasing the
number of unknowns per element (in a finite el-
ement manner), Ndof , which scales as Ndof =
O(pd). Thus, the total number of unknowns is

N = NelNdof = O
(

(p/h)d
)

.

• The number of floating point operations (or the
work), W , required to solve the discrete system is
O(Nw) where w is the complexity of the solution
algorithm.

• The time required to complete a single operation is
1/F , and hence the total time for solution of the
system of equations if T = W/F .

Combining these assumptions, we find that the time to
achieve a specified error is

T = O
(

(

p/E1/p
)wd

/F
)

.

Taking the log of this relationship,

log T = wd

(

−
1

p
log E + log p

)

− log F + constant.

If the accuracy requirements are stringent, i.e. E << 1,
we expect that the log E term will dominate the log p
term. Thus, the time required will depend exponentially
on p, w, and d. This reasoning demonstrates the signifi-
cant benefit of improving the order of accuracy and the
solution complexity. Furthermore, since the computa-
tional time scales only inversely with the computational
speed, F , small changes in w/p can be as significant as
increasing computational power.

Numerous reasons exist for why current finite-volume
algorithms are not practical at higher-order. The root
cause of many of these difficulties lies in the extended
stencils which these algorithms employ. For finite volume
discretizations that explicitly add numerical dissipation,
the extended stencils arise from the higher-order sta-
bilization terms. For finite volume algorithms which
introduce stabilization through upwinding, the extended

1

stencils arise through the local interpolants used to in-
crease accuracy. These extended stencils contribute to
difficulties in:

• Stable iterative algorithms. As is well known, the
iterative solution of these discretizations requires
either multi-stage methods and/or implicitness be-
yond a locally implicit scheme. Another com-
mon iterative approach employs backwards Euler in
which the Jacobian of the higher-order discretiza-
tion is replaced by a lower-order approximation.
Unfortunately, Mavriplis13 has shown that the use
of lower-order approximations severely limits the
convergence rate attainable for higher-order finite-
volume simulations of complex problems even when
the lower-order systems are solved exactly.

• Memory requirements. Extended stencils degrade
the sparsity of the linearized systems of equations
used in implicit solution methods. This increased
fill results in very high memory requirements and
is the reason that lower-order approximations are
often utilized.

• Parallelization. Similar to the increased memory re-
quirements, the large support of the extended sten-
cils also increases the communication bandwidth
required for parallel computations. However, when
the number of cells in each processor is large (as
is common in the coarser grain parallelism used to-
day), this effect may be minimal.

By contrast, finite element formulations introduce
higher-order effects compactly within the element. Thus,
viewed from the element level, the stencils are not ex-
tended for higher-order finite element discretizations.
For Discontinuous Galerkin (DG) formulations, the
element-to-element coupling exists only through the flux
at the shared boundaries between elements. This limited
coupling for DG discretizations is an enabling feature
which permits the development of efficient higher-order
solvers and potentially significant improvements in the
turn-around time for reliably accurate aerodynamic sim-
ulations. Recently, Venkatakrishnan et al14 showed that
higher-order finite element schemes have significant ad-
vantages for smooth inviscid and viscous flows; however,
they also delineate several remaining challenges that
must be addressed before higher-order methods will be
robust and efficient for practical applications, which in-
clude shocks or other under-resolved flow features.

In this paper, we consider multigrid solution algo-
rithms for higher-order DG discretizations. Though the
current paper only presents results for inviscid flows,
the solution algorithm is designed for high Reynolds
number viscous problems, which will be the subject of
future work. We begin with a description of the DG
discretization for the Euler equations. Then, we present
a p-multigrid algorithm in which the coarse discretiza-
tions are formed from lower order discretization (using
a hierarchical basis) and in which the smoother is line-
element block Jacobi. Stability analysis indicates that
the eigenvalues of the iterative algorithm are relatively
insensitive to p, but dependent on h. An important
result from this analysis is that element block Jacobi

schemes are stable regardless of the order of the ap-
proximation without the need for multi-staging (which is
not true for higher-order methods using extended sten-
cils). Finally, numerical results are presented for Ringleb
flow, flow through a variable-area duct, and flow over an
airfoil, demonstrating that high accuracy solutions are
obtained in less computational time using higher-order
discretizations combined with the p-multigrid algorithm.

DISCRETIZATION

We next describe the DG discretization of the com-
pressible Euler equations (for additional details, consult
the review by Cockburn and Shu15 and the references).
The two-dimensional Euler equations of gas dynamics
are given by:

ut + ∇ · F(u) = 0, (1)

where u is the conservative state vector,

u =





ρ
ρu
ρv
ρE



 ,

and F = (Fx,Fy) is the inviscid flux,

Fx =







ρu
ρu2 + p

ρuv
ρuH






, Fy =







ρv
ρuv

ρv2 + p
ρvH






.

The total enthalpy is given by H = E + p/ρ, and the
equation of state is

p = (γ − 1)
[

ρE −
1

2
ρ
(

u2 + v2
)

]

.

Denote Vp
h to be the space of discontinuous vector-

valued polynomials of degree p on a subdivision Th of
the domain Ω into elements such that Ω̄ =

⋃

κ∈Th
κ̄.

The DG discretization of the Euler equations is of the
following form: find uh ∈ Vp

h such that ∀vh ∈ Vp
h,

∑

κ∈Th

{

∫

κ

vT
h (uh)t dx−

∫

κ

∇vT
h · F(uh)dx

+

∫

∂κ\∂Ω

v+
h

T
H(u+

h ,u−
h , n̂)ds

+

∫

∂κ∩∂Ω

v+
h

T
Hbd(u

+
h ,u−

h , n̂)ds
}

= 0, (2)

where H(u+
h ,u−

h , n̂) and Hbd(u
+
h ,u−

h , n̂) are inviscid, nu-
merical flux functions for interior and boundary edges,
respectively. Also, the ()+ and ()− notation indicates
the trace value taken from the interior and exterior of
the element, respectively, and n̂ is the outward-pointing
normal of the element. The numerical flux function used
to evaluate the boundary flux on ∂Ω need not coincide
with that used for the interior edges. For the interior
flux function, we use the Roe-averaged flux function.5

The boundary conditions on ∂Ω are imposed weakly by
constructing an exterior boundary state on ∂Ω that is a

2 of 11

American Institute of Aeronautics and Astronautics Paper 2004–0436

function of the inner state and boundary condition data,
u−

h (u+
h , BCData).

The final discrete form of the DG discretization is con-
structed by selecting a basis for Vp

h . Specifically, a set of
element-wise discontinuous functions {φj} is introduced,
such that each φj has local support on only one element.
The solution to the DG discretization has the following
form,

uh(t, x) =
∑

j

uj(t)φj(x).

Even though our interest lies in the steady-state solution,
the presence of the unsteady term is useful for improving
the initial transient behavior of the solver. A simple
backward Euler discretization in time is used so that the
final discrete equations are

M
1

∆t

(

un+1 − un
)

+ R(un+1) = 0, (3)

where M is the mass matrix and R is the residual vector
representing the final three terms of (2). In the follow-
ing discussion, we will drop the overbar notation for the
discrete solution vector.

SOLUTION METHOD

To solve the nonlinear system, R(u) = 0, we use a p-
multigrid scheme with a line Jacobi smoother. A generic
iterative scheme can be written as,

un+1 = un − P−1R (un) , (4)

where the preconditioner, P, is an approximation to
∂R

∂u
. We have considered two preconditioners: an elemen-

tal block-Jacobi smoother, in which the unknowns on
each element are solved simultaneously, and an elemen-
tal line block-Jacobi smoother, in which the unknowns
on each line of elements are solved simultaneously. We
will focus on the details of the line smoother, and the
multigrid solver based on it.

Line-Implicit Smoother

The motivation for the use of a line smoother is that
in strongly convective systems, the transport of informa-
tion proceeds along characteristic directions. By solving
implicitly on lines of elements connected along these di-
rections, we can alleviate the stiffness associated with
strong convection. Also, for viscous flows, the line solver
is an important ingredient in removing the stiffness asso-
ciated with regions of high grid anisotropy which are fre-
quently required in viscous layers.11, 16 In such cases, the
lines are formed between elements which the strongest
coupling, not purely based on convection. To implement
such a smoother, we need to be able to construct a set of
lines of elements and to solve implicitly on each of these
lines.

We first give an overview of the solution process. As-
sume we have Nl lines, or disjoint sets of adjacent ele-
ments, such that every element exists in one line. We
wish to solve our system of equations implicitly on each
of these lines. To do so, we construct a set of Nl block
tridiagonal systems and solve each to obtain the state
updates. Consider line l, 1 ≤ l ≤ Nl, containing nl ele-
ments and let Ml denote the linear system for that line.

Note that Ml is a block nl × nl matrix. The diago-
nal blocks Ml

j,j consist of the local Jacobians associated
with the elements on the line. The off-diagonal blocks
Ml

j,k represent the influence of the states in element k
on the residual in element j. We only include the block-
tridiagonal entries in Ml although it is possible for a
line of elements to ’wrap back’ such that true matrix
structure would not be tridiagonal. Since this element
would be weakly coupled to any previous element, ig-
noring these off-diagonal blocks is not likely to cause a
substantial loss in performance.

The final form of the preconditioner based on this el-
emental line smoother is augmented by the addition of
the unsteady term

P = M +
1

∆t
M, (5)

where M is the entire set of line matrices. The addition
of the time term corresponds to solving for a finite time
step, ∆t, in the unsteady problem. Mathematically, this
addition makes the system more diagonally dominant
and hence better conditioned for the iterative method.
Physically, instead of solving the steady state equations,
we are now solving for the evolution of the system at a
time increment of ∆t. The time term is used to help
alleviate transients during the solution process. As the
solution begins to converge, ∆t → ∞. A discussion of
how ∆t is set is given in the section on Robustness.

Inversion of the P uses a block-tridiagonal algorithm
in which the diagonal block is LU decomposed. As the
dominant cost of the line solver (especially for higher-
order schemes) is the LU decomposition of the diago-
nal, the computational cost of the line smoother is only
slighter larger than the simpler elemental block-Jacobi.
However, the performance of the line smoother is sig-
nificantly better due to the increased implicitness along
strongly coupled directions.

Line Creation

The effectiveness of the line smoother depends on the
length of the lines and on their alignment with the con-
vective direction. In general, these criteria are difficult
to achieve on irregular triangular meshes unless the flow
pattern is known ahead of time and the mesh is con-
structed accordingly. Nevertheless, a line-creation algo-
rithm was developed that yields a unique set of lines of
maximum length on general irregular meshes.

The first step in the line generation is the construction
of an element connectivity matrix Cj,k, a sparse, sym-
metric matrix that contains information on the strength
of the coupling between the elements, or, equivalently,
between the blocks of the Jacobian matrix. Since for
the inviscid problem we are interested in the direction of
convection, the absolute value of the inter-elemental vol-
umetric flux (velocity weighted by face area) was used as
the connectivity measure. In practice, the matrix Cj,k

is formed during residual calculation, when the inter-
elemental fluxes are available, which results in marginal
additional cost.

Given the connectivities in Cj,k, the line creation algo-
rithm is employed. In the following pseudocode descrip-
tion, let N(j, f) denote the element adjacent to element
j, across face f . In addition, let F (j) denote the set of
faces enclosing element k.

3 of 11

American Institute of Aeronautics and Astronautics Paper 2004–0436

Line Creation Algorithm

1. Obtain a seed element i

2. Call MakePath(i) - Forward Path

3. Call MakePath(i) - Backward Path

4. Return to (1). The algorithm is finished when no
more seed elements exist.

MakePath(j)

While path not terminated:

For element j, pick the face f ∈ F (j) with
highest connectivity, such that element k =
N(j, f) is not part of the current line. Termi-
nate the path if any of the following conditions
hold:

- face f is a boundary face

- element k is already part of a line

- C(j, f) < C(k, g), ∀g ∈ F (k), g 6= f

Otherwise, set j = k and continue.

Robustness and Limiting

One of the key goals in designing the solver was ro-
bustness - i.e. making it applicable to a wide variety
of problems. Since the smoother uses a preconditioner
based on a linearized form of the governing nonlinear
equations, failure can occur if the initial guess is not close
to the final solution. In practice, this failure is man-
ifested through the appearance of non-physical states,
such as negative density or pressure. To avoid such
occurrences, a limiter was created to act on the state
updates du returned by the solver. Limiting is done in
two different forms, depending on the degree of the non-
linear behavior.

As a first step, the state update is limited through
under-relaxation:

un+1 = un + αdu (6)

The under-relaxation factor α is calculated as the
greatest α > 0 that keeps the density and pressure
changes under 10% of the current values over all the
elements. It is desirable to use the same α for all the
elements in order to not hinder the performance of the
solver. In practice, however, there can exist one or two
elements which require a much lower α than the rest of
the domain. Using the same small α globally in this case
would unnecessarily slow the progress to the solution.
To resolve this problem, a minimum global α = 0.001
was used on all elements except locally for those which
required a smaller under-relaxation factor. The calcu-
lation of this factor results in a minimal computational
overhead relative to the smoother and prevents failure
during the initial solution transients for many problems.

However, even with under-relaxation limiting, the
solver can fail in the initial steps of a difficult problem
through the inability to limit changes in the pressure.
Since pressure is a nonlinear function of the conservative
state variables, an iterative method is used to determine
the pressure limit. The limiter fails if an acceptable α is

not found after a certain maximum number of steps. In
such cases, the second limiting method is employed: on
each successive failure of under-relaxation, ∆t is lowered
by a constant factor, until under-relaxation is applied
successfully. This ∆t is then used for the next several
solver iterations before it is successively increased back
to its original maximum value (e.g. 1010).

Storage and Implementation

The greatest storage requirement comes from the line
preconditioner, which is essentially equal in size to the
full Jacobian. The benefit of storing the full Jacobian is
that doing so allows multiple linear iterations per one in-
version of the diagonal blocks. We have found that linear
iterations benefit overall computational time; however,
storage of the full Jacobian leads to excessive memory
requirements for problems in which the element count
and interpolation order are large. Hence, a memory-lean
version of the line solver was written in which the Ja-
cobian is stored only for one line of elements at a time.
In addition to the memory savings, the updates dul ob-
tained for each line can be applied to the states as each
line is processed, resulting in a Gauss-Seidel type itera-
tive scheme. This method was implemented and showed
slightly faster convergence rates for general problems.

p-Multigrid

Motivation

p-multigrid was used in conjunction with the line
smoother to increase the performance of the solver. In
standard multigrid techniques, solutions on spatially
coarser grids are used to correct solutions on the fine
grid. This method is motivated by the observation that
most smoothers are poor at eliminating low frequency er-
ror modes on the fine grid. However, these low frequency
error modes can be effectively corrected by smoothing on
the coarser grids, in which these modes appear as high
frequency. In p-multigrid, the idea is the same, with
the exception that lower order interpolants serve as the
“coarse” grids.17, 18

p-multigrid fits naturally within the framework of
high-order DG discretizations. There is no need to store
additional grid information since the same spatial grid is
used by all levels. In addition, a hierarchical basis can
be used, eliminating the need to store separate state in-
formation at each level. The transfer operators between
the grids, prolongation and restriction, are local and only
need to be stored for a reference elements. These oper-
ators become trivial in the case of a hierarchical basis,
and they reduce computational time by simplifying the
implementation.

FAS and Two-Level Multigrid

To solve the nonlinear system in question, the Full Ap-
proximation Scheme (FAS) was chosen as the multigrid
method. Much of the description that follows is adapted
from Briggs.19

Consider the discretized system of equations given by

Rp(up) = fp

rp ≡ fp −Rp(up).

In the above, up is the discrete solution vector for pth

order interpolation on a given grid, and Rp(up) is the

4 of 11

American Institute of Aeronautics and Astronautics Paper 2004–0436

associated nonlinear system. fp is a source term (zero
for fine-level problem), and rp is the discrete residual.
In a basic two-level multigrid method, the exact solution
on a coarse level is used to correct the solution on a fine
level. This correction scheme is given as follows:

• Restrict the state and residual to the coarse level:
up−1

0 = Ĩp−1
p up, rp−1 = Ip−1

p rp.

• Solve the coarse grid problem: Rp−1(up−1) =

Rp−1(up−1
0) + rp−1.

• Interpolate the coarse grid error and correct the fine
level state: up = up + Ip

p−1(u
p−1 − up−1

0).

Ip−1
p is the residual restriction operator, and Ip

p−1 is

the state prolongation operator. Ĩp−1
p is the state re-

striction operator and is not necessarily the same as the
residual restriction. We note that the FAS coarse level
equation can be written as

Rp−1(up−1) = Ip−1
p fp + τp−1

p

τp−1
p ≡ Rp−1(Ip−1

p up−1) − Ip−1
p Rp−1(up−1

0).

This equation differs from the original coarse level
equation by the presence of the correction term τp−1

p ,
which improves the correction property of the coarse
level. In particular, if the fine level residual is zero, the
coarse level solution is up−1 = up−1

0 .

V-cycles and FMG

To make multigrid practical, the basic two level correc-
tion scheme is extended to a V-cycle and to full multigrid
(FMG). In a V-cycle, a sequence of coarse levels (two or
more) is used to correct the solution on the fine level. De-
scending from the finest level to the coarsest, a certain
number of pre-smoothing steps, ν1, is performed on each
level before the problem is restricted to the next coarser
level. On the coarsest level, the problem is either solved
directly or smoothed a relatively large number of times,
νc. Ascending back to the finest level, a certain number
of post-smoothing steps, ν2, is performed on each level
before the prolongation. Each such described V-cycle
constitutes a multigrid iteration.

Using plain V-cycles to obtain a high-order solution
requires starting the smoothing iterations on the highest
order approximation. As this level contains the largest
number of DOFs, smoothing on it is the most expensive.
It would make sense to first obtain an approximation to
the solution using the coarser levels before smoothing
on the finest level. This is the premise behind FMG
in which V-cycles on successively finer levels are used
to approximate the solution on the finest level. By the
time the solution is prolongated to the finest level, it is
usually a close approximation to the final solution, with
the exception of certain high frequency errors that can
be smoothed efficiently on that level.

In an effective multigrid scheme - that is, one in
which the smoother, transfer operators, and coarse level
approximation spaces are well matched - FMG should
require only a few V-cycles on each level before prolon-
gating to the next finer level.20 In practice, this behavior

can be tested by using a known output to track the error
at each multigrid iteration.

A decision that has to be made in the FMG cycle is
when to start iterating on the next finer level. Con-
verging the solution fully on each level is not practical
because the discretization error on the coarser levels is
usually well above machine zero. One can perform a
constant number of V-cycles on each level; however, this
adds an additional parameter in the solution process. An
alternative is to prolongate when a residual-based crite-
rion is met. The criterion used is that prolongation takes
place when the residual on the current level drops below
1/2 of the residual on the next finer level. The residual
on the next finer level is computed at the end of each
V-cycle, at a slight additional computational cost.

Operator Definition

We now define the transfer operators: Ip
p−1, Ip−1

p , and

Ĩp−1
p used in the multigrid scheme. Let Ω denote the

entire domain, and let φp
i denote the ith basis function

of order p in an ordering over all the basis functions in
Ω. Since the approximation spaces are nested, we can
write φp−1

i in terms of φp
j ,

φp−1
i =

∑

j

αp−1
i,j φp

j . (7)

The prolongation operator, Ip
p−1, transfers up−1 to the

next finer level. Thus, we seek a representation of the
coarse level solution on the finer level. That is, we wish
to calculate up such that

up
j = Ip

p−1u
p−1
i ,

∑

j

up
j φp

j =
∑

i

up−1
i φp−1

i .

Using (7) we have,

∑

j

up
j φp

j =
∑

i

up−1
i

∑

j

αp−1
j,i φp

j ,

∑

j

Ip
p−1u

p−1
i φp

j =
∑

j

∑

i

αp−1
j,i up−1

i φp
j .

Since a state representation is unique in the basis φp
j ,

it must be the case that,

Ip
p−1 = (αp−1)T . (8)

To form the residual restriction operator, we return to
the definition of the residual vector,

Rp
j =

∫

Ω

(L)φp
j dΩ.

L represents the original system of partial differential
equations. Given Rp we would like to determine Rp−1 =
Ip−1

p Rp. Writing out Rp−1
i and using (7) yields,

5 of 11

American Institute of Aeronautics and Astronautics Paper 2004–0436

Rp−1
i =

∫

Ω

(L)φp−1
i dΩ

=
∑

j

αi,j

∫

Ω

(L)φp
j dΩ

=
∑

j

αi,jR
p
j .

Thus, the residual restriction operator is,

Ip−1
p = αp−1. (9)

Finally, the state restriction operator, with which we
can write up−1 = Ĩp−1

p up, can be found by enforcing
state equality between the coarse and fine levels in a
weak form,

∫

Ω

φp−1
k

∑

i

up−1
i φp−1

i dΩ =

∫

Ω

φp−1
k

∑

j

up
j φp

j dΩ

∑

i

Mp−1
k,i up−1

i =
∑

j

N p−1
k,j up

j

up−1
i = (Mp−1)−1N p−1up

j

Ĩp−1
p = (Mp−1)−1N p−1. (10)

Mp−1
k,i =

∫

Ω

φp−1
k φp−1

i dΩ N p−1
k,j =

∫

Ω

φp−1
k φp

j dΩ

The weak form is necessary because we cannot expect
to be able to represent a general pth order solution us-
ing basis functions of order p − 1. The form presented
recovers all of the components of the coarse level basis
functions present in the fine level solution.

Although the operators have been defined in a global
sense, the local compact support for the basis functions
makes it sufficient to calculate these operators on a refer-
ence element and to apply them element-wise throughout
the domain. For example, it can be shown that for a
hierarchical basis, Ip

p−1 is the identity matrix with zero

rows appended, and Ip−1
p is the identity matrix with zero

columns appended. In general, Ip−1
p 6= Ĩp−1

p .

Implementation

One consideration in the implementation of the multi-
grid scheme is storage. For each level we have defined
state, residual, and source vectors. However, since the
residual data can be overwritten, it is not necessary to
allocate three separate vectors for each level. Figure 1
shows the implementation used for a general basis.

As shown, only one source vector of adequate size is
allocated. During restriction, the state vector is trans-
ferred directly via up−1 = Ĩp−1

p up. Three transfers then
take place regarding the residual and source terms. First,
Rp is restricted via Rp−1 = Ip−1

p Rp. Second, the source
term used by level p is stored in the residual vector.
Finally, the coarse level residual is transferred to the
source term: fp−1 = Rp−1. Analogous steps are taken

IP

P-1

IP

P-1

IP-1

P

State Residual Source

P

P-1

1

2

3 Restriction

Prolongation

Fig. 1 Diagram of storage in multigrid algorithm

-2 -1.5 -1 -0.5 0
1

0.5

0

0.5

1

(a) (b)

-2 -1.5 -1 -0.5 0
1

0.5

0

0.5

1

Fig. 2 Smoothing footprint for p = 0 (a) and p > 0
(b)

when transferring to the next coarser level. During pro-
longation, the state up is corrected by interpolating the
difference between the coarse level solution and the re-
striction of the fine level solution. In addition, the source
term is restored from the residual vector.

Since prolongation introduces a du correction to the
solution, the update goes through the standard limiting
process to make sure it does not drive the solution un-
stable. In the interest of time and stability, FMG was
used as the standard multigrid solver.

ANALYSIS

We first present the results of a stability analysis of
DG applied to the advection problem,

~V · ∇u = f(~x), (11)

aux = f(x) (1D),

aux + buy = f(x, y) (2D).

In this problem, the velocity ~V is constant, u is the
unknown concentration variable, and f is the source
function. The problem is defined on the interval [−1, 1]
([−1, 1] × [−1, 1] in 2D) with periodic boundary condi-
tions, which allow for a spectral stability analysis.

1D

In 1D, we consider the use of the elemental block Ja-
cobi scheme as a smoother for higher order discretization.
Fourier (Von Neumann) analysis is used to determine the
footprint, which consists of the eigenvalues of −M−1A,
where A is the resulting linear operator from the DG
discretization of the scalar convection problem. For this
1D problem, the eigenvalues and eigenvectors of M−1A
can be computed analytically with the result that the
elemental block Jacobi scheme is stable independent of
order. The footprints of the p = 0 and p > 0 precondi-
tioned operators are shown in Figure 2. For p = 0, the
eigenvalues are identical to those obtained from the tra-
ditional upwind finite-difference scheme, as the schemes

6 of 11

American Institute of Aeronautics and Astronautics Paper 2004–0436

-2 -1.5 -1 -0.5 0
-1

-0.5

0

0.5

1
LH

-2 -1.5 -1 -0.5 0
-1

-0.5

0

0.5

1
HH

-2 -1.5 -1 -0.5 0
-1

-0.5

0

0.5

1
LL

-2 -1.5 -1 -0.5 0
-1

-0.5

0

0.5

1
HL

Fig. 3 Block Jacobi footprint for α = 25o

are identical. For higher order, the additional eigen-
values all lie at −1, implying that the smoother will
converge at a rate that is independent of the order and
guaranteeing p-independent multigrid as well.

2D

In 2D, we analyze the stability and smoothing of both
the elemental block Jacobi and the line block Jacobi algo-
rithm. While the eigenvalues cannot be calculated ana-
lytically, numerical results show that |ρ(−M−1A−I)| ≤
1 for all flow angles α = tan−1(b/a) for both precon-
ditioners. For multigrid studies, it is useful to differen-
tiate between low (L) and high (H) frequency modes.
We do this by defining the L modes to be those with
−π/2 < θ ≤ π/2. All other values of θ correspond to H
modes. This separation is ideal for h-multigrid in which
the grid size is halved on each finer grid. For p-multigrid,
the ideal separation is not clear, but the stated separa-
tion is used for simplicity. With this distinction, we can
separate the eigenvalues based on the mode pair (θj , θk)
of the eigenvectors: LL, LH, HL, or HH. Figure 3 shows
this separation for the case of α = 25o.

The modes least affected by under-relaxed-Jacobi
smoothing are those with footprint eigenvalues closest to
0 in the complex unit disk. As expected, the HH modes
are effectively reduced by the iterative method. The LL
modes are densely clustered near 0, and, as in 1D, we
cannot expect to reduce these errors without some form
of multigrid. The HL modes are effectively reduced by
the smoother, but the LH modes are not reduced, a con-
sequence of the flow being aligned more in the x-direction
for α = 25o. Since the LH modes contain high frequency
components, they cannot be represented on uniformly-
coarsened grids to be affected by multigrid. The presence
of these errors stalls the convergence and degrades the
performance of multigrid with block-Jacobi smoothing.

-2 -1.5 -1 -0.5 0
-1

-0.5

0

0.5

1
LH

-2 -1.5 -1 -0.5 0
-1

-0.5

0

0.5

1
HH

-2 -1.5 -1 -0.5 0
-1

-0.5

0

0.5

1
LL

-2 -1.5 -1 -0.5 0
-1

-0.5

0

0.5

1
HL

Fig. 4 Line Jacobi footprint for α = 25o

A line smoother is capable of reducing the “LH” modes
- i.e. the modes that are low frequency in the flow direc-
tion and high frequency in the transverse direction. The
line updates are performed in Jacobi fashion in that the
unknown values for all elements not on the line are held
constant when calculating the update. Line smoothing
is most effective in cases where the lines are aligned with
the flow direction. Figure 4 shows the footprint of line
smoothing for the case of α = 25o and horizontal (x-
aligned) lines. In comparison to Block Jacobi (Figure
3), Line Jacobi is more effective at reducing the HH,
HL, and LH modes. Smoothing of the LH modes still
results in some eigenvalues close to 0, a consequence of
the 25o difference between the flow angle and the line
angle.

RESULTS

We now present accuracy and solver performance re-
sults for three smooth problems: Ringleb flow, flow over
a Gaussian bump, and flow over a Joukowski airfoil. For
each problem, uniform grid refinement was performed to
study the accuracy of the discretization. Performance
was determined from timing and convergence rate of the
FMG scheme. The following parameters were used in all
the cases:

• - Hierarchical basis, as given in Šoĺın et. al.21

• - ν1 = 4 pre-smoothing sweeps and ν2 = 4 post-
smoothing sweeps

• - νc = 100 sweeps on the coarsest level, p = 0

• - Memory-lean line solver with one linear iteration
per non-linear iteration

• - Residual-based level switching criterion for FMG

7 of 11

American Institute of Aeronautics and Astronautics Paper 2004–0436

st
re

am
lin

e

st
re

am
lin

e

V = const

y

x
θ

Domain

Fig. 5 Ringleb Flow

• - Initialization with a converged solution on p = 0

All timing runs were performed on an Intel Pentium 4
2.53 GHz system with 512 MB RAM.

Ringleb Flow

Ringleb Flow is an exact solution of the Euler equa-
tions obtained using the hodograph method. The
streamlines and iso-Mach lines for a typical Ringleb so-
lution domain are shown in Figure 5.

The relevant transformation equations between the
Cartesian variables (x, y) and the hodograph variables
(V, θ) are,

Ψ =
1

V
sin(θ)

c2 = 1 −
γ − 1

2
V 2

x =
1

2ρ

[

1

V 2
− 2Ψ2

]

+
J

2

y = ±
Ψ

ρV
cos(θ)

J =
1

c
+

1

3c3
+

1

5c5
−

1

2
log

1 + c

1 − c

ρ = c2/(γ−1)

Taking advantage of the fact that the exact solution
is known, we take as our domain the circle shown inside
the regular Ringleb domain. The boundary condition
is imposed by setting the exact state just outside the
domain, and using this state in the flux function. An
accuracy study was performed using a set of three hier-
archical grids (88, 352, and 1408 elements). Orders of
interpolation ranging from p = 0 to p = 3 were used,
and the output of interest was the L2 norm of the error.
Each case was converged to machine zero residual.

Figure 6 shows the solution accuracy versus grid size
and order. Optimal accuracy convergence of p + 1 is

1.5 2 2.5 3 3.5
10

-10

10
�-9

10
�-8

10
�-7

10
�-6

10
�-5

10
�-4

10
�-3

10
�-2

10
�-1

10
0

log
10

(N)

||e
|| L2

10
0

10
2

10
�-10

10
�-9

10
�-8

10
�-7

10
�-6

10
�-5

10
�-4

10
�-3

10
�-2

10
�-1

10
0

CPU Time (s)

||e
|| L2

p=1
p=2
p=3

4.2

3.1

2.1

1.0

p = 0

p = 1

p = 2

p = 3

Fig. 6 Ringleb Flow: accuracy vs. CPU time

0 10 20 30 40 50 60 70 80
10

-10

10
� -9

10
� -8

10
� -7

10
� -6

10
� -5

10
� -4

10
� -3

10
� -2

MG iterations

|e
| L2

88 elements
352 elements
1408 elements

Fig. 7 Ringleb Flow: Error convergence history

attained, in that ||e||L2 = Chp+1. Figure 6 also shows
the error plotted versus CPU time to solution. A so-
lution was taken to be converged when the error norm
came within 1 percent of its final value, determined by
converging the solution to machine zero residual before-
hand. The advantage of high order interpolation is clear:
a p = 3 solution on the coarsest grid yields the same ac-
curacy as a p = 2 solution on a grid 16 times the size in
a time of 17 seconds as compared to 352 seconds.

The accuracy convergence histories for p = 3 FMG
solutions on each grid are shown in Figure 7. Grid de-
pendence is evident, showing one of the drawbacks of the
solution algorithm. However, also evident is the advan-
tage of p-refinement. The symbols on each plot denote
switches to the next higher order. In stepping up the
order level from p = 1 to p = 3, the convergence rate per
iteration does not degrade. Thus, the convergence rate
of the V-cycle appears order-independent for a particular
grid.

The corresponding residual histories for each grid are
shown in Figure 8. We see that for each grid it is not
necessary to converge the residual to machine zero to

8 of 11

American Institute of Aeronautics and Astronautics Paper 2004–0436

0 10 20 30 40 50 60 70 80
10

-15

10
�-10

10
�-5

10
 0

MG iterations

|R
|

88 elements
352 elements
1408 elements

Fig. 8 Ringleb Flow: Residual convergence history

0 10 20 30 40 50 60 70
10

-15

10
�-10

10
�-5

10
0

MG iterations

|R
|

0.38

0.35

0.32

p = 1

p = 2

p = 3

1408 elements

Fig. 9 Ringleb Flow: FMG residual history with full
convergence on each level

obtain accuracy to the discretization level. Finally, to
illustrate the asymptotic multigrid rates, Figure 9 shows
the residual history for FMG with full convergence on
each level. We note that the rate does not degrade with
increasing order.

Flow over a Gaussian Bump

The second test problem is that of channel flow over a
Gaussian bump. The problem setup is shown in Figure
10. The channel height is 12σ, the channel length is 24σ,
and the bump height is 0.4σ, where σ is the standard de-
viation of the Gaussian. Wall boundary conditions were
enforced on the top and bottom channel boundaries. At
the outflow, the static pressure was set constant and at
the inflow, the total temperature, the total pressure, and
the flow angle (0o) were prescribed, resulting in a free-
stream flow of M = 0.2. The output of interest in this
case was the L2 norm of the entropy error, ||S −Sfs||L2,
where Sfs is the free-stream entropy.

Again, three hierarchical grids (587, 2348, 9392 ele-
ments) were used in a hierarchical study. The results
are shown in Figure 11. As in the Ringleb case, optimal

Wall

Wall

Tt, Pt,

α
pM = 0.2

12σ	

24σ

0.4σ

Fig. 10 Domain for flow over a Gaussian bump

2.5 3 3.5 4 4.5
10

-9

10
�-8

10
�-7

10
�-6

10
�-5

10
�-4

10
�-3

10
�-2

10
�-1

log
10

(N)

||S
�

S fs
|| L2

10
0

10
2

10
4

10
�-9

10
�-8

10
�-7

10
�-6

10
�-5

10
�-4

10
�-3

10
�-2

10
�-1

CPU Time (s)

||S
�

S
fs

|| L2

p=1
p=2
p=3

0.9

2.4

3.2

3.8

p = 0

p = 1

p = 2

p = 3

Fig. 11 Gaussian bump: accuracy vs. CPU time

0 5 10 15 20 25 30
10

-18

10
�-16

10
�-14

10
�-12

10
�-10

10
�-8

10
�-6

10
�-4

10
�-2

10
 0

MG iterations

|S
�S

fs
| L2

587 elements
2348 elements
9392 elements

Fig. 12 Gaussian bump: Entropy error convergence
history

error convergence of p + 1 is attained. Figure 11 also
shows the accuracy versus CPU time for each run. The
advantage of higher order for obtaining accurate solu-
tions is again evident.

The accuracy convergence histories are shown in Fig-
ure 12. Grid dependence is apparent but not significant.
The step-like behavior of the error is due to the rapid er-

9 of 11

American Institute of Aeronautics and Astronautics Paper 2004–0436

0 5 10 15 20 25 30
10

-14

10
�-12

10
�-10

10
�-8

10
�-6

10
�-4

10
�-2

10
 0

MG iterations

587 elements
2348 elements
9392 elements

Fig. 13 Gaussian bump: Residual convergence his-
tory

�

�

�

�
 c
80c

80c

pTt, Pt,

α

Fig. 14 Domain for flow over a Joukowski airfoil (not
to scale)

ror reduction following a transfer to a finer level, which
is a characteristic of an effective multigrid scheme.

Figure 13 shows the residual histories for each run.
We note the relatively constant convergence rate with
respect to order, and the fact that the entropy error out-
put bottoms out well before the residual is converged to
machine zero.

Joukowski Airfoil

The third test problem is a 12 percent thick Joukowski
airfoil at M = 0.2 and α = 0o. The airfoil was cre-
ated using a standard Joukowski transformation. The
computational domain is shown in Figure 14. Total tem-
perature, total pressure, and flow angle were specified at
the inlet, static pressure was specified at the outlet, and
the free-stream state was prescribed at the top and bot-
tom boundaries. For this case, the output of interest
was the absolute value of the drag on the airfoil, which
should approach zero.

The results of an accuracy study (grid sizes of 974,
3896, and 15584 elements) are shown in Figure 15. Op-

3 3.5 4
10

-9

10
�-8

10
�-7

10
�-6

10
�-5

10
�-4

10
�-3

10
�-2

log
10

(N)

|D
ra

g|

10
1

10
2

10
3

10
4

10
�-9

10
�-8

10
�-7

10
�-6

10
�-5

10
�-4

10
�-3

10
�-2

CPU Time (s)

p=1
p=2
p=3

0.9

2.7

3.64.0

|D
ra

g|

p = 0

p = 1

p = 2

p = 3

Fig. 15 Joukowski airfoil: accuracy vs. CPU time

0 5 10 15 20 25 30
10

-10

10
�-9

10
�-8

10
�-7

10
�-6

10
�-5

10
�-4

10
�-3

10
�-2

MG iterations

|D
|

974 elements
3896 elements
15584 elements

Fig. 16 Joukowski airfoil: Drag convergence history

timal convergence of p + 1 is roughly attained, although
the error on the finest grid p = 3 solution appears to
bottom out. This effect is likely a consequence of a sin-
gularity caused by the finite trailing edge angle and the
inviscid flow assumption. We expect this effect to disap-
pear with the introduction of viscous modeling.

The accuracy and residual histories are shown in Fig-
ures 16 and 17, respectively. The drag convergence
appears more oscillatory than the previous cases, but
still proceeds faster than the residual convergence. Grid
dependence exists, but does not appear to be strong.

CONCLUSIONS

We have presented the details of a higher-order so-
lution method for DG applied to the Euler equations.
The p-multigrid algorithm fits naturally into the local
high-order finite element discretization. Grid transfer
operators are local and become trivial to implement in
the case of a hierarchical basis. The line smoother is
effective at removing the error modes associated with
convection, as predicted by the 2D analysis of an ad-
vection problem. The results for three smooth problems

10 of 11

American Institute of Aeronautics and Astronautics Paper 2004–0436

0 5 10 15 20 25 30
10

12

10
�-10

10
�-8

10
�-6

10
�-4

10
�-2

10
0

MG iterations

974 elements
3896 elements
15584 elements

Fig. 17 Joukowski airfoil: Residual convergence his-
tory

illustrate how the coupling of the line smoother with an
FMG scheme yields an effective and efficient solver.

Optimal accuracy convergence is obtained for the
three different outputs of interest: the L2 error norm in
the Ringleb case, the L2 entropy norm in the bump case,
and the drag in the Joukowski airfoil case. Residual his-
tory plots show grid dependence, which is not strong in
the bump and airfoil cases. Most importantly, the timing
results demonstrate the benefit and practicality of using
higher order for attaining high accuracy. Using the solu-
tion algorithm presented, the lower-order discretizations
require highly refined grids and more computational time
to attain the levels of accuracy of higher order discretiza-
tions on coarser grids.

FUTURE DIRECTIONS

The cases considered in this paper have been smooth
and hence suitable for showing the benefit of high order.
For problems with shocks, limiting is required to stabilize
the oscillatory behavior of high-order approximations
near discontinuities. A limiter has not yet been im-
plemented, and its effects on accuracy and convergence
rate are unknown, although decreased performance is ex-
pected. In addition to the formulation of a limiter, we
will also introduce viscous modeling, with appropriate
modifications to the solver. Following these additions,
the next steps are parallelization and turbulence model-
ing, and performance comparisons for practical cases of
interest.

References
1Jameson, A., Schmidt, W., and Turkel, E., “Numerical sim-

ulation of the Euler equations by finite volume methods using
Runge-Kutta time stepping schemes,” AIAA-81-1259, 1981.

2Jameson, A., “Solution of the Euler equations for two-
dimensional transonic flow by a multigrid method,” Applied
Mathematics and Computation, Vol. 13, 1983, pp. 327–356.

3Jameson, A., Baker, T. J., and Weatherhill, N. P., “Calcula-
tion of Inviscid Transonic Flow over a Complete Aircraft,” 1986.

4Van Leer, B., “Flux-vector splitting for the Euler equations,”
Tech. Rep. 81-11, ICASE, 1981.

5Roe, P., “Approximate Riemann solvers, parametric vectors,
and difference schemes,” Journal of Computational Physics,
Vol. 43, 1981, pp. 357–372.

6Van Leer, B., “Upwind-difference methods for aerodynamic
problems governed by the Euler equations,” Lectures in Applied
Mathematics, Vol. 22, 1985.

7Roe, P., “Characteristic-based schemes for the Euler equa-
tions,” Ann. Rev. Fluid Mech., Vol. 18, 1986, pp. 337–65.

8Van Leer, B., Thomas, J., Roe, P., and Newsome, R., “A
Comparison of numerical flux formulas for the Euler and Navier-
Stokes equations,” AIAA Paper 87-1104, 1987.

9Anderson, W. K., Rausch, R. D., and Bonhaus, D. L., “Im-
plicit/multigrid algorithms for incompressible turbulent flows on
unstructured grids,” J. Comput. Phys., Vol. 128, 1996, pp. 391–
408.

10Pierce, N. and Giles, M., “Preconditioned multigrid methods
for compressible flow calculations on stretched meshes,” Journal
of Computational Physics, Vol. 136, 1997, pp. 425–445.

11Mavriplis, D., “Multigrid strategies for viscous flow solvers
on anisotropic unstructured meshes,” Journal of Computational
Physics, Vol. 145, 1998, pp. 141–165.

12Mavriplis, D. and Pirzadeh, S., “Large-scale parallel un-
structured mesh computations for 3D high-lift analysis,” AIAA
Journal of Aircraft, Vol. 36, 1999, pp. 987–998.

13Mavriplis, D., “An assessment of linear versus nonlinear
multigrid methods for unstructured mesh solvers,” Journal of
Computational Physics, Vol. 175, 2001, pp. 302–325.

14Venkatakrishnan, V., Allmaras, S., Kamenetskii, D., and
Johnson, F., “Higher order schemes for the compressible Navier-
Stokes equations,” AIAA Paper 2003-3987, 2003.

15Cockburn, B. and Shu, C.-W., “Runge-Kutta discontinuous
Galerkin methods for convection-dominated problems,” Journal
of Scientific Computing, 2001, pp. 173–261.

16Allmaras, S., “Analysis of semi-implicit preconditioners for
multigrid solution of the 2-D compressible Navier-Stokes equa-
tions,” 1995.

17Rønquist, E. M. and Patera, A. T., “Spectral element multi-
grid. I. Formulation and numerical results,” J. Sci. Comput.,
Vol. 2(4), 1987, pp. 389–406.

18Helenbrook, B., Mavriplis, D., and Atkins, H., “Analysis of
p-multigrid for continuous and discontinuous finite element dis-
cretizations,” AIAA Paper 2003-3989, 2003.

19Briggs, W., Henson, V. E., and McCormick, S. F., A Multi-
grid Tutorial, 2nd Ed., SIAM, 2000.

20Brandt, A., Guide to Multigrid Development, Springer-
Verlag, 1982.

21Soĺın, P., Segeth, K., and Zel, I. D., Higher-Order Finite
Element Methods, Chapman and Hall, 2003.

11 of 11

American Institute of Aeronautics and Astronautics Paper 2004–0436

