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I. Introduction

The accessibility, fast turnaround time, and almost arbitrary test conditions offered by Com-
putational Fluid Dynamics (CFD) make it an attractive tool in industry. CFD simulations with
sophisticated physical modeling are now used regularly to reduce design cycle costs and to im-
prove final product design. This prevalence of CFD has been driven by increasing computational
power and improvements in numerical methods, to the extent that complex simulations on general
three-dimensional geometries are now routine.

Such powerful simulation capability is a remarkable achievement for CFD, but it also comes
with a new liability: ensuring that the solutions computed are sufficiently accurate. Typically, this
liability is managed by practitioners knowledgeable about the assumptions and limitations of the
models and discretization. However, even very experienced practitioners cannot quantify the error
in a discrete approximation of a complex flowfield. In addition, reliance on best-practice guidelines
for mesh generation and on previous experience is an open-loop solution that leaves the door open
to large amounts of numerical error for computations on novel configurations.

Even on relatively standard simulations, questions arise regarding the robustness with which
CFD methods can accurately compute outputs of interest. An example is the American Institute
of Aeronautics and Astronautics Drag Prediction Workshop (DPW),1–3 in which force and moment
outputs for a representative set of wing-body geometries and flow conditions were compared across
codes in industry and academia. Results from submissions have consistently shown a wide degree of
scatter in computed outputs. For example, drag coefficient variations of .0025 observed in the most
recent DPW on a DLR-F6 wing body (Figure 1) translate to a difference of over 100 passengers on
a large transport aircraft.4,5 The results from the most recent workshop constitute only a slight
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Figure 1. DPW III results: total drag coefficient predictions for the DLR-F6 wing-body at
M = 0.75, CL = 0.5, Re = 5 × 106. The solution index differentiates between different codes,
turbulence models, and mesh types.3,6
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improvement over the results from the two previous workshops,1,2 even though computational power
has increased substantially. Moreover, additional tests in the recent DPW show that discrepancies
persist even for simple wing-only geometries. For these geometries, results obtained using the same
code but on independently-generated meshes appear to converge to different output values with
uniform mesh refinement.7 This lack of grid convergence, illustrated in Figure 2, indicates that
the highly-disparate length scales in this three dimensional flow are not adequately resolved even
with some of the finest a priori generated meshes. This observation suggests that increases in

Figure 2. DPW III wing-only results: total, pressure and skin friction drag convergence for
two families of grids of two wing geometries, at M = 0.76, α = 0.5o, Re = 5 × 106. One set of
grids was generated by Cessna Aircraft Co. and the other by the University of Wyoming.
Reproduced with permission from.7

computational power alone will be insufficient to decrease numerical error for such applications to
acceptable levels in the near future.

For each answer in Figure 1, an additional useful piece of information would be an associated
confidence measure, for example in the form of an error bar. Providing such error bars is the goal of
output-based error estimation techniques. The general idea of error estimation is not a new concept,
and a number of previous works have reviewed the subject in various contexts. Verfurth analyzes
a posteriori error estimates for elliptic partial differential equations, and shows an equivalence
between estimates based on local residuals and on solutions of local problems.8 Ainsworth and
Oden focus on mechanics and consider a posteriori energy norm error estimates for linear elliptic
boundary value problems.9 In the context of output error estimation, Becker and Rannacher
present a thorough review of the adjoint-weighted residual method for a posteriori error estimation
in finite element discretizations of elliptic, parabolic, and hyperbolic equations.10 In addition, Giles
and Pierce review adjoint correction techniques and Giles and Süli review a posteriori output error
estimation for finite element methods applied to linear and nonlinear partial differential equations
relevant to CFD.11,12

This paper reviews output error estimation and mesh adaptation specifically in the context of
aerospace CFD applications and it presents a collection of recent results for practical problems. The
structure of the paper is as follows. Section II introduces output adjoint solutions for both fully-
discrete and variational problems. Section III then reviews the adjoint-weighted residual method
for output-based error estimation. Error localization and mesh adaptation techniques are reviewed
in Section IV. Section V presents recent implementations and results for aerospace engineering
applications. Finally, challenges and ongoing research are discussed in Section VI.
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II. Outputs and Adjoints

II.A. Fully-Discrete Formulation

Consider a partial differential equation discretized into Nh, possibly nonlinear, algebraic equations,

Rh(uh) = 0, (1)

where uh ∈ R
Nh is the vector of unknowns and Rh ∈ R

Nh is the vector of residuals that must be
driven to zero. The subscript h denotes the fineness of the discretization and encompasses both
mesh size and interpolation order. Given a scalar output Jh(uh), the associated adjoint vector,
ψh ∈ R

Nh , is the sensitivity of Jh to an infinitesimal residual perturbation, δRh ∈ R
Nh , to the

nonlinear system:

δJh ≡ Jh(uh+δuh) − Jh(uh) ≡ ψ
T
h δRh, (2)

where δuh is the infinitesimal solution perturbation satisfying

∂Rh

∂uh
δuh + δRh = 0, (3)

which is obtained by linearizing Eqn. 1. The linearization assumes the discrete equations are
differentiable. Further, assuming that the output is also differentiable,

δJh =
∂Jh
∂uh

δuh = ψTh δRh = −ψTh
∂Rh

∂uh
δuh (4)

where Eqns. 2 and 3 were used in the second and third equalities, respectively. In order for Eqn. 4
to hold for arbitrary perturbations, we require

∂Jh
∂uh

= −ψTh
∂Rh

∂uh
(5)

from which ψh must satisfy the discrete adjoint equation

(
∂Rh

∂uh

)T

ψh +

(
∂Jh
∂uh

)T

= 0. (6)

II.B. Variational Formulation

In a variational setting, consider a general semilinear form arising from a Galerkin weighted residual
statement: determine uh ∈ Vh such that

Rh(uh,vh) = 0, ∀vh ∈ Vh, (7)

where Vh is a finite-dimensional space of functions. The subscript h indicates a discretization of the
computational domain, such as a triangulation in a finite element method. Rh(·, ·) : Vh × Vh → R

is assumed to be a semilinear form, linear in the second argument. A scalar output of interest is
denoted by Jh(·) : Vh → R, where the subscript h is included because the output calculation may
involve discretization-dependent terms.
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Consider an infinitesimal residual perturbation δrh ∈ Vh that creates a solution perturbation
δuh ∈ Vh. As in the discrete formulation, an adjoint ψh ∈ Vh can be defined as the sensitivity of
the output to the residual perturbation,

Jh(uh+δuh) − Jh(uh) = (δrh,ψh), (8)

where (·, ·) : Vh × Vh → R is a suitable inner product associated with the semilinear form. The
infinitesimal state and residual perturbations are related via the statement:

R′
h[uh](δuh,vh) + (δrh,vh) = 0, ∀vh ∈ Vh, (9)

where the prime denotes a Fréchét linearization with respect to the arguments in the square brack-
ets. Also linearizing the output,

δJh = J ′
h[uh](δuh) = (δrh,ψh) = −R′

h[uh](δuh,ψh), (10)

where Eqns. 8 and 9 were used in the second and third equalities, respectively. For these lineariza-
tions to exist, both the semilinear form and the output are assumed to be differentiable. In order for
Eqn. 10 to be true for general perturbations, the adjoint must satisfy the statement: find ψh ∈ Vh
such that

R′
h[uh](vh,ψh) + J ′

h[uh](vh) = 0, ∀vh ∈ Vh. (11)

Once a basis is chosen for the weighted residual statements, Eqns. 7 and 11 are equivalent to their
discrete counterparts, Eqns. 1 and 6, respectively. While the fully-discrete formulation is simpler
from an implementation perspective, the weighted-residual formulation offers more rigor for error
estimation.

II.C. Adjoint Consistency

Eqns. 6 and 11 yield the discrete adjoint ψh, either as a vector or as a function in a finite-dimensional
space. Of interest is how this discrete solution compares to its continuous counterpart. Given the
continuous primal solution, u ∈ V, satisfying

R(u,v) = 0, ∀v ∈ V, (12)

for an appropriately defined space V, a continuous adjoint ψ ∈ V satisfies

R′[u](v,ψ) + J ′[u](v) = 0, ∀v ∈ V. (13)

For simplicity, we have assumed that both u and ψ are in V. However, the space for the adjoint
solution does not have to be the same as the space for the primal solution.13

The continuous adjoint can be regarded as a Green’s function relating source perturbations
in the original partial differential equation to perturbations in the output. To demonstrate this
interpretation, a sample adjoint solution is illustrated in Figure 3 for subsonic flow over a lifting
airfoil. Upstream of the airfoil, the adjoint is seen to vary rapidly across the stagnation streamline.
This behavior was suggested in the analysis of Giles and Pierce who found that a square root
singularity with respect to distance from the stagnation streamline exists for sources that perturb
the stagnation pressure.14
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Figure 3. x−momentum component of the lift adjoint for a NACA 0012 airfoil at M = 0.4, α =
5o. The continuous interpretation states that a residual perturbation removing x-momentum
from the flow above the airfoil will tend to decrease the lift, whereas the opposite will be
observed below the airfoil. Note, the sign of the adjoint depends on whether the source is
added to the left or the right side of the original equation.

To be precise, the adjoint field in Figure 3 is the discrete adjoint solution on a fine mesh. It
can only be regarded as a faithful representation of the continuous adjoint if the discretization is in
some manner consistent with the continuous adjoint problem. Primal consistency in the variational
problem requires that the continuous solution u satisfies the discrete variational statement,

Rh(u,v) = 0, ∀v ∈ Wh, (14)

where Wh = V + Vh = {h = f + g : f ∈ Vh, g ∈ V}. Similarly, the combination of the discrete
semi-linear form Rh and the functional Jh is said to be adjoint consistent if13,15, 16

R′
h[u](v,ψ) + J ′

h[u](v) = 0, ∀v ∈ Wh, (15)

Discretizations that are not adjoint consistent may still be asymptotically adjoint consistent if
Eqn. 15 holds in the limit h → 0, over suitably normalized v ∈ Wh.

Adjoint consistency has an impact on adjoint-based methods, including shape optimization,10,12, 13

and on the convergence of the primal problem itself.17 In error estimation, an adjoint-inconsistent
discretization can lead to irregular or oscillatory adjoint solutions that pollute the error estimate
with noise and lead to adaptation in incorrect areas. Enforcing adjoint consistency imposes restric-
tions on the interior and boundary discretizations that enter into the semi-linear form, as well as
on the output definition. These restrictions have been studied by several authors in the context of
the discontinuous Galerkin method.13,15, 17 In general, discretizations that are found to be adjoint
inconsistent can often be made adjoint consistent by adding terms to either the semi-linear form
or the output functional.

II.D. Mean-Value Linearization

Non-infinitesimal perturbations δuh can be considered for non-linear problems if a mean-value
linearization is used to define the adjoint.10,18–20
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II.D.1. Fully-discrete formulation

The discrete mean-value adjoint, ψmv
h ∈ R

Nh , satisfies

(
R̄h[uh,uh + δuh]

)T
ψmv
h +

(
J̄h[uh,uh + δuh]

)T
= 0, (16)

where R̄h ∈ R
Nh×Nh and J̄h ∈ R

Nh satisfy

R̄h[uh,uh + δuh] =

∫ 1

0

∂Rh

∂uh
[uh + θ δuh] dθ,

J̄h[uh,uh + δuh] =

∫ 1

0

∂Jh
∂uh

[uh + θ δuh] dθ. (17)

Since

R̄h[uh,uh + δuh] δuh = Rh(uh + δuh) −Rh(uh),

J̄h[uh,uh + δuh] δuh = Jh(uh + δuh) − Jh(uh),

the output perturbation can be expressed as,

Jh(uh + δuh) − Jh(uh) = J̄h[uh,uh + δuh] δuh

= − (ψmv
h )T R̄h[uh,uh + δuh] δuh

= − (ψmv
h )T Rh(uh + δuh) + (ψmv

h )T Rh(uh)

= − (ψmv
h )T Rh(uh + δuh). (18)

In the last step, Rh(uh) = 0 is used.

II.D.2. Variational formulation

In the weighted-residual formulation, the mean-value linearization can be used to define the adjoint
as,

R̄h[uh,uh + δuh](vh,ψ
mv
h ) + J̄h[uh,uh + δuh](vh) = 0, ∀vh ∈ Vh, (19)

where ψmv
h ∈ Vh denotes the adjoint associated with the mean-value linearization, and R̄h : Vh ×

Vh → R and J̄h : Vh → R are defined by

R̄h[uh,uh + δuh](vh,wh) =

∫ 1

0

R′
h[uh + θ δuh](vh,wh) dθ,

J̄h[uh,uh + δuh](vh) =

∫ 1

0

J ′
h[uh + θ δuh](vh) dθ, (20)

for vh,wh ∈ Vh. Since

R̄h[uh,uh + δuh](δuh,wh) = Rh(uh + δuh,wh) −Rh(uh,wh),

J̄h[uh,uh + δuh](δuh) = Jh(uh + δuh) − Jh(uh),
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the output perturbation can be expressed as,

Jh(uh + δuh) − Jh(uh) = J̄h[uh,uh + δuh](δuh)

= −R̄h[uh,uh + δuh](δuh,ψ
mv
h )

= −Rh(uh + δuh,ψ
mv
h ) + Rh(uh,ψ

mv
h )

= −Rh(uh + δuh,ψ
mv
h ). (21)

In the last step, the fact that uh is a solution to the original weighted residual statement is used,
so that Rh(uh,wh) = 0, ∀wh ∈ Vh.

II.E. Adjoint Implementation

The discrete adjoint is obtained as the solution to the linear system in Eqn. 6. Since this system
requires a linearization about the primal solution, the primal problem in Eqn. 1 is generally solved
before the adjoint problem. Concurrent primal-adjoint solutions, however, have been investigated
with certain superconvergence properties in the output estimates.21

The implementation of the adjoint solve varies depending on the structure of the code. When
the full Jacobian matrix, ∂Rh

∂uh
, and an associated linear solver are available from solution of the

primal problem, the transpose linear solve can be implemented in a straightforward manner. For
example, if a Krylov method is used for the linear solve, the adjoint solve will require transpose
applications of the matrix and the preconditioner, which generally pose little difficulty when ∂Rh

∂uh

is stored.
Conversely, when the Jacobian matrix is not stored, the discrete adjoint solve is more involved.

The fact that the Jacobian matrix is transposed in Eqn. 6 means that all operations in the primal
solve must be linearized, transposed, and applied in reverse order for use in the adjoint solve.
For example, if a finite volume calculates residuals by reconstructing the flow state and then
computing nonlinear fluxes, the adjoint residual must be obtained by first applying the transpose
of the linearized fluxes and then the transpose of the reconstruction operator. Multistage solution
schemes have to be modified to ensure that the adjoint solve converges and that it does so at a rate
similar to that of the original linear problem.22 Implicit schemes employing point or line relaxation
can also be modified to preserve discrete duality, as discussed in.23

III. Error Estimation

III.A. Forms of Error Estimation

The error in the solution can be quantified by various means. Discretization error is the difference
between the solution to the discrete system and the exact solution to the continuous system. Its
magnitude is governed by the size of the spatial and temporal mesh spacings, and it can be measured
locally on individual elements or globally under a chosen norm. For general problems, the exact
solution is unknown and the discretization error must be estimated, often using reconstructions
based on smoothness assumptions. Another error estimate relies on the residual, which is obtained
by substituting the approximate solution into the underlying partial differential equation. Nonzero
residuals, calculated point-wise or integrated on an enriched space, indicate regions where the
governing equations are not strongly enforced. Residual error estimates can also be expressed
locally or integrated globally under a chosen norm.
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For simulations of predominantly elliptic equations, such as those of structural elasticity or
low-speed flows, error estimates based on local discretization errors are often sufficient.8 However,
many aerospace CFD applications deal with hyperbolic equations, for which such estimates lose
their efficacy. Zhang et al compare adaptive results using discretization error and residual indica-
tors for the Euler equations.24 For one-dimensional, subsonic flows, Zhang et al find that a residual
indicator is more efficient compared to a discretization-error indicator in driving the adaptation to
reduce the total solution error. However, for transonic or multi-dimensional flows, neither indicator
is adequately effective. In general, error estimates based on residual or discretization errors fail to
capture propagation effects inherent to hyperbolic problems.25 For hyperbolic problems, the resid-
ual and discretization error may not necessarily be large in certain crucial areas that significantly
affect the solution downstream. For example, for separated flow over an airfoil, small perturbations
in certain upstream areas may have large effects on the location of the separation point, which in
turn has a large effect on the calculated lift and drag. Stated another way, engineering outputs can
be highly sensitive to discretization or residual errors in areas that may not be easily identifiable a
priori.

Fortunately, error estimates based on engineering outputs help to address these problems. Tech-
niques for estimating errors in engineering outputs identify areas of the domain that are important
for the accurate prediction of an output, accounting for propagation effects in the process. A
common output error estimation technique relies on solution of the adjoint problem introduced in
Section II. The resulting error estimate can be used to ascribe confidence levels to the engineer-
ing output or to drive an adaptive method with the goal of reducing the output error below a
user-specified tolerance. This section reviews such existing output-error estimation techniques.

III.B. The Adjoint-Weighted Residual Method

A simplified approach to output-based error estimation begins with a solution on a “fine” dis-
cretization, uh ∈ Vh, and considers the effect on the output brought about by perturbing the
solution to one on a coarser discretization, uH ∈ VH . The discretization spaces are assumed to be
nested, VH ⊂ Vh, so that δuh = uH − uh ∈ Vh. Such a situation is illustrated in Figure 4 for a
one-dimensional finite element solution.

x

u

hu

δuhuH

Figure 4. Comparison in one dimension of a fine solution uh ∈ Vh, a coarse solution uH ∈ VH,
and the difference δuh = uH −uh ∈ Vh. In this example, the solution spaces consist of piecewise
linear functions on uniform elements, and Vh is nested in VH with four times as many elements.
One coarse element is shown.
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The error in JH(uH) relative to Jh(uh) is then the output perturbation given in Eqn. 21,

Jh(uh + δuh) − Jh(uh) = −Rh(uh + δuh,ψ
mv
h ),

JH(uH) − Jh(uh) = −Rh(uH ,ψmv
h ), (22)

where the mean-value adjoint, ψmv
h , is used since δuh is not required to be infinitesimally small.

The assumption that JH(uH) = Jh(uH) was made above, which is generally true as long as any
geometry used for the output calculation does not change between the two spaces. The name
“adjoint-weighted residual method” (also referred to as the dual-weighted residual method) de-
scribes Eqn. 22: the adjoint solution weights the residual of the coarse solution to produce the
error estimate.

An alternate expression for the output perturbation is obtained by defining an adjoint residual
as the left hand side of Eqn. 19:

R̄ψ
h [uh,uH ](vh,wh) ≡ R̄h[uh,uH ](vh,wh) + J̄h[uh,uH ](vh), vh,wh ∈ Vh. (23)

Choosing vh = δuh and wh = wH ∈ VH the adjoint residual is nonzero and is precisely the output
perturbation:

JH(uH) − Jh(uh) = Jh(uh + δuh) − Jh(uh)

= J̄h[uh,uH ](δuh)

= R̄ψ
h [uh,uH ](δuh,wH) − R̄h[uh,uH ](δuh,wH)

= R̄ψ
h [uh,uH ](δuh,wH) −Rh(uH ,wH) + Rh(uh,wH)

= R̄ψ
h [uh,uH ](δuh,wH) (24)

where we have assumed Rh(uH ,wH) = RH(uH ,wH) = 0 ∀wH ∈ VH . This assumption is satisfied
for a finite element formulation using nested spaces. Note that wH ∈ VH can be arbitrary. However,
for arbitrary wH , the expression in Eqn. 24 will be highly sensitive to the global error, δuh, which
in practice is not known exactly. This sensitivity can be reduced by using a coarse mean-value
adjoint solution: wH = ψmv

H , where ψmv
H ∈ VH satisfies

R̄ψ
h [uh,uH ](vH ,ψmv

H ) = 0, ∀vH ∈ VH . (25)

Subtracting Eqn. 25 from Eqn. 24 yields the output perturbation expression,

JH(uH) − Jh(uh) = R̄ψ
h [uh,uH ](δuh − vH ,ψmv

H ), (26)

where vH ∈ VH is arbitrary. The advantage of the expression in Eqn. 27 is that it is insensitive
to errors in δuh that lie in VH . These errors may be significant when uh is not computed exactly,
especially for hyperbolic problems, due to propagation effects. Note, we can recover an expression
similar to Eqn. 22 by choosing vH = uH , in which case Eqn. 26 becomes

JH(uH) −Jh(uh) = −R̄ψ
h [uh,uH ](uh,ψ

mv
H ), (27)

By Galerkin orthogonality of the variational formulation, an arbitrary function in VH can be
added to ψmv

h in Eqn. 22 or to uh in Eqn. 27, without changing the output error estimate. In
practice, a common choice is to replace ψmv

h with ψmv
h −ψmv

H in Eqn. 22 and uh with uh − uH in
Eqn. 27. This choice minimizes the error incurred in the output perturbation estimate when uH
and ψmv

H are not converged exactly, but only to a finite residual tolerance.
Finally, for nonlinear problems, averaging the expressions in Eqns. 22 and 27 yields an output

error estimate that is more accurate by one order in the residual, compared to either expression
alone.10,13
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III.C. Fully-Discrete Formulation

The adjoint-weighted residual method for error estimation can also be applied in a fully-discrete
formulation. Again, two discretization levels are assumed: a coarse one with NH degrees of freedom,
and a fine one with Nh degrees of freedom. A representation of uH on the fine space is assumed
to be given by uHh ≡ IHh uH , where IHh ∈ R

Nh×NH is a suitably-chosen prolongation matrix. In a
standard finite element discretization, IHh is the natural injection operator. In the general case, IHh
should be consistent with the discretization used.

Setting δuh = IHh uH − uh, we can express the output perturbation seen on the fine level using
Eqn. 18

JH(uH) − Jh(uh) = − (ψmv
h )T Rh(u

H
h ), (28)

where JH(uH) = Jh(u
H
h ) is assumed.

Alternately, defining the discrete adjoint residual R̄ψ
h (wh) ∈ R

Nh , wh ∈ R
Nh as

R̄ψ
h (wh) ≡

(
R̄h[uh,u

H
h ]

)T
wh +

(
J̄h[uh,u

H
h ]

)T
, (29)

leads to an error estimate based on the adjoint residual,

JH(uH) − Jh(uh) = J̄h[uh,u
H
h ] δuh

=
(

R̄ψ
h (wh)

)T
δuh − wT

h R̄h[uh,u
H
h ] δuh

=
(

R̄ψ
h (wh)

)T
δuh − wT

h Rh(u
H
h ). (30)

This equation is satisfied for arbitrary wh ∈ R
Nh . Similarly to the variational formulation, reduced

sensitivity to errors in δuh is attained by setting wh = IHh ψ
mv
H , where the coarse mean-value adjoint

solution is defined similarly to Eqn. 25. Again, for nonlinear problems, averaging the expressions in
Eqns. 22 and 30 yields an output error estimate that is more accurate compared to either expression
alone.

III.D. Approximating ψmv
h ,uh

Evaluating the output perturbation in Eqn. 22 requires a residual evaluation on the fine space Vh,
weighted by the mean-value adjoint, ψmv

h . A residual evaluation on Vh is tractable, but solving
Eqn. 16 to calculate ψmv

h requires both a primal and an adjoint solve on Vh. Similarly, the expression
in Eqn. 27 requires the primal solution uh. These calculations on Vh are expensive and defeat the
purpose of estimating the error since JH − Jh could be calculated directly if uh were available.
However, such an approach can still be useful for obtaining an accurate indicator for adaptation
and an improved final solution.26

In practice, exact solutions on Vh are treated as computationally intractable and hence uh and
ψmv
h must be approximated. Readily available through calculations on VH are uH and ψH ∈ VH ,

where

R′
H [uH ](vH ,ψH) + J ′

H [uH ](vH) = 0, ∀vH ∈ VH . (31)

One approach for approximating uh is to reconstruct uH on Vh using a higher-accuracy stencil. In
the finite element setting, this could be least squares patch reconstruction.5,13, 20, 27 Reconstruction
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is based on a smoothness assumption and loses validity near discontinuities. In addition, without
limiting, no guarantees exist that reconstructed solutions will remain physical for nonlinear prob-
lems. An alternate approach is therefore to project uH into Vh and to apply several steps of an
iterative solution scheme.16,28 In either case, the difference between the approximated uh and uH
can be used directly in Eqn. 27 to compute the error estimate.

ψmv
h can be approximated in several ways. Just as uh, it can be reconstructed from ψH using

a higher-accuracy stencil.13,20, 27, 29 Alternately, it can be the result of an exact adjoint solve19

or several iterative solution steps16,28 on Vh. The linearization for the adjoint problem can be
performed: (1) about the projected uH ; (2) about the approximated uh; (3) about a sequence of
states between uH and uh chosen to approximate the mean-value integrals in Eqn. 20 numerically.20

Numerical experiments do not indicate substantial differences between these approaches. Finally,
note that errors made in approximating ψmv

h using the above approaches are not guaranteed to be
negligible in the vicinity of under-resolved flow features. Care must be taken in working with error
estimates obtained in these cases.

III.E. Computable Corrections and Remaining Error

In the variational formulation, if ψmv
h ∈ Vh is decomposed as ψmv

h = ψmv
H +δψmv

h , where ψmv
H ∈ VH ,

then by Galerkin orthogonality Eqn. 22 becomes

JH(uH) −Jh(uh) = −Rh(uH ,ψmv
H + δψmv

h ) = −Rh(uH , δψmv
h ),

The discrete analog, if we do not assume Galerkin orthogonality, is

JH(uH) − Jh(uh) = −
(
IHh ψ

mv
H

)T
Rh(u

H
h )

︸ ︷︷ ︸

computable correction

− (δψmv
h )T Rh(u

H
h )

︸ ︷︷ ︸

remaining error

(32)

where ψmv
h = IHh ψ

mv
H + δψmv

h . The first term, which would be zero if the discretization arose from
a variational formulation, is often called the computable correction. In particular, it is nonzero for
reconstruction-based finite volume schemes. Note that Eqn. 32 yields the same result as Eqn. 28
– the only difference is in the bookkeeping. If a code is written to incorporate the computable
correction into its outputs, the remaining error effectively becomes the error estimate.

III.F. Error Effectivity

In the limit of a very fine (and consistent) discretization, “h → 0” and uh → u, Eqns. 22 and 27 yield
the true output error in the solution: JH(uH) − J (u). In practice, however, a finite dimensional
Vh is employed, obtained from VH by uniform refinement or interpolation order increase. Hence,
the calculated output error is generally not equal to and not a bound for the true error. It is an
estimate whose accuracy depends on the enrichment of Vh relative to VH . Indeed, the choice of
enrichment governs the behavior of the error effectivity,

ηeH ≡
JH(uH) − Jh(uh)

JH(uH) − J (u)
. (33)

An effectivity close to 1 is desirable. However, not all enrichment strategies will guarantee this
asymptotically as H → 0. For example, if H denotes mesh size and the output error converges as
JH(uH)−J (u) = CHk, a choice of h = H/2 for the enriched space yields an asymptotic effectivity
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of ηeH = 1 − (1/2)k. A similar result holds for order enrichment on a fixed mesh. However if H
denotes mesh size but Vh is obtained from VH by order enrichment of δp, the effectivity behaves as
ηeH = 1 − CHδp → 1 as H → 0,

III.G. Impact of Shocks

Shock waves (or other under-resolved phenomena) can present a variety of problems when estimat-
ing errors. For example, estimation of uh through reconstruction can introduce oscillations that
contaminate error estimates. This contamination can be reduced by using monotonic reconstruction
procedures.

Another issue is the use of shock-capturing stabilization terms in the discretization that are
non-zero even when acting upon the exact solution. In these situations, the semilinear form is
inconsistent since Rh(u,v) 6= 0 for all v ∈ V. However, for the method to be convergent, the
stabilization terms are assumed to asymptote to zero as h → 0. In other words, the method has
asymptotic primal consistency.

The error due to asymptotically consistent stabilization terms can be estimated by separating
the weighted residual statement into consistent and asymptotically consistent parts,

Rh(uh,vh) + Rǫ
h(uh,vh) = 0, ∀vh ∈ Vh. (34)

where Rh(·, ·) is a consistent semilinear form, and Rǫ
h(·, ·) is an asymptotically consistent form.

Then, using Eqn. 8, the output error due to using asymptotic consistent stabilization is

δJ ǫ
h = Rǫ

h(uh,ψh), (35)

where ψh is the solution to Eqn. 11 when the residual perturbation is approximated as infinitesi-
mally small. When performing error estimation, approximations to uh and ψh are available, and
hence δJ ǫ

h is computable.

IV. Mesh Adaptation

A typical adaptive solution process is illustrated in Figure 5. The input is an initial coarse mesh

Flow and adjoint solution

Done

Mesh adaptation

Initial coarse mesh & error tolerance

Output error estimate

Error localization

Tolerance

met?

Figure 5. Adaptive solution process flowchart. The input consists of an initial coarse mesh
and a requested error tolerance. Adaptation stops when the error tolerance is met.

along with a user-prescribed error tolerance for an output. The iterative process starts by solving
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the primal and adjoint problems on the initial coarse mesh. Next, the output error is estimated
using the adjoint-weighted residual method described in Section III.B. If the global error tolerance
criterion is met, the adaptive process terminates. Otherwise, the error estimate is localized to the
elements, and the mesh is adapted. The process then repeats until the tolerance is met.

In output-based error estimation, the error localization is fairly straightforward. However,
numerous strategies exist for translating the error indicator into a modified mesh. In CFD, the
most popular adaptation strategy is h-adaptation, in which only the triangulation forming the
mesh is varied. In high-order methods, additional strategies include p-adaptation, in which the
interpolation order is changed on a fixed triangulation,13,30 and hp-adaptation in which both the
order and the triangulation are varied.31–35 For CFD applications, in which solutions often possess
localized, singular features, h-adaptation is key to an efficient adaptation strategy. In addition,
most practical codes operate at one or a limited number of orders, making h-adaptation the only
practical approach. With the growing popularity of high-order methods, however, hp-adaptation
will be an important strategy for increased efficiency in the future. This section reviews general
aspects of h−adaptation, and presents specific applications to output-based adaptation.

IV.A. Error Localization

The output error estimates in Eqns. 22 and 28 consist of a residual evaluation on the refined space
Vh, using ψmv

h as the test function. In a finite element or finite volume method, this residual
evaluation is a sum over all elements/volumes in the fine space. Since the coarse and fine spaces
are assumed nested, the error estimate can be written as,

JH(uH) − Jh(uh) = −
∑

κH∈TH

∑

κh∈κH

Rh(uH ,ψmv
h |κh

), (36)

where TH is the coarse triangulation, κH/κh is an element of the coarse/fine triangulation, and |κh

refers to restriction to element κh. The discrete version is analogous. Note that the coarse/fine
spaces can consist of the same triangulation, for example when only the interpolation order is
increased, in which case κH = κh. Eqn. 36 expresses the output error in terms of contributions
from each coarse element. A common approach for obtaining an error indicator is to take the
absolute value of the elemental contribution,10,12, 19, 20, 29

ǫκH
=

∣
∣
∣

∑

κh∈κH

Rh(uH ,ψmv
h |κh

)
∣
∣
∣. (37)

In some works, this error indicator is averaged with a similar estimate derived from the adjoint
equation residual, Eqn. 27,29,36, 37

ǫψκH
=

∣
∣
∣

∑

κh∈κH

R̄ψ
h [uh,uH ](δuh|κh

,ψH)
∣
∣
∣. (38)

This indicator targets areas of nonzero adjoint residual, weighted by a primal interpolation error
estimate. Note, ψmv

H from Eqn. 27 has been approximated by the readily-computable coarse adjoint
solution ψH from Eqn. 31. Numerical experiments have shown that the two error indicators, ǫκH

and ǫψκH
, yield similar mesh distributions when used to drive adaptation.

The above error localization is applicable to finite volume and discontinuous Galerkin discretiza-
tions, since residuals vanish locally on each element for these discretizations. Thus, no systematic
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inter-element error cancellation is expected in the output error estimate, Eqn. 36, and the absolute
value signs in Eqns. 37 and 38 are justified. However, local residuals do not necessarily vanish
for continuous finite element discretizations. Consider for example a continuous finite element dis-
cretization of Poisson’s equation, in which the elemental contributions to the residual contain terms
of the form

∫

κh

∇uH · ∇ψmv
h . Simply placing absolute value signs around these terms to obtain

the elemental error indicator would lead to a systematic over-estimate of the output error via a
sum of the indicators. This over-estimate is due to a poor bookkeeping choice for the error and
can be fixed by integrating the residual terms by parts on each element. The result is a set of
element-interior terms containing the strong form of the residual, and a set of face flux jump terms,
which are present because the gradient of uH is not continuous. Both of these terms are expected
to go to zero with mesh refinement, and the flux jump terms will dominate for low orders.38 The
face flux residuals can be pushed back onto the elements by assigning half of the flux residual to
each of the two elements adjacent to the face.27 With the output error split into element and
face contributions, each with absolute value signs, the elemental error indicator is now sensitive to
variations in ψmv

H in the coarse space VH . To minimize this variation, the adjoint error, ψmv
H −ψH ,

is used instead of ψmv
H alone to weight the primal residual.10 Note that by Galerkin orthogonality,

this change has no effect on the output error estimate in Eqn. 36. Finally, for convection equations,
the continuity of uH eliminates the need for interior flux residuals, although inflow flux residuals
are still required and the stabilization terms must be treated appropriately.39

For systems of equations, indicators are typically computed separately for each equation and
summed together. Due to the absolute values, the sum of the error indicators, ǫ =

∑

κH
ǫκH

, is
greater or equal to the original output error estimate. However, it is not a bound on the actual error,
or even on JH(uH) − Jh(uh), because of the approximations made in the derivation. In practice,
the validity of the approximations improves with refinement, and the above estimate becomes an
accurate measure of the true error.

IV.B. h-Adaptation Mechanics

Many approaches to adapt a mesh rely upon the application of local mesh operators through
which the mesh is modified incrementally. A simple example of a local operator is element sub-
division in a setting that supports non-conforming, or hanging, nodes.27,34, 40–42 For triangular
and tetrahedral meshes, local mesh modification operators consist of node insertion, face/edge
swapping, edge collapsing, and node movement. These operators have been studied extensively
by various authors43–49 in different contexts. The primary advantage of local operators is their
robustness: the entire mesh is not regenerated all at once, but rather each operator affects only a
prescribed number of nodes, edges, or elements.

Another approach to adapt a mesh is global re-meshing, in which a new mesh is generated for
the entire computational domain. The original, or background, mesh is used to store desired mesh
characteristics during re-generation. For applications to adaptation, the desired mesh character-
istics are often described using a Riemannian metric, the idea being that in an optimal mesh, all
edge lengths will have unit measure under the metric.44,45 In a Cartesian coordinate system, an
infinitesimal segment δx has length δΓ under a Riemannian metric M,

δΓ2 = δxT M δx = δxi Mij δxj , (39)

where δxi are the components of δx ∈ R
d and Mij are the components of the symmetric, positive

definite M ∈ R
d×d.
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The metric M contains information on the desired mesh edge lengths in physical space. As M
is symmetric and positive definite, the unit measure requirement,

xT M x = 1,

describes an ellipsoid in physical space that maps to a sphere under the action of the metric. The
eigenvectors of M form the orthogonal axes of the ellipsoid – i.e. the principal directions. The
corresponding eigenvalues, λi, are related to the lengths of the axes, hi, via

λi =
1

h2
i

⇒
hi
hj

=

(
λj
λi

)1/2

Physically, the hi are the principal stretching magnitudes. A diagram of a possible ellipse resulting
from the unit-measure requirement in two dimensions is given in Figure 6. Thus, the ratio of

e
2

h
2

e
1

h
1

Figure 6. Ellipse representing requested mesh sizes implied by equal measure under a Rie-
mannian metric M. Also shown are the principal directions, ei, and the associated principal
stretching magnitudes, hi.

eigenvalues of M can be used to define a desired level of anisotropy.
A successful approach for generating simplex meshes based on a Riemannian metric is mapped

Delaunay triangulation, in which a Delaunay mesh generation algorithm50 is applied in the mapped
space, allowing for the creation of stretched and variable size triangles or tetrahedra.51 This
method is implemented in the Bi-dimensional Anisotropic Mesh Generator (BAMG),52,53 which
has been used in various finite volume54,55 and discontinuous Galerkin16,28, 36 applications requir-
ing anisotropic meshes. Examples of output-adapted meshes obtained using BAMG are shown in
Figures 10, 20, and 22.

IV.C. Overview of Adaptation Strategies

In h-adaptation, the determination of which elements to refine or coarsen has important impli-
cations for practical simulations: too little refinement at each adaptation iteration may result in
an unnecessary number of iterations; too much refinement may ask for an expensive solve on an
overly-refined mesh.
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Aftosmis and Berger discuss adaptation strategies in terms of error distribution histograms,56 in
which elements are binned according to the error indicator (Eqn. 37 for output-based adaptation).
The assumption made in virtually all adaptation strategies is that in an ideal mesh the user-
prescribed error tolerance is satisfied and the error is equidistributed among the elements.47 This
situation corresponds to a “delta” histogram, in which all elements lie in the same bin. In contrast,
the initial coarse mesh will generally have some distribution of error indicators, as illustrated in
Figure 7. The goal of an adaptation strategy is then to drive the histogram towards the ideal delta

Figure 7. Sample error indicator histogram and a constant-threshold refinement strategy.
Reproduced with permission from.57

distribution using a prescribed adaptation strategy.
Nemec et al 57 discuss two adaptation strategies based on either a constant or a decreasing

refinement threshold. In a constant threshold strategy, depicted in Figure 7, all elements with error
above a certain fixed value are refined. This strategy is simple but potentially expensive: initial
refinement targets virtually all of the elements and leads to a rapid growth in the mesh size in the
first few iterations, while elements with the highest error (in the right tail of the histogram) are
likely to be among the last elements to have their error reduced to the target level. In contrast,
with a decreasing threshold, shown in Figure 8, elements with the highest error are targeted for
refinement first, so that the mesh size grows more slowly and multiple expensive solves on the finest
meshes are avoided.

Figure 8. Adaptation strategy using a decreasing threshold. Reproduced with permission
from.57
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Most adaptation optimization methods follow some variation of a decreasing threshold strategy.
For example, a fixed-fraction approach prescribes a fraction of elements with the highest error
indicator to be refined at each adaptation iteration, such that the decreasing threshold is a function
of the shape of the error histogram. Then, the elements targeted for adaptation are typically refined
in a locally uniform manner, e.g. by splitting all edges in half. This simple approach has been
applied to output-based adaptation in several studies19,20, 26, 35, 58, 59 The fixed-fraction parameter
is often chosen heuristically in a trade-off between an excessive number of iterations and a risk of
over-refinement. Nevertheless, the method works quite well for practical problems.

IV.D. Incorporating a priori Analysis and Anisotropy

The fixed-fraction adaptive strategy with locally uniform refinement does not account for the rate
at which the error decreases with mesh refinement in a given adaptive iteration. This disregard for
the error convergence rate could lead to over-refinement of the mesh or to an excessive number of
adaptive iterations to achieve the desired target error. Adaptation strategies have been developed
that attempt to meet the global tolerance while equidistributing the error among elements through
the incorporation of a priori error analysis. In the context of isotropic, output-based adaptation,
Venditti and Darmofal29 developed such a method based on the previous work of Zienkiewicz and
Zhu.60 In this method a permissible element error eκ = e0/N is defined at each adaptation iteration,
where e0 is the user tolerance, and N is the current number of elements. Coupled with an a priori
error estimate that the error converges as O(hr), where r is the a priori estimated convergence
rate, element size requests can be made that equidistribute the error.

An important ingredient in h-adaptation for aerodynamic computations is the ability to gen-
erate stretched elements in areas such as boundary layers, wakes, and shocks where the solution
exhibits anisotropy, which refers to variations of disparate magnitudes in different directions. The
first output-based adaptive method to incorporate anisotropy was proposed by Venditti and Darmo-
fal55,61 and applied to a nominally second-order accurate finite volume algorithm. Their approach
was to combine the isotropic, output-based approach using a priori estimates with existing solution
Hessian-based methods for anisotropic adaptation.

For spatially second-order methods, the dominant method for detecting anisotropy involves
estimating the Hessian matrix, H, of a scalar solution, u.44,45, 51, 62 The components of H are given
by

Hij =
∂2u

∂xi∂xj
, i, j ∈ [1, .., d], d = dimension.

The second derivatives can be estimated by, for example, a quadratic reconstruction of a linear
solution. For the Euler or Navier-Stokes equations, the Hessian of the Mach number has been
found to perform sufficiently well as the scalar u.

The metric is obtained from the Hessian by requiring that the interpolation error estimate of
the scalar quantity u be the same in any chosen spatial direction. For linear interpolation of u along
the segment δx, the maximum interpolation error can be bounded by the second derivative of u
along δx. The Hessian matrix stores precisely this information, so that requiring the interpolation
error bound to be approximately constant independent of the direction of δx, leads to the metric
choice

M = C|H|, (40)
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where C is a constant independent of direction, and |H| is the positive, semi-definite form of the
Hessian: |H| = V|Λ|V−1 for H = VΛV−1. Two intervals, δx1 and δx2, having the same measure
under this M will have the same estimated interpolation error bounds.

To fully define the metric, the absolute mesh size, i.e. the constant C in Eqn. 40, has to be fixed.
While in pure Hessian-based adaptation a global value for C is used, the output-based method of
Venditti and Darmofal sets C locally according to the output error indicator.55 As a result, the
smallest mesh length is controlled by the output error indicator while the anisotropy is controlled
by the solution Hessian.

The definition of a metric tensor becomes difficult for high-order methods because the standard
Hessian matrix approach assumes linear interpolation of the scalar quantity. For general order
p interpolation, the interpolation error is governed by the order p + 1 derivatives. Thus, one
possible extension of the Hessian approach is based on constructing a metric around the direction
of maximum p + 1st derivative.5,63

An additional problem with higher-order discretization is that the need for curved mesh elements
and high-fidelity geometry representations. Recent work by Oliver16 explores a novel implemen-
tation approach for high-order metric-driven meshing, in which the adaptation is performed on a
mapped linear-triangle mesh. An elasticity analogy is then used to transform the linear mesh to
a curved, boundary-conforming mesh around the true geometry. The robustness of this approach
relies on the success of the linear meshing, which may not be guaranteed for highly-anisotropic
boundary-layer meshes.

The metric tensor may also be used to guide an adaptation procedure based on local oper-
ators. In the context of pure Hessian-based adaptation, Diaz et al 44 present a two-dimensional
algorithm that uses the metric-based edge length to decide which operation to apply. Specifically,
edge splitting, edge collapsing, edge swapping, and node movement are applied to make all edges
approximately the same length when measured using the metric tensor. Habashi et al 45 and Xia et
al 46 present similar algorithms, with slight modifications in Hessian definition and in the local oper-
ators. Park48,49 extends these local mesh modification operators to output-based mesh adaptation,
in both two and three dimensions.

IV.E. Direct Optimization Adaptation

The output-based adaptive approaches described in Section IV.D rely upon a priori analysis to
estimate desired grid characteristics. Further, the interpolation error assumptions are made without
regard to the output of interest by using a single scalar, such as the Mach number, to control
the anisotropy for a system of equations. While the Mach number choice has worked well so
far, it is arbitrary. Diaz et al 44 propose choosing an intersection of metrics derived from all
variables in the system, although this choice relies on the variables used (e.g. conservative versus
primitive), and using more variables can make the resulting intersected metric too restrictive. More
generally, for output-based adaptation, the assumption that the directional interpolation error must
be equidistributed for one or more scalar variables at each point in the domain may not be valid.
Of interest are only the interpolation errors that create residuals that affect the output. This
observation has motivated research into adaptation algorithms that more directly target the error
indicator.

Formaggia et al 64 combine Hessian-based interpolation error estimates with output-based a
posteriori error analysis to arrive at an output-based error indicator that explicitly includes the
anisotropy of each element. However, for the purpose of mesh adaptation, a metric is still defined
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using the resulting element modification requests. Schneider and Jimack65 calculate the sensitivities
of the output error estimate with respect to node positions and formulate an optimization problem
to reduce the output error estimate by redistributing the nodes. The sensitivities with respect to
node positions are calculated efficiently by solving an additional adjoint problem. This approach
directly targets the output error estimate and automatically leads to anisotropic meshes where
appropriate. Schneider and Jimack then combine this node repositioning with isotropic local mesh
refinement sequentially in a hybrid optimization/adaptation algorithm.

Park37 introduces an algorithm that directly targets the output error through local mesh op-
erators of element swapping, node movement, element collapse, and element splitting. Using the
output error indicator to rank elements and nodes, these operations are performed in sequence and
automatically result in mesh anisotropy. The details of the adaptation are also given in an earlier
work, in the context of interpolation error.66 While the grids produced by this technique lack the
regularity of those produced using metric-based adaptation, their accuracy is comparable.

IV.F. Cut-Cell Methods

A successful adaptation algorithm relies on automation and robustness of the mesh generation
or modification. Standard boundary-conforming meshers must ensure both geometry fidelity and
mesh validity, a task that becomes difficult, for example, for anisotropic meshes around curved
geometries. An alternate approach to mesh generation is the class of cut-cell methods, in which
the computational domain is formed by intersecting the geometry of interest with a volume-filling
background mesh. Without the boundary-conforming constraint, generation or adaptation of the
volume-filling background mesh is straightforward. However, the burden of robustness is transferred
to the computational geometry problem of intersecting the background mesh with the geometry.

The most common cut-cell technique is the Cartesian method, a name that refers to the rect-
angular or hexahedral cells on a regular lattice used for the background mesh (see Figure 9). The

Cut Cell

Geometry
Boundary

Figure 9. Sample Cartesian mesh in two dimensions. The square lattice mesh does not
conform to the geometry. Cut cells are portions of intersected elements that lie inside the
computational domain (above the geometry boundary in this case).

Cartesian method was pioneered in the early days of CFD,67–71 has been used in industry,72–74

and is the subject of ongoing research.59 Recently, the cut-cell technique has also been applied to
simplex background meshes, which provide greater flexibility in directional resolution.63,66, 75

The advantage of cut-cell methods for mesh adaptation is the automation that results from
removing the boundary-conforming constraint. In a Cartesian method, hanging-node refinement
is the single practical option for adaptation, and has been implemented efficiently.76 In simplex
cut-cell methods, adaptation can also be performed through global re-meshing63 or through local
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operators.66 Cut-cell methods have been successfully applied to output-based adaptive simulations
of Euler flows and to moderate Reynolds number viscous flows. For boundary-layer viscous flows,
the Cartesian method quickly becomes inefficient at achieving the desired anisotropic resolution.
While simplex cut-cell methods alleviate this problem, current research has only been with linear
background meshes, which eventually become inefficient for high Reynolds number flows around
curved geometries.

V. Implementations and Results

V.A. Finite Volume Methods

V.A.1. High-lift RANS (Venditti and Darmofal)

Venditti and Darmofal apply output-based error estimation and mesh adaptation to a range of
inviscid and viscous aerodynamic cases in two dimensions.29,55 They use a node-based, unstructured
finite volume solver and solve the linear adjoint equations by time marching, similarly to the forward
problem. They adapt on the remaining error in Eqn. 32 and use an average of the primal and adjoint
residual localizations for the adaptive indicator. For anisotropic meshing, they use the Hessian of
the Mach number to define a metric, and they remesh the domain using BAMG.

(a) Lift convergence (b) Output (left) and Hessian (right) adapted meshes

Figure 10. Advanced energy-efficient-transport (EET) airfoil, M∞ = 0.26, α = 8o, Re = 9 × 106.
Comparison of lift convergence for output-based and Hessian-based adaptation, and near-field
views of the final adapted meshes. Reproduced with permission from.55

A representative example from the work of Venditti and Darmofal is that of adaptive simulation
for turbulent flow over an advanced energy-efficient-transport (EET) airfoil. In this example, a
sequence of lift-adapted meshes is compared to meshes adapted using only the Hessian of the Mach
number with no output-error information. The resulting convergence of the lift output is shown in
Figure 10a. The corrected output in both runs was calculated using the computable correction in
Eqn. 32. The improved convergence of the runs adapted on the output error compared to those
adapted on the Hessian is clear. The finest adapted meshes from both runs are shown in Figure 10b.
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Note the increased resolution of the output-adapted mesh near the main-element leading edge and
over the upper surface of the main element. Also note that the Hessian-based mesh predicts the
lower slat wake in a different location and does not resolve the flow in the cavity region of the main
element.

V.A.2. Launch Abort Vehicle (Nemec et al )

Nemec et al apply an output-based adaptive framework to a Cartesian, cut-cell, finite-volume
code.57,59 They solve the discrete adjoint equations by marching to steady-state with the same
Runge-Kutta scheme and multigrid solver used for the flow solution. The adjoint solve requires
transpose linearizations of the residual evaluation applied in reverse order, and this process is
simplified by freezing the limiter used for the spatial reconstruction. Details on the adjoint imple-
mentation are given in.77

For the fine space Vh in output error estimation, Nemec et al use an embedded grid obtained by
uniformly refining each hexahedral cell in the Cartesian grid. They then obtain an error indicator by
weighting the residual of the coarse, linearly-reconstructed solution on the embedded grid with an
adjoint error that is the difference between piecewise linear and piecewise constant reconstructions
of the coarse adjoint solution. Results in59 compare the performance of this error estimate versus
one that employs a more rigorous quadratic reconstruction of the adjoint and show reduced accuracy
of the output error estimate but simpler implementation.

Nemec et al then define a refinement threshold error level for adaptation and at each iteration
refine cells with error above this threshold, using the decreasing threshold strategy described in
Section IV.C. The Cartesian hanging-node adaptation makes use of the robust cut-cell mesh
generation capability in the code,76 allowing for adaptive results with complex geometries. A
representative example is that of aerodynamic analysis of a Launch Abort Vehicle (LAV), illustrated
in Figure 11. The output of interest for this case consists of a linear combination of the normal
(N) and axial (A) force coefficients,

J = CN + 0.2CA,

where the weight on the linear combination was determined empirically as one that yielded adequate
results for both forces and moments. Note, the forces and moments are evaluated on the “metric”
portion of the geometry, as specified in Figure 11.

Figure 11. Definition of metric components for the LAV model. Reproduced with permission
from.57

The robustness and automation of the mesh generation process allowed Nemec et al to consider
a range of Mach numbers and angles of attack. A representative case, at M∞ = 1.1, α = −25o, is
shown in Figure 12. Also shown in the figure is a contour plot of the adaptive indicator, where
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(a) Flow Solution (b) Error Indicator

Figure 12. Launch Abort Vehicle (LAV) Mach number contours, M∞ = 1.1, α = −25o, and the
localized error indicator. Reproduced with permission from.57

regions shown in gray-scale fall below the refinement threshold. Areas marked for refinement include
the edges of the heat shield and the vicinity of the abort motors. Note that only moderate refinement
is requested at the shocks, which often attract excessive refinement with heuristic feature-based
indicators.

An example of a final mesh generated by the adaptive process is shown in Figure 13. As
expected from the error indicator, the refinement concentrates on the edges of the heat shield and
on the abort motors. The convergence of the output for this case is shown in Figure 14 on the left.
Included on the same plot is the corrected output, calculated as described in Eqn. 32. The right plot
in Figure 14 shows the convergence of the output error estimate. The jump in the error estimate
on the final mesh is due to an incompletely-converged adjoint solution caused by the appearance
of small-scale unsteadiness in the primal problem. Nevertheless, unsteady simulations on the final
mesh show that the time-averaged coefficients are in good agreement with the steady results for
this case.57

V.A.3. Sonic Boom (Park)

Park presents output-based, adaptive results for an unstructured, cut-cell finite volume method.37

The method is node-based, and the cut-cell approach allows for automated mesh generation. Park
solves the linear adjoint equation using a dual-consistent time-marching method22,23 and adapts
on the remaining error (Eqn. 32) using quadratic interpolation to obtain the fine-space solutions.
He adapts on an indicator computed from the average of the localized primal and adjoint residuals.
The tetrahedral grid adaptation is based on anisotropic local mesh modification operators combined
with mesh movement, as described in Section IV.E.

An example case from Park’s work is shown in Figure 15. The case consists of a delta wing
body used in existing wind tunnel experiments,78 at M∞ = 1.68, α = 0o. Of interest is the pressure
signature 3.6 body lengths away from the geometry. Specifically the output consists of an integral
of the square of the pressure deviation from free-stream, taken over the measurement region. The
triangular surface mesh in Figure 15a is the geometry representation that is used in the cut-cell
method. The initial background mesh from which the geometry was cut contained 2,800 control
volumes, while the final adapted background mesh in Figure 15b contained 4.9 million control
volumes. Note the alignment of the cells in the final mesh with the propagated signal.
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Figure 13. Initial and adapted meshes for the LAV, at M∞ = 1.1, α = −25o. The initial mesh
contains 3,700 cells, while the final mesh after eight adaptation iteration contains almost two
million cells. Reproduced with permission from.57

Figure 14. Output functional convergence for the LAV, at M∞ = 1.1, α = −25o. Reproduced
with permission from.57
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(a) Surface mesh (b) Adapted background mesh

Figure 15. Delta wing-body sonic boom prediction, M∞ = 1.68, α = 0o. Surface geometry mesh
and an output-adapted mesh colored by pressure. Reproduced with permission from.37

The adaptation history of the output is shown in Figure 16a, where the error bars denote
the remaining error estimate. Note that the error is severely under-predicted on the very coarse
initial meshes. As the shock is resolved, the error estimate becomes more accurate and begins to
decrease in the latter stages of adaptation. The pressure signature 3.6 body lengths away is shown
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Figure 16. Delta wing-body sonic boom prediction, M∞ = 1.68, α = 0o. Pressure integral output
history with error estimates and pressure signature convergence. Reproduced with permission
from.37

in Figure 16b. The dotted lines indicate signatures at intermediate grids during adaptation. The
computed signature on the final adapted meshes agrees well with experimental data.
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V.B. Discontinuous Galerkin Methods

V.B.1. Point Error in Transonic Flow (Hartmann and Houston)

Hartmann and Houston compare two types of error indicators for p = 1 discontinuous Galerkin
solutions of the compressible Euler equations.19 The first, type I, indicator is derived from the
adjoint-weighted residual method described in this paper. The second, type II, indicator is an
unweighted residual indicator, in which a priori bounds are placed on the adjoint values, eliminating
the need for the adjoint solution. Adaptive results show the superior performance of using the
adjoint-weighted, type I, indicator.

An example case considered by Hartmann and Houston is the converging-diverging nozzle prob-
lem shown in Figure 17. Hartmann and Houston use a damped Newton method to obtain p = 1

Figure 17. Converging-diverging nozzle geometry. The output of interest is the density im-
mediately before the shock. Reproduced with permission from.19

primal and adjoint solutions on a geometry represented by quadratic (q = 2) elements. As the
fine space for error estimation, they use order p = 2 interpolation on the same mesh. They adapt
the quadrilateral meshes based on the indicators with fixed-fraction, hanging-node refinement and
coarsening. Figure 18 shows adapted meshes for the two types of error indicators. The type II error
indicator, which does not use the adjoint solution, refines mainly the region near the shock. On
the other hand, the type I error indicator leads to refinement along the characteristics upstream
of the point of interest. This targeted refinement yields a lower output error with fewer degrees of
freedom compared to the type II refinement.

(a) (b)

Figure 18. Converging-diverging nozzle: (a) mesh adapted using the type I error indicator,
based on the adjoint-weighted residual, with 172,880 degrees of freedom and an output error
of 6.947 × 10−6. (b) mesh adapted using the type II error indicator, with 341,648 degrees of
freedom and an output error of 2.842× 10−5. Reproduced with permission from.19
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V.B.2. Hypersonic Heat Transfer (Barter and Darmofal)

Barter and Darmofal apply output-based error estimation and mesh adaptation to discontinu-
ous Galerkin solutions containing shocks, using a discretization stabilized with smooth artificial-
viscosity.28,79 In this discretization, the artificial viscosity on each element is interpolated with the
same polynomial basis as the state, and the coefficients for these polynomials are agglomerated
into the unknown state vector. The necessary additional equations are obtained by discretizing a
diffusion partial differential equation for the artificial viscosity.

Barter and Darmofal use several sweeps of a block-Jacobi smoother in order to approximate
ψmv
h on a space enriched to order p + 1. As in related work, the adaptive indicator is formed by

averaging localized primal and adjoint output error estimates.
The artificial viscosity stabilization enables Barter and Darmofal to adaptively solve transonic,

supersonic, and hypersonic flow problems. A representative example is that of hypersonic flow
at M∞ = 17.605, Re = 376, 930 over a cylinder geometry, also studied in previous work.80 The
problem setup and the initial mesh for adaptation are shown in Figure 19. The output used for
adaptation is the integrated heat flux to the cylinder, non-dimensionalized to form the average
Stanton number on the surface,

Qwall =

∫

qwallds; Ch =
1
πRQwall

cpρ∞V∞(Tt,∞ − Twall)
.

Extrapolation Extrapolation

No slip

Full state

R=1

(a) Domain and BCs (b) Initial mesh

Figure 19. Hypersonic flow over a 2D half-cylinder at M∞ = 17.605, Re = 376, 930: domain
with boundary conditions and initial mesh for adaptation. Note, flow is from top to bottom.
Reproduced with permission from.28

BAMG is used as the mesh generator for the metric-driven adaptation, where an anisotropy
metric is defined using the Mach number interpolation error. To create meshes with curved (q = 3)
anisotropic elements for the thin boundary layer around the cylinder, Barter and Darmofal perform
adaptation in a mapped, rectangular space, transforming the requested metric appropriately as
described in.16 Figure 20 shows the final adapted mesh for p = 2 and the output convergence
history compared to uniform refinement. The final adapted mesh exhibits refinement in the bow
shock, but only to the extent that it impacts the heat flux on the cylinder. Refinement is also
seen in the stagnation streamline, an area to which the heat flux output is highly sensitive. The
convergence history shows that the adapted run converges to an output within 0.02 percent of the
final value with approximately three million degrees of freedom.
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(a) Adapted mesh, p = 2
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Figure 20. Hypersonic flow over a 2D half-cylinder at M∞ = 17.605, Re = 376, 930: adaptation
on average surface Stanton number. Final adapted mesh for p = 2 and output convergence for
p = 2 adaptation (“Adapt”) compared to uniform refinement at orders p = 1, 2, 3 (“Struct”).
Reproduced with permission from.28

V.B.3. Laminar Flows using Simplex Cut Cells (Fidkowski and Darmofal)

Fidkowski and Darmofal use an output-based adaptive indicator to drive cut-cell h-adaptation for a
high-order discontinuous Galerkin discretization of the compressible Navier-Stokes equations.36,63

They use an implicit solution procedure for the primal problem that stores the full, compact-stencil,
residual linearization, so that the discrete adjoint solution requires only one transpose application
of the same linear solver. The fine-space adjoint solution ψmv

h is approximated by reconstructing
the coarse adjoint, ψH , on the same mesh with order enriched to p + 1. The adaptive indicator is
formed by averaging localized primal and adjoint output error estimates.

The cut-cell method, illustrated in Figure 21, employs simplex elements and metric-driven
global re-meshing of the background domain to enable automated and anisotropic mesh adaptation.
Meshing is performed using BAMG with anisotropy based on interpolation error in the Mach
number. Fidkowski and Darmofal apply the cut-cell adaptive method to several inviscid and viscous
flows. A representative example is that of viscous flow around a NACA 0012 airfoil at M∞ = 0.5,
α = 2o, Re = 5, 000. Drag-adapted meshes for cubic, p = 3, solution interpolation are shown in
Figure 22 for both the cut-cell method and a boundary-conforming method that requires curving of
boundary elements and is consequently not as robust. In these meshes, areas of refinement include
the boundary layer, a large extent of the wake, and, to a lesser extent, the flow in front of the
airfoil.

Figure 23 compares adaptive convergence histories of the drag error for interpolation orders
p = 1, 2, 3. The boundary-conforming and cut-cell runs converge to the same drag value, and the
histories are similar. In both sets of runs, p = 3 requires only slightly fewer degrees of freedom
than p = 2, while p = 1 remains the most expensive.
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Spline−edge
intersection

Spline
geometry

Cut edge
Embedded
    edge

Figure 21. Illustration of the simplex cut-cell method used in63 for h-adaptation on high-order
discontinuous Galerkin solutions. Curved cut cells are obtained by intersecting a cubic spline
geometry representation with a triangular background mesh generated using BAMG. High
order integration rules are derived on the resulting irregularly-shaped cut cells.

(a) Boundary-conforming: 1929 elements (b) Cut-cell: 1840 elements

Figure 22. NACA 0012 M∞ = 0.5, α = 2o, Re = 5, 000, p = 3 interpolation. Final boundary-
conforming and cut-cell meshes adapted on drag.63
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Figure 23. NACA 0012 M∞ = 0.5, α = 2o, Re = 5, 000, Drag error versus degrees of freedom for
interpolation orders p = 1, 2, 3. Dashed line indicates prescribed tolerance of 0.1 drag counts.63

VI. Challenges and Ongoing Research

VI.A. Robust Mesh Adaptation

Performing mesh adaptation robustly and efficiently for complex three-dimensional configurations
is still a challenge and an area of ongoing research. The lack of robust and efficient mesh adapta-
tion is probably the largest barrier limiting the application of output-based adaptation to simple
geometries and/or simplified physics (i.e. inviscid flows as opposed to viscous flows).

The main robustness issue occurs during boundary point insertion on curved geometries: main-
taining geometry fidelity can lead to invalid, negative-volume, elements on the interior, especially
for highly-anisotropic meshes.48 Currently, resolution of such situations is often attempted with
iterative application of local operators and local re-meshing.81 However, guaranteed geometric fi-
delity and element validity in highly anisotropic meshes around curved geometries has yet to be
demonstrated.

Efficient adaptation refers to using available degrees of freedom as effectively as possible. A no-
table example of a situation in which efficient adaptation is important is in the resolution of curved,
anisotropic, solution features, as illustrated in Figure 24. Simple isotropic mesh adaptation in these
areas, Figure 24a, wastes resolution in directions where the solution is not changing significantly. In
three dimensions, the additional degrees of freedom in the two directions where the solution is not
changing quickly make resolution of thin layers impractical. Stretching elements along these direc-
tions helps significantly, especially when the anisotropic layer is approximately straight. When the
layer is curved, however, the maximum feasible aspect ratio of linear stretched elements is bounded
by the curvature of the layer since the geometry must be resolved, as illustrated in Figure 24b. Ef-
ficient resolution of very thin and curved features, such as those encountered in Reynolds-Averaged
Navier-Stokes boundary layers, must therefore employ curved elements, as shown in Figure 24c.

Robust boundary-conforming mesh generation and adaptation techniques currently exist for
many applications requiring only isotropic meshes, e.g.82 An exception here is mesh generation
for high-order methods that require curved elements on geometry boundaries, although in the
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δ

(a) Isotropic

δ

(b) Linear anisotropic

δ

(c) Curved anisotropic

Figure 24. Resolution of a thin, curved, anisotropic, two-dimensional layer using various mesh
adaptation strategies. A resolution length of δ is required normal to the feature, whereas the
solution does not change much tangentially to the feature. Stretching elements to increase
their aspect ratio, defined as the ratio of the largest to smallest element diameters, improves
efficiency of the mesh, measured in terms of degrees of freedom required to resolve the feature.
Additionally curving the elements further improves efficiency by alleviating the curvature-
imposed geometry resolution constraint.

isotropic case, node movement and certain heuristics are generally sufficient. However, robust
boundary-conforming meshing and adaptation for three-dimensional anisotropic solution features
are still areas of ongoing research. Curving elements for improved efficiency adds another layer of
complexity, especially when curved anisotropic features occur away from the geometry.

Cut-cell techniques eliminate the requirement that the mesh needs to respect the geometry
boundary, and can be robust for complex geometries. However, existing Cartesian methods only al-
low for isotropic refinement, except in special cases when the features are aligned with the mesh.57,76

Simplex cut-cell methods allow for element stretching, and hence resolution with improved effi-
ciency.63 However, additional research is required to extend these methods to stretch and curve
elements so as to handle curved anisotropic features in three dimensions.

VI.B. Computable Error Bounds

The output error estimate in Eqns. 22 and 27 is not a bound for the true output error in the
discrete solution because of the approximations made in the derivation and because of the use of a
finite-dimensional fine space, Vh. If the computational mesh is very coarse, the fine space obtained
by uniform mesh refinement or interpolation order increase may still be too coarse to faithfully
resolve the output of interest. In such a case, the output error estimate may be severely unreliable.

An example of this effect is the pressure signature adaptation on the delta wing-body sonic
boom case considered by Park, as described in Section V.A.3. The vertical bars in Figure 16a show
the pressure integral error estimate at each adaptation iteration. The relatively small size of the
error bars in the first few iterations indicates that the output error is severely under-predicted on
the first meshes. On these meshes and the fine spaces derived from them, the sonic boom signature
is not at all resolved, and the output error estimate is meaningless. The estimate only becomes
accurate after six or seven adaptation iterations, which corresponds to a substantial increase in the
number of degrees of freedom. It does not start dropping until about ten adaptation iterations.
The risk of an inaccurate error estimate on coarse meshes is that an automated adaptive process
may terminate early, without sufficiently resolving the output of interest.

32
American Institute of Aeronautics and Astronautics



There exists a body of research that addresses this risk through the computation of error
bounds on the outputs of interest.83–88 The goal of this research has been to derive strict, constant-
free, lower and upper bounds for outputs of interest. The bounds calculations are based on a
reformulation of the output calculation into a constrained minimization problem with a convex
objective function, with the model equations entering the problem as equality constraints. Initially,
the bounds calculations were strict with respect to a conservatively refined computational mesh;83–85

more recently the calculations have been extended so that the bounds are strict with respect to
the exact weak solution of the partial differential equation.86–88 These calculations rely on the
solution of a local dual problem that transforms an infinite-dimensional minimization problem into
a finite-dimensional feasibility problem.86

This strategy has been applied to symmetric and non-symmetric coercive problems,83,86 cer-
tain constrained and non-coercive problems,84 and also to problems with nonlinear outputs and
equations.85,89, 90 For nonlinear problems, the present procedure yields bounds only for sufficiently
resolved meshes, where the required mesh resolution is not known a priori .85

The bound gap, which is the difference between the upper and lower bounds on the output,
can be separated into positive contributions from each element, yielding an indicator for mesh
adaptation. A strategy that refines elements with a large contribution to the bound gap will
efficiently yield a tighter estimate of the output. The result of applying such a strategy is a
solution with fully certifiable precision of integrated outputs. Additional research in this area is
necessary to extend the bounds computations to additional equation sets, especially for aerospace
Computational Fluid Dynamics applications.

VI.C. Unsteady Applications

As output-based adaptation is applied to increasingly complex flows, problems that include un-
steadiness will naturally arise. Even for applications targeting nominally steady solutions, unsteadi-
ness is likely to occur as wakes are resolved with adaptation. The work of Nemec et al described
in Section V.A.2 is an example of this occurring.

Existing work in the application of adjoint sensitivity analysis to unsteady problems comes
largely from shape optimization research, and ranges from frequency domain methods for periodic
unsteady flows91,92 to time-accurate continuous and discrete adjoint methods.93–97 Incorporation
of time dependence in adjoint analysis is theoretically a well understood problem. However, the
algorithmic issues involved in solving an unsteady adjoint are substantial as the unsteady adjoint
must be marched backward in time from the final to the initial state. For nonlinear problems, the
solution time history must be stored or reconstructed to build the required Jacobians and output
linearizations at each time level.

Mani and Mavriplis apply the adjoint-weighted residual technique to drive time step adaptation
in unsteady flow simulations with deforming meshes.96 For time adaptation, the time step is allowed
to vary, but the spatial mesh distribution is not changed (except for prescribed deformation). The
output error is thus calculated by evaluating the residual of the unsteady primal solution on a
finer temporal discretization and weighting it with the adjoint solution on that discretization.
The results in Mani and Mavriplis’s work indicate a computational savings over uniform temporal
refinement for smooth unsteady problems. An area of future research is combined spatial and
temporal adaptation for problems exhibiting non-smooth spatial and temporal features, where the
computational savings of an output-based adaptive method could be very significant.
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35Houston, P. and Süli, E., “A note on the design of hp-adaptive finite element methods for elliptic partial

differential equations,” Computer Methods in Applied Mechanics and Engineering , Vol. 194, 2005, pp. 229–243.
36Fidkowski, K. J. and Darmofal, D. L., “An adaptive simplex cut-cell method for discontinuous Galerkin

discretizations of the Navier-Stokes equations,” AIAA Paper 2007-3941, 2007.
37Park, M. A., Anisotropic Output-Based Adaptation with Tetrahedral Cut Cells for Compressible Flows, Ph.D.

thesis, Massachusetts Institute of Technology, Cambridge, Massachusetts, 2008.
38Carstensen, C. and Verfürth, R., “Edge residuals dominate a posteriori error estimates for low order finite

element methods,” SIAM Journal on Numerical Analysis, Vol. 36, No. 5, 1999, pp. 1571–1587.
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