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Abstract

This paper presents a mesh adaptation method for higher-order (p > 1) discon-
tinuous Galerkin (DG) discretizations of the two-dimensional, compressible Navier-
Stokes equations. A key feature of this method is a cut-cell meshing technique, in
which the triangles are not required to conform to the boundary. This approach
permits anisotropic adaptation without the difficulty of constructing meshes that
conform to potentially complex geometries. A quadrature technique is proposed for
accurately integrating on general cut cells. In addition, an output-based error esti-
mator and adaptive method are presented, appropriately accounting for high-order
solution spaces in optimizing local mesh anisotropy. Accuracy on cut-cell meshes is
demonstrated by comparing solutions to those on standard, boundary-conforming
meshes. Robustness of the cut-cell and adaptation technique is successfully tested
for highly-anisotropic boundary-layer meshes representative of practical high Re

simulations. Furthermore, adaptation results show that, for all test cases consid-
ered, p = 2 and p = 3 discretizations meet desired error tolerances using fewer
degrees of freedom than p = 1.

Key words: Triangular cut cells, Output-based error estimation, Anisotropic mesh
adaptation, Discontinuous Galerkin, Compressible Navier-Stokes

1 Introduction

Computational Fluid Dynamics (CFD) has become an indispensible tool in
analysis and design applications. In many cases, however, CFD is still plagued
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by insufficient automation and robustness in the geometry-to-solution process.
Meshes are often constructed and adapted manually, or at least with significant
user input; solvers do not always converge to a solution; estimates of the
discretization error are rarely available, much less an indication of how the
error can be decreased. In this paper, two ideas are presented for improving
automation and robustness in CFD: triangular, cut-cell, mesh generation and
output-based, anisotropic adaptation for higher-order discretizations.

First, cut-cell meshes offer a potentially more automated and robust alter-
native to boundary-conforming meshes for complex, curved geometries. In
particular, cut cells shift the difficulty from boundary-conforming mesh gen-
eration to computational geometry. The Cartesian method [1–3] is an exam-
ple of a cut-cell approach in which elements consist of squares/cubes on a
regular lattice. While computationally fast and memory-lean, the Cartesian
method becomes inefficient for the compressible Navier-Stokes equations, in
which boundary layer and wake features demand mesh anisotropy for practical
cases. A triangular/tetrahedral cut-cell approach relieves this inefficiency by
allowing anisotropic adaptation in general directions. Second, output-based,
anisotropic adaptation improves the automation and robustness of the solution
method. Specifically, output error estimates provide the user with a measure of
solution quality. These estimates are coupled with anisotropy detection that is
geared for high-order discretizations, yielding an automated and efficient goal-
oriented solution method. Together, triangular cut-cell mesh generation and
output-based, anisotropic adaptation are the principal contributions of this
work. They are tied together because cut-cell meshing becomes truly advanta-
geous for highly-anisotropic meshes, which are most reliably generated by an
automated adaptive method. The adaptive method also provides a common
framework for comparing cut-cell meshes to boundary-conforming meshes.

While the combination of triangular cut cells and output-based anisotropic
adaptation can be applied to any discretization, the focus of this paper is the
discontinuous Galerkin (DG) finite element method. A particular advantage of
the DG method is that the cut-cell implementation does not require changes in
the solution representation, which remains in the form of piecewise discontin-
uous polynomials, or boundary conditions, which are imposed weakly; rather,
the main requirement is the creation of integration rules for arbitrarily-cut
elements. The outline for the remainder of this paper is as follows. First, for
completeness, the DG discretization of the compressible Navier-Stokes equa-
tions is given in Section 2. Next, Section 3 presents the triangular cut-cell
method. Sections 4 and 5 describe the output-based error estimator and the
anisotropic adaptation strategy. Lastly, results from sample cases are given in
Section 6, focusing on the performance of the cut-cell method in comparison to
boundary-conforming meshes in an h-adaptive setting at various interpolation
orders p.

2



2 Compressible Navier-Stokes Discretization

The compressible Navier-Stokes system consists of K equations, where K = 4
for laminar flow in two dimensions. The kth equation, written using index
notation, reads

∂iFki(u) − ∂iF
v
ki(u) = 0, (1)

where i indexes the spatial dimension, and u is the state vector with K compo-
nents. Fki(u) and F v

ki(u) are inviscid and viscous flux components, respectively.
They are non-linear functions of the state vector components. It is convenient
to make use of the linear dependence of F v

ki on the spatial gradients ∂jul by
writing

F v
ki = Akilj∂jul, (2)

where Akilj is a tensor that is a nonlinear function of the state vector compo-
nents. Here, j indexes the spatial dimension and l indexes the state vector.

The discretization of (1) proceeds in standard finite-element fashion by tri-
angulating the computational domain, Ω, into elements κ and searching for a
solution, uH , in a finite-dimensional space, VH , for which a weak form of (1) is
satisfied. In this work, VH = [V p

H ]K ; that is, each component of uH resides in
V p
H , the space of piecewise polynomials of order p over the elements. For clar-

ity, the weak form is presented here for one element κ with boundary ∂κ. The
discrete semi-linear form, RH(uH ,vH), follows by summing over all elements,

RH

(
uH ,vH

)
=
∑

κ

(Eκ(uH ,vH) + Vκ(uH ,vH)) = 0,

where Eκ(uH ,vH) is the contribution of the inviscid flux, Vκ(uH ,vH) is the
contribution of the viscous flux, and vH ∈ VH denotes an arbitrary test func-
tion. In the equations that follow, vk refers to components of vH , and uk refers
to components of uH . On ∂κ, the notation ()+ and ()− refers to quantities
taken from the interior and exterior of κ, respectively. Of particular relevance
to the cut-cell algorithm is the fact that construction of the residual requires
element-interior area integrals in addition to element-boundary integrals.

First, Eκ(uH ,vH) can be written as

Eκ(uH ,vH) = −
∫

κ
∂ivkFkidx +

∫

∂κ
v+
k F̂ki(u

+
H ,u−

H)nids,
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where ni is the outward pointing normal, and F̂ki is an approximate characteristic-
based flux function (Roe-averaged flux [4] in this work). Boundary conditions
are imposed by setting F̂ki appropriately when ∂κ is on ∂Ω [5].

The viscous flux term contribution is discretized using the second form of Bassi
& Rebay (BR2) [6]. In this form, the Navier-Stokes equations are re-written
as a system of first-order equations by introducing Qki,

∂iFki − ∂iQki = 0,

Qki − Akilj∂jul = 0.

Discretizing both equations and using integration by parts yields the viscous
contribution to the weak form,

Vκ(uH ,vH) =
∫

κ
∂ivkAkilj∂juldx −

∫

∂κ
∂iv

+
k

(
A+
kilju

+
l − Âkiljul

)
njds

−
∫

∂κ
v+
k Q̂kinids,

where ·̂ denotes flux averaging for discontinuous quantities. The choice of
averaging is not unique, but only certain choices produce discretizations that
are both consistent, dual-consistent, and compact [7]. The set of fluxes used
in this work is shown in Table 1.

Table 1
Viscous fluxes

Q̂ki Âkiljul

Interior {Akilj∂jul} − ηf{δfki} A+
kilj{ul}

Boundary, Dirichlet A+
kilj∂ju

+
l − ηbfδbfki Ab

kilju
b
l

Boundary, Neumann
(
Akilj∂jul

)b
A+
kilju

+
l

The operator {·} denotes the mean, {·} = 1
2

(
(·)+ + (·)−

)
, the superscript b

indicates values taken from states appropriately constructed using boundary
conditions, and ηf and ηbf are constant stability factors set to 3 and 3/2,
respectively. δfki, δ

bf
ki ∈ [V p

H ]2 are auxiliary variables for interior and boundary
faces, respectively, that satisfy, ∀τki ∈ [V p

H ]2,

∫

κ+

δf+
ki τkidx +

∫

κ−
δf−ki τkidx =

∫

σf
{τkiAkilj}

(
u+
l − u−

l

)
njds,

∫

κ
δbfki τkidx =

∫

σbf
τkiA

b
kilj

(
u+
l − ubl

)
njds,

where σf and σbf denote interior and boundary faces, respectively, and κ+, κ−
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are elements on either side of σf . This viscous discretization yields a compact
stencil in that the element-to-element influence is only nearest-neighbor.

3 Cut Cells

The main feature of cut-cell meshes is that the mesh generation process does
not conform to the boundary of the geometry. This concept is useful for com-
plex geometries, where generating meshes of boundary-conforming elements
is not trivial. The geometry is used to cut elements out of the non-boundary
conforming mesh, resulting in irregular cell shapes at the boundary. The idea
of using cut cells began with the works of Purvis and Burkhalter [8], who
used linear cut-cells based on uniform Cartesian meshes for finite volume so-
lutions of the full potential equations. This work was extended to the 2D and
3D Euler equations by Clarke et al [9] and Gaffney et al [10], respectively.
3D presented a problem of heavy isotropic refinement required for geometries
not aligned with the grid. In the late 1980’s Boeing’s TRANAIR [11] became
the first industry code to employ cut cells. A finite element solver for the
full potential equations, TRANAIR is still in active use at Boeing. Leveque
and Berger [12] presented an adaptive finite volume Cartesian method that
used a Godunov method for accounting for wave propagation through more
than one cell, thereby relieving the time step restriction caused by small cut
cells. Coirier and Powell [1] applied the Cartesian method “as-is” to the 2D
Navier-Stokes equations, using a diamond-path reconstruction scheme for the
viscous term and isotropic adaptation. They were able to obtain results in
2D but mentioned that isotropic adaptation would become prohibitive in 3D.
Karman [13] considered the 3D Reynolds-averaged Navier-Stokes equations in
his SPLITFLOW code, which generates a Cartesian cut-cell mesh for most of
the domain, but requires a prescribed anisotropic, prismatic, boundary-layer
mesh.

Aftosmis et al developed a 3D Cartesian solver package, Cart3d [3], which
emphasizes fast and fully-automated mesh generation using surface geometry
triangulation intersections. Cart3d is currently in use for large scale compu-
tations, including space shuttle ascent debris simulations [14]. Ongoing work
continues in computing adjoints and shape sensitivities [15] and in novel ideas
for moving beyond Euler calculations [16].

This paper explores the feasibility of using triangular cut-cell meshes in a
discontinuous Galerkin finite element framework. The motivation for this ap-
proach is to improve meshing robustness, to automate mesh generation for
complex geometries, and to allow for anisotropic meshes. For DG approxima-
tions, the challenge of using cut cells reduces to accurate integration on cells
cut by curved boundaries. The following sections describe one solution to this
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challenge.

3.1 Geometry Definition and Initial Mesh

For this proof-of-concept study in 2D, a geometry definition consisting of
cubic-splined points is sufficient. Geometric corners, where the tangent vector
is discontinuous, can be represented using multiple splines. The computational
domain is bounded by a set of points comprising the farfield boundary. A com-
mon farfield boundary is a square box around the embedded object(s). An
initial mesh consists of a coarse uniform triangulation of the farfield-bounded
domain, without regard to the embedded objects. If requested, subsequent
geometry-adapted triangulations are constructed by refining elements that in-
tersect the splines. The details of geometry adaptation are not crucial, as only
a reasonable starting mesh is sought for the solution-adaptive method.

3.2 Cutting Algorithm

Given an area-filling mesh of the computational domain, and a set of splines
defining the geometry, a cutting algorithm is employed to determine which
elements are cut by the splines and the precise geometry of the cuts. The cut-
ting algorithm proceeds by solving cubic intersection problems to determine
intersections of spline segments with element edges and nodes. Careful atten-
tion must be given to conditioning for node and tangency intersections. The
intersections are performed once and stored for the entire mesh, to prevent
floating-point discrepancies from repeating calculations. Each spline-element
intersection is labeled as an “embedded face,” and is identified by the two
spline arc-length parameters that mark the start and end of the intersection.

The orientation of the splines is used to determine the direction of validity
of each cut, where a valid direction is one that points into the computational
domain. This step is also performed only once, as it requires floating-point cal-
culations. Based on the validity directions, new cut-cell edges are constructed
from intersected edges of the original mesh. Connectivity information in the
form of spline-edge intersections, mesh nodes, and spline knots is used to stitch
together the cut edges and embedded faces into loops that enclose disjoint cut
regions. These disjoint regions represent the newly-formed cut cells. Note that
cut cells may have a nearly arbitrary number of faces and neighbors, depend-
ing on the geometry of the cuts. Figure 1 shows the cut cells formed near a
trailing edge of an airfoil. The triangle at the apex of the trailing edge becomes
a cut cell with four neighboring cells, while the adjacent triangle straddling
the airfoil is split into two cut cells.
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Fig. 1. Shaded areas illustrate cut cells formed at an airfoil trailing edge.

During the creation of cut cells and edges, adjacent nodes are marked as either
inside or outside the computational domain. This information is propagated
to all other nodes by traversing the non-cut edges and triangles. Triangles con-
tained completely within the geometry, and hence outside the computational
domain, are identified according to the status of their adjacent nodes. These
triangles (if any exist) are eliminated from the computational data structure
such that no finite element calculations are performed on these triangles.

3.3 Integration

A high-order DG method requires integration over element interiors as well
as boundary and interior edges. One-dimensional integration on interior cut
edges and embedded faces is performed by mapping each segment to a refer-
ence interval and using numerical quadrature. Currently, each spline segment
of an embedded face is mapped to a reference interval separately. This splitting
at spline knots, where the geometry in general contains second-order discon-
tinuities, leads to more accurate integration; specifically, exact quadrature for
constant integrands. While useful in development, this splitting can be avoided
in practice in order to reduce the computational costs of embedded boundary
integrations.

Integration on cut-cell interiors is not as straightforward, but it is still tractable.
One approach, used in this work, is outlined below. The goal of this method
is to produce for each cut cell a set of integration points, xq, and weights, wq,
to integrate arbitrary f(x),

∫

κ
f(x)dx ≈

∑

q

wqf(xq).

The key idea is to project f(x) onto a space of high-order basis functions,
ζi(x). The basis functions ζi(x) are chosen to allow for simple computation
of the integral

∫
κ ζi(x)dx. In particular, choosing ζi ≡ ∂kGik leads, by the

divergence theorem, to
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∫

κ
ζidx =

∫

κ
∂kGikdx =

∫

∂κ
Giknkds,

where nk is the outward-pointing normal. The integrals over the element
boundary, ∂κ, are computed using the interior edge and embedded face quadra-
ture rules. Gik is chosen as

Gik(x) = xkΦi(x), Φi(x) =
∏

k

φik(xk), x = [xk], i = [ik], (3)

where k ∈ [0, .., d − 1] and d is the spatial dimension. The functions φi(x)
are well-conditioned one-dimensional basis functions. In this work, Lagrange
basis functions are used, with Gauss point nodes on the element bounding
box intervals (except for certain ill-conditioned cases, as described at the end
of this section), as shown in Figure 2. The order of these functions is the
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Fig. 2. The Φi(x) are tensor products of one-dimensional Lagrange functions in each
direction.

desired order of integration for f(x). This order depends on the equation
set and on the solution interpolation order, p. The same order is used for
cut cells as for standard element-interior quadrature rules; for compressible
Navier-Stokes, it is 2p+1. The factors of xk in the definition of Gi ensure that
ζi = ∂kGik = dΦi(x) + xk∂kΦi(x) span the same complete space as the tensor
product functions Φi [17].

The projection of f(x) onto ζi(x) is performed by minimizing the least-squares
error,

E2 =
∑

q

[
∑

i

Fiζi(xq) − f(xq)

]2

.

Specifically, the solution vector, Fi, is found using QR factorization of the
matrix ζi(xq), leading to the following expression for the quadrature weights,
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wq = Qqj(R
−T )ji

∫

κ
ζi(x)dx, where ζi(xq) = QqjRji. (4)

The choice of sampling points, xq, affects the conditioning of the QR factoriza-
tion of ζi(xq). The points should lie inside the cut cell, so that the integrand
remains physical. Multiple methods exist for choosing these interior points.
In this work, the points are chosen randomly, by casting interior-bound rays
from quadrature points on the 1D element boundary. These rays are directed
along the normal direction with a random variation (default range is ±15o).
The closest intersection of each ray with an element boundary marks where
the ray first exits the element. A random interior point is chosen between the
origin of the ray and this exit point. Example sampling points for a cut airfoil
are shown in Figure 3.

(a) Leading Edge (b) Trailing Edge

Fig. 3. Example of sampling points on a cut NACA 0012 mesh.

Since a random set of points may possess unfavorable clusters, conditioning
of the QR factorization generally improves with an increasing number of sam-
pling points, nq. In this work, nq is set to four times the number of ζi basis
functions. In the event of a singular error in the QR factorization, another
set of sampling points is chosen. In addition, using an axis-aligned element
bounding box to define the Φi(x) may pose conditioning problems for non-
axis-aligned sliver elements, as shown in Figure 4. In this case, conditioning
is improved by rotating the bounding box for a tighter fit around the ele-
ment. Specifically, for each element, two new bounding boxes are constructed,
oriented along the diagonals of the original axis-aligned bounding box. The
tightest-fitting bounding box, that is, the one with the smallest area, is used.

Better algorithms likely exist for performing the cut-cell integrations, or for
improving the proposed method. For example, the sampling point selection
process can be made more sophisticated. Random selection was used here for
its simplicity, justified by the fact that unfavorable clusters are detected by
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Fig. 4. For non-axis-aligned sliver cut elements (shaded area), the original bounding
box (left) is rotated to obtain a tighter fit (right). Also shown is the original triangle
from which the sliver element was cut.

degeneracy in the weight calculation, in which case the selection process is
repeated. An improved selection process may be more expensive, but it may
allow for fewer sampling points. This is an area of possible future research.

3.4 Implementation

The cut-cell method was implemented in an existing DG code, with minimal
impact on the solver and other parts of the code. No change was made to
the basic numerical integration paradigm for residual evaluation, as the cut-
cell integrations take the form of quadrature sums. The cut-cell integration
rules are created once in a pre-processing step, and saved, before beginning
solution iteration. Interpolation functions for cut cells are defined not on the
original triangles, but rather on “shadow” triangles taken to be the right
triangles associated with the cut-cell bounding boxes. This choice improves
conditioning of the basis for small cut cells. Even though this work deals with
steady-state solution via implicit schemes, an unsteady term with local time
steps is used to improve robustness in the early stages of convergence. The
local time step is chosen using a global CFL number: ∆tκ = CFL(hκ/sκ,max),
where hκ and sκ,max are the element-specific size and maximum wave speed,
respectively.

4 Output-Based Error Estimation

Accurate prediction of an output (e.g. drag, or lift on an airfoil) may depend
on resolution of seemingly un-interesting areas. This is especially the case in
hyperbolic problems, where small variations in one location can have large
effects on the solution behavior downstream. Error estimators based on lo-
cal criteria often fail to capture the error due to such propagation effects.
Output-based error estimators address this problem by linking local residuals
to outputs through the use of the adjoint solution.
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Output-based error estimation and adaptation for CFD have been studied
extensively in the literature [7, 18–24]. In the following analysis, an output
error estimate for a generic weighted residual statement is derived, motivated
by the previously cited work. This estimate is then applied to the DG weighted
residual statement.

Let u ∈ V be an analytic solution to a set of nonlinear equations given by
F (u) = 0. Also, let uH ∈ VH be the finite element solution to the corre-

sponding weighted residual statement RH

(
uH ,vH

)
= 0, ∀vH ∈ VH , where

RH : WH×WH → R is a semi-linear form, linear in the second argument. The
space WH ≡ VH + V is defined because VH is not required to be a subspace
of V; in particular, this is the case with DG approximation.

Let J (u) be a possibly-nonlinear output of interest. The dual problem reads:
find ψ ∈ V such that,

R̄H(u,uH ;v,ψ) = J̄ (u,uH ;v), ∀v ∈ V,

where the mean value linearizations R̄H : WH ×WH → R and J̄ : WH → R

are given by:

R̄H(u,uH ;v,w)=
∫ 1

0
R′

H [θu + (1 − θ)uH ](v,w)dθ,

J̄ (u,uH ;v)=
∫ 1

0
J ′[θu + (1 − θ)uH ](v)dθ,

In the above, the primed notation denotes the Frechét derivative, with lin-
earization performed about the state within the square brackets. Overbar no-
tation denotes a linearization involving the arguments before the semicolon.
ψ is assumed to exist in the same space as u. Assuming RH(u,w) = 0,
∀w ∈ WH , the output error can be expressed as

J (u) − J (uH) =−RH(uH ,ψ −ψH), (5)

where ψH ∈ VH can be arbitrary at this point. Defining an adjoint residual,

R̄ψ
H(u,uH ;v,w) ≡ R̄H(u,uH ;v,w)− J̄ (u,uH ;v), v,w ∈ WH ,

the output error can also be expressed as

J (u) − J (uH) =−R̄ψ
H(u,uH ;u− uH ,ψH). (6)
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As u and ψ are in general not known, two approximations are employed
to make the above output error estimates practical. First, the exact mean-
value linearizations are replaced by approximate linearizations about uH . To
minimize errors in (5) and (6) due to no longer using mean-value linearizations,
ψH is set to the finite element approximation of ψ. That is, ψH satisfies
Rψ
H(uH ;vH ,ψH) = 0, ∀vH ∈ VH , where Rψ

H is the adjoint residual computed
with linearization only about uH . Second, the exact solution errors u − uH
and ψ − ψH are replaced by uh − uH and ψh − ψH , respectively, where uh
and ψh are approximations to u and ψ on an enriched finite element space,
Vh. Following the work of Lu [7], Vh is constructed from VH by increasing the
interpolation order to p + 1.

The approximations uh and ψh are created by a reconstruction process on Vh.
In this work, local H1 patch reconstruction is used, in which the minimized
error for each element κ ∈ Th takes the form

E2
κ(vκ,uH) =

∑

l∈Pκ

( ∫

l
(vκ − uH)2dx +

d−1∑

i=0

ci

∫

l
(∂ivκ − ∂iuH)2dx

)
,

where Pκ is the patch of neighboring elements in Th (including κ), vκ ∈
P p+1(Pκ) denotes the order p + 1 reconstructed solution on the patch, d is
the dimension, and the ci are O(∆xi) scaling coefficients specific to each el-
ement, determined by the dimensions of the elemental bounding boxes. The
reconstructed solution, uh, is set according to uh|κ = vκ, where, for each
element, vκ minimizes E2

κ(vκ,uH). ψh is obtained analogously. To further im-
prove the approximation, one element-Jacobi smoothing iteration is performed
on uh and ψh.

Using uh and ψh in place of u and ψ in (5) and (6) yields the following
approximations to the output error (making use of VH ⊂ Vh and Th = TH):

J (u) − J (uH)≈−
∑

κ∈TH

Rh(uH , (ψh −ψH)|κ),

J (u) − J (uH)≈−
∑

κ∈TH

Rψ
h (uH ; (uh − uH)|κ,ψH).

In the above expressions, |κ refers to restriction to element κ. A local error
indicator on each element is obtained by averaging primal-residual and adjoint-
residual contributions to the output error in the above expressions. Specifically,
in this work, the error indicator in each element κ is taken to be

ǫκ =
1

2

(∣∣∣Rh(uH , (ψh −ψH)|κ)
∣∣∣+

∣∣∣Rψ
h (uH ; (uh − uH)|κ,ψH)

∣∣∣
)
. (7)
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For systems of equations, indicators are computed separately for each equation
and summed together. The global output error estimate, ǫ =

∑
κ ǫκ, is not a

bound on the actual error in the output, due to the approximations made
in the derivation. However, the validity of the approximations is expected to
increase as uH → u. In the literature, various other indicators are presented,
using either/both the primal-based and dual-based error estimate expressions
[19, 25]. Using a combination of both expressions targets errors in both the
primal and the dual solutions, and has been found sufficiently effective in
driving adaptation.

5 Adaptation Strategy

Given a localized error estimate, an adaptive method modifies the computa-
tional mesh in an attempt to decrease and equidistribute the error. In high-
order finite element methods, possible adaptation strategies include p, h, and
hp, where p-adaptation refers to changing only the order of interpolation, h-
adaptation refers to changing only the computational mesh, and hp-adaptation
is a combination of both.

An advantage of p-adaptation is that the computational mesh remains fixed
and an exponential error convergence rate with respect to degrees of freedom
(DOF) is possible for sufficiently-smooth solutions. A disadvantage, however,
is difficulty in handling singularities and areas of anisotropy, and the need for a
reasonable starting mesh. h-adaptation allows for the generation of anisotropic
(stretched) elements, although the best attainable error convergence rate is al-
gebraic with respect to DOF. hp-adaptation strives to combine the best of both
strategies, employing p-refinement in areas where the solution is smooth, and
h refinement near singularities or areas of anisotropy. Implemented properly,
hp-adaptation can isolate singularities and yield exponential error convergence
with respect to DOF. The difficulty of hp-adaptation methods in practice lies
in making the decision between h- and p-refinement, a decision that requires
either a solution regularity estimate or a heuristic algorithm. Houston and Süli
[26] present a review of commonly used methods for making this decision.

The adaptation strategy chosen for this work is h-adaptation at a constant
p. This strategy does not take advantage of the cost savings offered by hp-
adaptation, but avoids the regularity estimation decision. The h-adaptation
method consists of high-order anisotropy detection and mesh optimization.
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5.1 Anisotropy in High-Order Solutions

An important ingredient in making h-adaptation efficient for aerodynamic
computations is the ability to generate stretched elements in areas where the
solution exhibits anisotropy. For p = 1, the dominant method for detecting
anisotropy involves estimating the Hessian matrix of a scalar solution u [27–
29],

Hij =
∂2u

∂xi∂xj
, i, j ∈ [0, .., d − 1].

The second derivatives can be estimated by, for example, a quadratic recon-
struction of the linear solution. For the Euler or Navier-Stokes equations, the
Mach number has been found to perform well as the scalar quantity, u. Of
course, other quantities may also be suitable, and perhaps the most effective
choice is an average or minimum of several quantities [29]. In this work, using
the Mach number has produced acceptable results.

The eigenvectors of H correspond to the directions of the maximum and min-
imum values of the second derivative of u, while their respective eigenvalues,
λi, are the values of the second derivatives in those directions. Since H is
symmetric, the eigenvectors are orthogonal, and yield the principal stretch-
ing directions. The magnitudes of stretching in each direction are related via
hi/hj = (|λj|/|λi|)1/2.

Anisotropy detection based on the standard Hessian matrix is not suited for
p > 1 interpolation, due to the linear interpolation assumption used in the
derivation of the Hessian-matrix method. That is, the second derivatives gov-
ern, to leading order, the inability of a linear function to interpolate u. On
the other hand, for general p, the p + 1st derivatives of u govern the inability
of the basis functions to interpolate the exact solution. Thus, the stretching
ratios, hi/hj, and principal directions, ei, should be based on estimates of the
p + 1st derivatives.

For p = 1, the principal directions, ei, are orthogonal. For p > 1, one method
for calculating orthogonal directions proceeds as follows: let e0 be the direction
of maximum p+1st derivative, and e1 the direction of maximum p+1st deriva-
tive in the plane orthogonal to e0. Under this definition, the final direction,
ed−1, is fully determined by the previous directions.

By construction, the ei directions are orthogonal, and hence suitable for spec-
ifying a metric tensor of directional sizes. Equidistributing the error in each
direction yields the relationships,
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hi
hj

=
(
u(p+1)

ej
/u(p+1)

ei

)1/(p+1)
, (8)

where u(p+1)
ei

is the p + 1st derivative in the direction ei. (8) provides only the
relative mesh sizing; the absolute values for hi are based on the error indicator,
as described in the following section.

5.2 Mesh Optimization

In h-adaptation, mesh optimization refers to deciding which elements to refine
or coarsen and/or the amount of refinement or coarsening. The optimization
has important implications for practical simulations: too little refinement at
each adaptation iteration may result in an unnecessary number of iterations;
too much refinement may ask for an expensive solve on an overly-refined mesh.

Many of the current adaptation strategies rely on some variation of the fixed
fraction method [22, 26, 30], in which a prescribed fraction of elements with
the highest error indicator is refined. While adequate for testing and small
cases, this method poses an automation and efficiency problem for practical
simulations due to the often ad-hoc fixed fraction parameter. More sophis-
ticated optimization strategies attempt to meet the global tolerance while
equidistributing the error among elements. Zienkiewicz and Zhu [31] define a
permissible element error eκ = e0/N at each adaptation iteration, where e0 is
the global tolerance, and N is the current number of elements. Coupled with
an a priori error estimate, this “refinement prediction” method yields element
sizing at each adaptation iteration. Venditti and Darmofal [24, 25], employ a
similar approach and extend it to anisotropic sizing using the Hessian ma-
trix. Compared to the fixed fraction method, refinement prediction has the
advantage that it specifies the magnitude of refinement in each element.

For elliptic problems, Rannacher et al [19, 32], present another mesh optimiza-
tion strategy in which an optimal mesh size function hopt(x) is constructed
continuously over the entire domain. The construction is based on solving a
constrained minimization problem with a Lagrangian method. Details can be
found in the references, and in an earlier work by Brandt [33]. Key to this
method is an assumption regarding the existence of a mesh-independent func-
tion in an expression for the global error. The authors note that this is a
heuristic assumption, and that the existence of this function can be rigorously
justified only under very restrictive conditions [19].

Anisotropy detection introduces another variable into the mesh optimization
process; namely the stretching of the elements. In “pure” Hessian-based adap-
tation, the absolute magnitude of stretching is controlled by an arbitrary global
scaling factor [29]. Venditti and Darmofal use an output-based error indicator
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to determine the length magnitude, leading to a more robust adaptation pro-
cess [24]. Formaggia et al [34] have combined Hessian-based interpolation error
estimates with output-based a posteriori error analysis to arrive at output-
based anisotropic error estimates.

In the interest of generality, this work adopts a variation of the refinement pre-
diction method of Zienkiewicz and Zhu, modified to allow for mesh anisotropy.
One drawback of straightforward refinement prediction is the fact that error
equidistribution is performed over the current mesh, as opposed to some rea-
sonable prediction of the adapted mesh. While in the asymptotic limit, the
current and the predicted mesh will converge, by attempting to equidistribute
the error on the predicted mesh, adaptive convergence can be accelerated [17].

Equidistributing the error on the adapted mesh involves a prediction of the
number of elements, Nf , in the adapted (fine) mesh. Let nκ be the number
of fine-mesh elements contained in element κ. nκ need not be an integer, and
nκ < 1 indicates coarsening. Denoting the current element sizes of κ by hci , and
the requested element sizes by hi, where again i indexes the spatial dimensions,
nκ can be approximated as,

nκ =
∏

i

(hci/hi) . (9)

The current sizes hci are calculated as the singular values of the mapping from
a unit equilateral triangle to element κ. The resulting grid-implied metric
is similar to that used by Venditti [35]. Such a calculation ensures that an
isotropic metric is retained for a mesh of equilateral triangles. (9) is based on
an approximate volume comparison between the current and refined elements
and, therefore, does not depend on the principal directions associated with hci
and hi.

To satisfy error equidistribution, each fine-mesh element is allowed an error
of e0/Nf , which means that each element κ is allowed an error of nκe0/Nf .
By relating changes in element size to expected changes in the local error, an
expression for nκ is obtained, from which the absolute element sizes, hi, follow.
In this work, an a priori estimate for the output error serves as this relation,

ǫκ
ǫcκ

=

(
h0

hc0

)p̄κ+1

, (10)

where ǫcκ is the current error indicator, ǫκ is the expected error indicator,
p̄κ = min(pκ, γκ), and γκ is the lowest order of any singularity within κ [31].
γκ is generally set to pκ, except on cut cells that contain geometric singular-
ities, such as corners or trailing edges. On these cells, γκ is lowered (to 0 in
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practice), resulting in isolation of geometric singularities with fewer adapta-
tion iterations. The a priori estimate is valid for many common engineering
outputs, including forces and pressure distribution norms. In the estimate, the
error is assumed to scale with h0, which corresponds to the direction of maxi-
mum p+1st derivative. Implicit in the estimate is that the principal directions
corresponding to the requested size, h0, and the current size, hc0, align. One
option for accounting for a difference in principal directions is to replace hc0 in
(10) with hc(e0), the current, grid-implied size in the principal direction e0.
However, as hc0 ≤ hc(e) for any direction, e, using hc0 in (10) leads to a more
conservative estimate for h0 in the early stages of adaptation. Furthermore,
the assumption that h0 and hc0 align becomes more valid as the adaptation
progresses. Equating the allowable error with the expected error from the a

priori estimate yields

nκ
e0

Nf︸ ︷︷ ︸
allowable error

= ǫcκ

(
h0

hc0

)p̄κ+1

︸ ︷︷ ︸
a priori estimate

. (11)

Expressing h0

hc
0

in terms of nκ and the known relative sizes (8) yields a relation

between nκ and Nf . For example, in two dimensions,

nκ
e0

Nf
= ǫcκ

[
1

nκ

h0

h1

hc1
hc0

](p̄κ+1)/2

⇒ n(p̄κ+3)/2
κ =

ǫcκ
e0/Nf

[
h0

h1

hc1
hc0

](p̄κ+1)/2

.

Substituting for nκ into Nf =
∑
κ nκ yields an equation for Nf . If all the p̄κ are

equal, this equation can be solved directly. Otherwise, it is solved iteratively.
With Nf known, (11) yields nκ, from which the hi are calculated using (9) and
(8). Adaptation iterations stop when ǫ ≡ ∑

κ ǫκ ≤ e0, where e0 is the requested
global error tolerance.

In practice, two parameters are used to control the behavior of the optimiza-
tion and adaptation algorithm: the target error fraction, 0 < ηt ≤ 1, and the
adaptation aggressiveness, 0 ≤ ηa < 1. Specifically, instead of e0 in (11), a
modified requested error level, ẽ0 is used, where

ẽ0 = max (ηaǫ, ηte0) .

ηt prevents the adaptation convergence from stalling as the error estimate,
ǫ, approaches the tolerance, e0. The aggressiveness parameter, ηa, controls
how quickly the error is reduced when the error estimate is far from e0. A
value close to zero indicates aggressive adaptation, which has the danger of
over-refinement, while a value close to 1 may require an excessive number
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of adaptation iterations to converge. Default values for these parameters that
have been found to work well over a variety of cases are ηt = 0.7 and ηa = 0.25.

5.3 Implementation

An adaptive solution procedure starts by solving the primal and dual prob-
lems on an initial coarse mesh and calculating a local error indicator on each
element. The local error indicators are converted to mesh size requests using
the mesh optimization algorithm, and the domain is re-meshed using the new
metric. The solution on the new mesh is initialized by a transfer of the solution
from the old mesh, and the process repeats. The primal problem is solved using
a line-preconditioned Newton GMRES method, and the dual problem is solved
sequentially, costing one extra linear solve (or more for multiple outputs).

Meshing of the domain is done using the Bi-dimensional Anisotropic Mesh
Generator (BAMG) [36], which takes as input a mesh with the requested met-
ric defined at the input mesh nodes and produces a new mesh based on the
requested metric. Metric definition on triangles completely contained within
the geometry, which do not possess a solution, is performed by using the
grid-implied metric on the background mesh. Since BAMG expects the met-
ric prescribed at the nodes, an averaging process is required to convert the
element-based metric to a node-based metric. As this averaging may smooth
out small mesh size requests, the input mesh is uniformly refined twice before
the call to BAMG.

For robustness, and to speed up convergence, the solution on the new mesh is
initialized by a transfer of the solution from the previous mesh. The transfer
is performed via an L2 projection of the state. For solutions with large inter-
element jumps (e.g. on coarse meshes), such a projection may produce a non-
physical state on the new mesh. In such cases, detected by testing for non-
physical states at quadrature points, a p = 0 restriction of the solution from
the previous mesh is performed.

6 Results

The adaptation scheme is applied to several representative aerodynamic cases,
using orders p = 1 to p = 3. Comparisons of the adapted meshes and the
error convergence histories are given for both boundary-conforming and cut-
cell meshes in terms of degrees of freedom (DOF). The number of degrees of
freedom in a solution is computed as the total number of unknowns, excluding
the equation-specific multiplier (e.g. 4 for 2D Euler or Navier Stokes).
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For comparing different interpolation orders, p, a better metric than degrees of
freedom is computational time. However, relative run times depend heavily on
the implementation and the hardware. Nevertheless, a more accurate estimate
of the computational work is possible by assuming a work expression of the
form, W ∼ Ne(n(p))a, where Ne is the number of elements, n(p) = (p +
1)(p + 2)/2 is the degrees of freedom per element, and a is a measure of
the computational complexity per element. Using DOF = Nen(p), the work
estimate may be written as W ∼ DOF (n(p))a−1. From experience, at least
for orders up to p = 3, the work is dominated by the matrix-vector products
during the GMRES linear solve; hence, a ∼ 2. As n(1) = 3, n(2) = 6, and
n(3) = 10, for the same DOF, p = 2 is expected to be twice as expensive as
p = 1, while p = 3 is expected to be over three times more expensive than
p = 1.

6.1 Inviscid NACA 0012, M = 0.5, α = 2o

The computational domain for this case consists of a NACA 0012 airfoil con-
tained within a farfield box, a distance of 100 chord lengths away from the
airfoil. The NACA geometry is modified to close the trailing edge gap,

y = ±0.6(0.2969
√

x − 0.1260x− 0.3516x2 + 0.2843x3 − 0.1036x4).

The performance of the isotropic adaptation algorithm is tested using drag as
the output, with a tolerance of 0.1 drag counts. Drag is calculated from the
static pressure distribution on the airfoil surface with the pressure calculated
using only the tangential velocity, vt: ps = (γ−1)(ρE−0.5ρ|vt|2). The “exact”
output value is taken as the drag computed on a p = 3 run adapted to 10−3

drag counts, as boundary effects of the finite farfield contribute to a nonzero
drag value at steady state.

Figure 5 shows the initial 123-element boundary-conforming mesh, as well
as the initial 124-element cut-cell mesh. In the boundary-conforming meshes,
elements adjacent to the airfoil surface are represented using cubic (q = 3)
curved elements. These elements have to be curved at every adaptation iter-
ation, since BAMG produces linear meshes. For the isotropic elements in this
case, this curving does not pose a problem.

Figure 6 summarizes the results of the adaptation runs. The plots show the
output error versus DOF at each adaptation iteration for every run. The hor-
izontal dashed line marks the error tolerance of 0.1 drag counts. In both the
boundary-conforming and cut-cell methods, the p = 3 runs achieve the de-
sired accuracy with the fewest degrees of freedom. The advantage is roughly a
factor of 2 over p = 2 and a factor of 10 over p = 1. In terms of the computa-
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(a) Boundary-conforming: 123 el-
ements

(b) Cut-cell: 124 elements

Fig. 5. Initial NACA 00012 meshes.
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(b) Cut-cell

Fig. 6. Drag error vs. degrees of freedom for the inviscid NACA 0012 runs.

tional work estimate discussed at the beginning of this section, the differences
are diminished, but p = 3 is still slightly less expensive than p = 2, which is
almost three times less expensive than p = 1. The convergence of the cut-cell
runs is comparable to that of the boundary-conforming runs.

6.2 NACA 0012, M = 0.5, Re = 5000, α = 2o

In this case, a Navier-Stokes solution is computed around a NACA 0012 at
Mach number 0.5, Reynolds number 5000, and angle of attack of 2o. The
initial meshes are isotropic, geometry-adapted, with roughly 250 elements.
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Mesh optimization is performed with anisotropic elements, to efficiently re-
solve the boundary layer and wake. In the presence of anisotropic elements
near the airfoil boundary, the boundary-curving step in post-processing the
linear boundary-conforming meshes is prone to failure. That is, the curved
boundary may intersect interior edges, leading to unallowable elements. This
mode of failure was observed for some of the runs. When such a failure oc-
curred, the adaptation was re-run with slightly perturbed values for adaptation
aggressiveness. No such mesh-robustness problems were encountered for the
cut-cell method.

6.2.1 Drag Adaptation

The adaptation algorithm was tested using drag as the output, with tolerance
of 0.1 counts. A force output for a viscous simulation consists of two compo-
nents: a pressure force and a viscous force, fv. The viscous force is obtained
from the viscous flux, F v

ki, with a dual-consistent correction,




fvx

fvy



 =
∑

σbf∈Γout

∫

σbf




−F v

2ini + ηbfδbf2i ni

−F v
3ini + ηbfδbf3i ni



 ds (12)

where F v
2i and F v

3i are viscous flux component, and δbfki is the auxiliary vari-
able presented in Section 2. Not including this correction leads to an adjoint
solution that is not well-behaved at the airfoil boundary, Γout [7].

The “true” drag of 568.84 counts was computed on a p = 3 cut-cell mesh,
adapted to an error of 10−3 counts. The boundary-conforming and cut-cell
runs converge to the same drag value. The corresponding drag error conver-
gence histories are plotted in Figure 7. Overall, the cut-cell and boundary-
conforming results are similar. For both the boundary-conforming and the
cut-cell cases, p = 3 requires only slightly fewer degrees of freedom than p = 2
at the error tolerance. Thus, in terms of estimated work, p = 2 becomes
slightly advantageous to p = 3 in this case. p = 1, however, remains the most
expensive, requiring a factor of 4 more degrees of freedom than p = 2, which
translates to an estimated work increase of about a factor of 2.

Figures 8 and 9 show the final adapted meshes for p = 2 and p = 3. The final
adapted meshes for p = 1 are much finer: 63751 elements for the boundary-
conforming case, and 50515 for the cut-cell case. They are not shown here
because the elements are practically indiscernible on the scale used. In all
meshes, areas of high refinement include the boundary layer, a large extent
of the wake, and, to a lesser extent, the flow in front of the airfoil. In the
cut-cell meshes, the airfoil boundary location is marked by a dashed line.
Triangles completely contained within the airfoil are not shown. The similarity
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(b) Cut-cell

Fig. 7. Drag error vs. degrees of freedom for the viscous NACA 0012 runs. Dashed
line indicates prescribed tolerance of 0.1 drag counts.

(a) Boundary-conforming: 3852 ele-
ments

(b) Cut-cell: 4399 elements

Fig. 8. Final p = 2 meshes adapted on drag.

in element sizes between the cut-cell meshes and their boundary-conforming
counterparts is evident.

6.2.2 Sensitivity to Initial Mesh

For the adaptation method to be practical, the final adapted meshes should
not be highly sensitive to the starting meshes. The sensitivity is tested for a
drag-adapted viscous NACA 0012, with an error tolerance of 1 drag count.
Runs are performed with several different cut-cell starting meshes, including
a set of uniform triangulations of the entire domain, as well as two meshes
adapted on geometry to different levels of fineness (see Figure 10).
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(a) Boundary-conforming: 1929 ele-
ments

(b) Cut-cell: 1840 elements

Fig. 9. Final p = 3 meshes adapted on drag.
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(c) Adapted on geome-
try: 478 elements

Fig. 10. Initial meshes for sensitivity study.

Figure 11 shows the adaptation histories of the runs for p = 1, 2, 3. For the
finer, uniform starting meshes, the DOFs decrease rapidly in the first adapta-
tion iteration, due to coarsening of the mesh away from the airfoil, where the
mesh is initially relatively too fine.

The adaptation histories appear somewhat scattered for the first several it-
erations, but then converge as the error decreases. For a given p, the final
adapted meshes are close not only in DOF count, but also in DOF spatial
distribution. This observation is made by qualitatively comparing locations of
refinement and element aspect ratio. In summary, the histories show that for
a low-enough error tolerance, the final meshes generated by the adaptation
algorithm are relatively insensitive to the initial mesh.
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(c) p = 3

Fig. 11. Adaptation histories for p = 1, 2, 3, starting from the various initial meshes
shown in Figure 10.

6.3 High Peclet Number Flow Over a Joukowski Airfoil

One of the proposed advantages of the cut-cell method over the boundary-
conforming method lies in the robustness of cut-cells in dealing with anisotropic
meshes near curved boundaries. For very highly anisotropic meshes, however,
the cut-cell method also faces a robustness challenge stemming primarily from
cutting a mesh whose edges in the boundary layer are nearly parallel to the
geometry. The results in this section address this issue by applying cut cells to
boundary-layer cases representative of practical high Reynolds number simu-
lations.

An ideal test of the cut-cell adaptive method would be a Reynolds-averaged
Navier-Stokes (RANS) simulation with a derivative quantity, such as heat
transfer, as the output of interest. However, as RANS discretization and so-
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lution is currently under development, a simpler equation set, convection-
diffusion, was chosen to assess the robustness of the cut-cell adaptive method.
The convection-diffusion equation is given by,

∇ · (Vu) −∇ · (ν∇u) = 0, P e =
V∞L

ν
, (13)

where u is the unknown scalar concentration of interest, V is a prescribed
velocity field, ν is the diffusion coefficient, V∞ is a constant farfield velocity,
L is a reference length scale, and Pe is the Peclet number, measuring the
strength of convection relative to diffusion.

The discontinuous Galerkin discretization of (13) proceeds similarly to that
of the Navier-Stokes equations, using full up-winding for the convection term
and BR2 for the diffusion term. Boundary-layer behavior can be observed at
high Pe when a boundary condition specifies a concentration of u different
from that in the bulk flow. To be concrete, in the following examples u will
represent a temperature field, and the case of interest will be a heated airfoil
in a high-speed flow. Standard potential flow around a Joukowski airfoil is
used for V. The output of interest for adaptation is the total heat flux out of
the airfoil, with an error tolerance of approximately 1% of the true heat flux.

Adaptive runs were performed for p = 1, 2, 3 at three Peclet numbers: Pe =
4 × 106, Pe = 4 × 108, and Pe = 4 × 1010. The largest value, Pe = 4 × 1010,
approximately simulates the thickness of the viscous sublayer (y+ = 10) in a
turbulent Navier-Stokes computation at Re = 107. A geometry-adapted mesh
of roughly 900 elements served as the initial mesh for the Pe = 4 × 106 runs.
Thereafter, the final adapted meshes at each Pe served as initial meshes for
the next Pe. Such staggering ensured reasonable accuracy of the error estimate
on the initial meshes. The “true” values for the heat flux in each case were
computed using a p = 3 solution on a uniformly refined version of the final
adapted p = 2 mesh.

Figure 12 shows the adaptation histories for all three Peclet numbers. For
Pe = 4 × 106, at the error tolerance, p = 2 and p = 3 require about the
same number of DOF, while p = 1 requires four times more. In terms of
approximate work, p = 1 is still the most expensive, while p = 2 is the
least expensive by a factor of two. For Pe = 4 × 108, the difference in DOF
grows, with p = 1 now requiring almost an order of magnitude more degrees
of freedom. Finally, for Pe = 4 × 1010, only three adaptation iterations are
shown for p = 1 because the mesher, BAMG, failed to return a valid mesh
after the third adaptation iteration. Specifically, the returned mesh contained
triangles with areas that were negative. This failure is likely due to areas of
very high anisotropy requested in the p = 1 adaptive run. On the other hand,
both p = 2 and p = 3 converged successfully to satisfy the error tolerance.
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(b) Pe = 4 × 108
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(c) Pe = 4 × 1010

Fig. 12. Output error vs. DOF adaptation history.

The p = 2 convergence history exhibits a slight spike, which is likely caused by
a meshing irregularity or the resolution of a previously under-resolved area.
Finally, while the error convergence slopes are steep for many of the runs,
this steepness can be attributed to a large number of extra elements that are
required to initially “uncover” a thin boundary layer; the large error drops in
the latter adaptation iterations reflect the placing of the final elements within
the boundary layer.

Close-ups of the final adapted meshes for each of the runs are shown in Figure
13. For all Pe, the coarseness in the boundary layer mesh allowed by p > 1
is clearly evident. A rough count of the average number of cells within the
boundary layer in a direction normal to the airfoil boundary yields about 25-
40 for the final adapted p = 1 meshes, 5-6 for the final adapted p = 2 meshes,
and 2-3 for the final adapted p = 3 meshes. The fact that these meshes, with
edges nearly parallel to the geometry, were successfully cut demonstrates the
robustness of the cut-cell method for modeling the very thin boundary layers
expected in practical simulations. Furthermore, attempting these cases with
the boundary-conforming method produces invalid meshes in the early stages
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of adaptation.

p = 1

Pe = 4 x  106, ∆ y = 2 x  10−2 c

p = 2 p = 3

p = 1

Pe = 4 x  108, ∆ y = 2 x  10−3 c

p = 2 p = 3

p = 2

Pe = 4 x  1010, ∆ y = 2 x  10−4 c

p = 3

Fig. 13. Close-ups of the boundary-layer meshes for each of the runs. Dashed line
indicates the airfoil boundary. ∆y refers to the y-axis range in each of the plots, in
terms of the airfoil chord length, c.

7 Conclusions

This paper presents a complete output-based mesh adaptation procedure for
higher-order discontinuous Galerkin discretizations in two dimensions. From
the two-dimensional results given in this work, several conclusions can be
drawn about the performance of the adaptation algorithm. First, the output-
based error estimate, while not a bound on the error, successfully drives the
adaptation on the cases tested to produce solutions that meet the prescribed
error tolerance on the output. Second, adaptation on p = 2 and p = 3 is
observed to produce final meshes that more efficiently use degrees of freedom
compared to p = 1 meshes. The difference in degrees of freedom is largest for
the smooth, inviscid case, and still remains significant for the viscous cases.
Third, by running the adaptation algorithm using a variety of initial meshes,
the conclusion can be made that the final meshes are relatively insensitive to
the starting meshes, given a low enough error tolerance.

In addition to the adaptation procedure, a triangular cut-cell meshing tech-
nique is introduced as an alternative to boundary-conforming meshing. The
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cut-cell method is shown to produce adaptive results similar to those ob-
tained with boundary conforming meshes. Moreover, increased robustness
of the cut-cell method is observed for anisotropic adaptation, in which the
boundary-conforming meshes are prone to failure in post-processing of the
curved boundaries. Cut-cell meshes, on the other hand, remain robust even
for practical boundary-layer simulations. These results support the concept of
using triangular cut cells for automated, robust, and efficient meshing.

While the target application is aerodynamics, the adaptation method is read-
ily extendable to different equation sets. Similarly, while this work considered
only two dimensions, most of the ideas are extendable to three dimensions.
Specifically, the output-based error estimation and mesh optimization strat-
egy, as presented in this paper, are also valid for three dimensions.

Regarding cut cells, the required three-dimensional intersection problem cer-
tainly becomes more difficult. One possible extension, currently under de-
velopment, makes use of quadratic patches to represent the geometry. These
patches can be created from standard triangular surface tesselations by insert-
ing additional nodes at edge midpoints. The intersection problem between the
patches and tetrahedra becomes one of intersecting conic sections in patch ref-
erence space. The two-dimensional integration method described in this work
is used to calculate sampling points and weights for boundary and cut-face
integrations. A straightforward extension of the method to three dimensions
then yields volume sampling points and weights. While the cut-cell method
becomes relatively more expensive in three dimensions, the idea of tetrahedral
cut cells offers an alternative to the difficult problem of generating boundary-
conforming meshes around intricate, curved, three-dimensional geometries.
This extension to three dimensions is the subject of ongoing work.
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