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Abstract

This paper presents an output-based adaptive algorithm for unsteady simulations of convection-
dominated flows. A space-time discontinuous Galerkin discretization is used in which the spatial
meshes remain static in both position and resolution, and in which all elements advance by the
same time step. Error estimates are computed using an adjoint-weighted residual, where the
discrete adjoint is computed on a finer space obtained by order enrichment of the primal space.
An iterative method based on an approximate factorization is used to solve both the forward and
adjoint problems. The output error estimate drives a fixed-growth adaptive strategy that employs
hanging-node refinement in the spatial domain and slab bisection in the temporal domain. De-
tection of space-time anisotropy in the localization of the output error is found to be important
for efficiency of the adaptive algorithm, and two anisotropy measures are presented: one based
on inter-element solution jumps, and one based on projection of the adjoint. Adaptive results
are shown for several two-dimensional convection-dominated flows, including the compressible
Navier-Stokes equations. For sufficiently-low accuracy levels, output-based adaptation is shown
to be advantageous in terms of degrees of freedom when compared to uniform refinement and
to adaptive indicators based on approximation error and the unweighted residual. Time inte-
gral quantities are used for the outputs of interest, but entire time histories of the integrands are
also compared and found to converge rapidly under the proposed scheme. In addition, the final
output-adapted space-time meshes are shown to be relatively insensitive to the starting mesh.

Keywords: Output error estimation, Space-time mesh adaptation, Discontinuous Galerkin,
Compressible Navier-Stokes, Unsteady adjoint

1. Introduction

Numerical simulations of large-scale unsteady aerodynamics problems generate massive amounts
of data in the form of a state description on the entire space-time domain. Processing this data
can be a challenging task, yet for engineering purposes often only a few scalar quantities or time
histories are of interest. Robustness of the simulations in the context of engineering analysis and
design depends on the verification measures that are employed for the outputs of interest. In this
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work we present one such verification measure in the form of a posteriori output error estimates,
and we use the estimates to drive a combined spatial and temporal adaptive solution scheme.

A posteriori output error estimates have received considerable attention for steady problems
[1, 2, 3, 4, 5, 6, 7], where they have been used not only to provide error bars on outputs but
also to drive mesh adaptation. A recent review of adaptive methods based on these estimates
can be found in [7]. The robustness and efficiency of these methods arise from the fact that they
specifically target for refinement those and only those areas of the computational domain that
are important for predicting the output of interest. They are popular for convection-dominated
aerospace applications because through the use of adjoint solutions, they properly account for
error propagation effects, which can be troublesome for many heuristic adaptive indicators.

Research into output-based error estimation for unsteady problems has been more limited, in
part due to implementation challenges and to computational expense. While in the steady case
the cost of an adjoint solution is generally comparable to that of the primal problem on the same
space, the cost rises in the unsteady case, especially in terms of storage for nonlinear problems.
However, from a theoretical point of view, there is no fundamental limitation preventing the
implementation of unsteady adjoint capability into aerospace simulation codes. We believe that
there is a need for unsteady adjoints as many aerospace applications rely on unsteady simulations
that contain a wide range of spatial and temporal scales whose distribution is not known a priori.
In such simulations, the risk of unquantified output errors is significant, as is the potential benefit
of solution-adaptive methods that use resources efficiently. Moreover, with the continuing growth
of processing power, output error estimates and adaptive methods are now within computational
reach for many unsteady aerospace applications.

The theoretical framework for output error estimation is most rigorous in a variational for-
mulation, and hence this work employs a space-time finite element discretization. Specifically,
the discontinuous Galerkin (DG) method is used in both space and time. DG has been studied
previously for spatial [8, 9, 10, 11, 12, 13], temporal [14, 15, 16, 17], and combined space-time
[18, 19, 20, 21, 22] discretizations. Although computationally expensive, DG shows potential for
high accuracy and is flexible in the admissible solution space. The latter point is important for our
present work, which employs non-conforming elements in the spatial domain, and for our future
work, which will consider dynamic mesh refinement. We note that less some of the mathematical
rigor and with additional approximations, we expect the methods presented in our work to extend
to other discretizations, including finite volume/difference in space and multistep/multistage in
time.

A few previous works have investigated output error estimation and mesh adaptation for un-
steady simulations. For a finite volume method with a backwards-difference time discretization
and mesh motion, Mani and Mavriplis use the discrete adjoint to estimate the output error due to
both the temporal resolution and to partial convergence of the unsteady residuals [23, 24]. They
then adaptively refine the time steps and demonstrate an improvement in functional convergence
compared to uniform refinement. For a space-time DG discretization, Barth outlines an adjoint-
based error estimation procedure on static unstructured meshes [22]. He shows that the error
indicator is effective at estimating the true error, and he demonstrates an adaptive procedure for
the spatial-mesh. Vexler et al [25, 26] study output error estimation and mesh adaptation for
parabolic problems discretized using continuous Galerkin in space and discontinuous Galerkin
in time. By employing high-order reconstructions of the adjoint in space and time, they obtain
separate spatial and temporal error estimates, and they use these error estimates to drive adaptive
simulations of scalar and two-equation parabolic systems.

The present work builds on previous studies by combining spatial and temporal adaptation
2



into a tractable algorithm for the compressible Navier-Stokes equations. Primary contributions of
this work consist of an estimate of space-time anisotropy of the solution and a mesh optimization
algorithm for making decisions between spatial and temporal refinement. These contributions
are highlighted in an extensive set of results. The results also demonstrate several robustness
aspects of the output-based adaptation, including independence of the initial space-time mesh
and favorable convergence of output histories in addition to integral quantities.

The remainder of this paper is organized as follows: Section 2 presents the space-time dis-
continuous Galerkin discretization and the iterative solution technique for both the primal and
the discrete adjoint problems. The output error estimation procedure via the adjoint-weighted
residual is described with implementation details in Section 3. Section 4 discusses error local-
ization, including the measures of space-time anisotropy, and mesh adaptation. It also presents
the approximation error and residual indicators that will be used for comparison. Various adap-
tive results for problems in two spatial dimensions are presented in Section 5. These problems
include gust encounters in subsonic and transonic regimes and an impulsively-started airfoil. We
end with concluding remarks in Section 6.

2. Discretization and Solution

2.1. Primal Discretization

The canonical problem for this work consists of a system of s partial differential equations in
d spatial dimensions,

∂u
∂t

+ r(u) = 0, (1)

where u(x, t) ∈ Rs is the state vector defined at every point in space, x ∈ Rd, and time, t, and
r : Rs → Rs is a differential operator in x.

We discretize (1) using a discontinuous Galerkin finite element method on tensor-product
space-time meshes, an example of which is illustrated in Figure 1 for d = 2. Although the present
work only considers problems in which the nodes of the spatial mesh remain fixed in time, mesh
motion could be incorporated through suitable mapping of a reference spatial domain.

We seek an approximate solution, uH(x, t), in the finite-dimensional spaceVH = [Vspace
H ]s ⊗

Vtime
H . The spatial approximation spaceVspace

H consists of polynomials of order p in the reference
spatial coordinates of each element. The temporal approximation space,Vtime

H , consists of poly-
nomials of order r in time on each of NH,slab time slabs. Both of these spaces admit discontinuities
across elements/time slabs.

Let {ϕn
H(t)}, n = 1, . . . , (r + 1)NH,slab, be a basis forVtime

H . Using implied summation on n, we
expand the solution as

uH(x, t) = un
H(x)ϕn

H(t) = IH(x)Un
Hϕ

n
H(t). (2)

We do not focus on the spatial discretization and simply assume that at time node n uH(x, t)
is described by a vector of NH numbers, Un

H ∈ RNH . IH(x) ∈ Rs×NH is a position-dependent
interpolation matrix that contains the details of the spatial basis.

The variational finite element statement reads: find uH ∈ VH such that

RH(uH , vH) = 0, ∀vH ∈ VH , (3)
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Figure 1: Portion of a sample mesh for a space-time discretization in two spatial dimensions. Each space-time element,
TH,e ⊗ IH,k , is given by a tensor product of a spatial element, TH,e, e = 1, . . . ,NH,elem, and a time slab, IH,k , k =

1, . . . ,NH,slab. The spatial mesh, which can be unstructured, is assumed to be invariant in time.

where the semilinear form RH(·, ·) : VH ⊗ VH → R is obtained by multiplying (1) by a test
function vH and integrating by parts over the space-time domain. The discrete version of (3) is a
set of NH(r +1)NH,slab equations that we group by time nodes into (r +1)NH,slab unsteady residual
vectors, R

m
H ∈ RNH . For clarity and without loss of generality, we consider only the first time

slab, on which the r + 1 unsteady residual equations are

R
m
H ≡ am,nMHUn

H − ϕ
m
H(t0)MHU0

H +

∫ t1

t0
ϕm

H(t)RH(UH(t)) dt = 0, (4)

where MH ∈ RNH×NH is the spatial mass matrix and RH ∈ RNH is the spatial residual vector.
U0

H is the prescribed initial condition. For all other time slabs, the solution from the end of the
previous time slab is used in place of U0

H . For the spatial discretization, we use discontinuous
Galerkin with the Roe inviscid flux [27] and the second form of Bassi and Rebay [28] for the
viscous flux. These choices are arbitrary, however. We note that the temporal discretization and
solution scheme impose no restrictions on the spatial discretization.

The matrix am,n on the first time slab is given by

am,n = −

∫ t1

t0
ϕn

H

dϕm
H

dt
dt + ϕn

H(t1)ϕm
H(t1). (5)

Using a Lagrange temporal basis on equally-spaced nodes, we have on the first time slab,

for r = 1, am,n =

[
1/2 1/2
−1/2 1/2

]
; for r = 2, am,n =

 1/2 2/3 −1/6
−2/3 0 2/3

1/6 −2/3 1/2

 . (6)

The integral in (4) is evaluated with (r + 1) points of Gauss quadrature for order 2r + 1 accuracy.

2.2. Adjoint Discretization
We consider a scalar output calculated from the unsteady state vector,

output = JH(uH(x, t)), (7)
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where the subscript H accounts for the particular quadrature and/or geometry fidelity associated
with the spatial mesh. By (2), we can think of the output as a function of the discrete vectors Un

H .
The discrete adjoint solution, Ψm

H ∈ RNH , m ∈ 1, . . . , (r + 1)NH,slab, consists of vectors whose
components are the sensitivities of JH to residual source perturbations added to (4). The discrete
adjoint equation is ∂R

m
H

∂Un
H

T

Ψm
H +

(
∂JH

∂Un
H

)T

︸                        ︷︷                        ︸
R
ψ,n
H (Ψm

H)

= 0, (8)

where the linearization of the unsteady residual is computed about the forward solution for non-
linear problems. For an adjoint-consistent output and primal discretization [29, 30], the space-
time function

ψH(x, t) = IH(x)Ψm
Hϕ

m
H(t)

approximates the solution to the continuous adjoint problem.
For each n = 1, . . . , (r + 1)NH,slab, R

ψ,n
H (Ψm

H) ∈ RNH is an unsteady adjoint residual vector. On
the first time slab, the r + 1 adjoint residual vectors are

R
ψ,n
H = am,nMHΨm

H − ϕ
n
H(t1)MHΨnext

H

+

∫ t1

t0
ϕn

H

(
∂R
∂U

(UH(t))
)T

ΨH(t) dt +

(
∂JH

∂Un
H

)T

,
(9)

where ΨH(t) = Ψm
Hϕ

m
H(t), and Ψnext

H is the adjoint vector associated with the start of the second
time slab. These formulas extend naturally to all other time slabs. To obtain the exact discrete
adjoint, the integrals in the above equation are evaluated using the same numerical quadrature as
in (4).

2.3. Iterative Unsteady Solution
The residual equations in (4) constitute a possibly nonlinear system in which all of the de-

grees of freedom within a time slab are coupled together. Each time slab is also coupled to its
predecessor through the solution at the end of the previous slab. We solve this system using an
iterative method introduced by Richter [31]. The starting point for this method is a Newton-
Raphson update equation on time slab k,

∂R
m
H

∂Un
H

∆Un
H = −R

m
H , (10)

where m and n are the temporal indices associated with slab k.
Two approximations are employed to make the solution of (10) tractable. First, a temporally

constant spatial Jacobian matrix, AH ∈ RNH×NH , is evaluated at the time slab midpoint and used
in the linearization of the time integrals appearing in the unsteady residuals. The result is

(am,nMH + bm,n∆tkAH) ∆Un
H = −R

m
H , (11)

where bm,n =
1

∆tk

∫
IH,k

ϕm
H(t)ϕn

H(t)dt, (12)
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and ∆tk = tk − tk−1.
Second, an approximate factorization is used in the solution of the r + 1 residual equations

resulting in a multistep scheme that does not require formation or inversion of squares or higher
powers of AH . The scheme consists of three steps and two matrix inversions for r = 1 and
six steps and three matrix inversions for r = 2. These schemes are presented in Appendix A.
The matrices involved are just combinations of the mass matrix and AH , so that they have the
same compact stencil as the steady-state problem. Inversion is performed iteratively using the
generalized minimal residual method preconditioned by an element-line smoother.

3. Output Error Estimation

An approximation of the solution in the finite dimensional space VH will generally not be
“exact” in the sense that it will change as the solution space is enriched. A scalar output com-
puted with this solution will therefore be affected by solution discretization errors. Our goal is
to estimate the resulting output error. Central to the process will be an approximation to the fine
space adjoint solution, ψh(x, t) ∈ Vh, which will be used in an adjoint-weighted residual calcu-
lation to produce an estimate that accounts for discretization errors in both space and time. The
following subsections describe the details of this process.

3.1. The Adjoint-Weighted Residual

In a variational setting, the theory of adjoint-based output error estimation extends naturally
from steady to unsteady discretizations. By virtue of Galerkin orthogonality, the output error
estimate evaluates to zero for all approximate adjoint solutions that are in the same space as the
primal solution. Therefore, the adjoint must be approximated on a space Vh that is finer than
VH . In a discontinuous Galerkin space-time discretization, the solution space can be enriched
by increasing the interpolation order and/or refining the elements/time slabs. We use a fine space
that is obtained from the coarse space by incrementing the spatial and temporal orders by 1.

For our purpose, the output error is defined as the difference between the output computed
with the coarse solution and that computed with a fine solution. If we have the adjoint solution
on the fine space, ψh ∈ Vh, then the output error can be estimated using the adjoint-weighted
residual technique [2, 7],

δJ = output error ≈ −Rh(uH ,ψh) = −
(
Ψm

h

)T
R

m
h (UH,n

h ), (13)

where in the first expression Rh(uH ,ψh) is the weak form from (3). In the second expression,
UH,n

h ∈ RNh corresponds to the injection of the coarse solution into the fine space, and summation
is implied on m, which ranges over the fine-space temporal degrees of freedom. Nh is the number
of spatial degrees of freedom on the fine space. The approximation sign indicates that the above
expression is not exact when the adjoint equation is solved approximately or when the problem
is nonlinear. The choice of order enrichment for the fine space simplifies the residual calculation
on the fine space as the spatial and temporal meshes remain fixed.

The cost of the fine adjoint solution depends on the choice of the fine space Vh and on the
approximations employed. As the space Vh is made richer, the accuracy of the error estimate
improves but the computational cost rises, resulting in a trade-off between cost and accuracy.
In this work we solve the adjoint problem exactly with spatial order p + 1 and temporal order
r, and we then reconstruct the adjoint to order r + 1. The temporal reconstruction makes use
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Figure 2: Illustration of temporal reconstruction of the fine-space adjoint solution. Shown is the reconstruction of an
r = 2 fine adjoint solution (dashed line) from an r = 1 coarse solution (solid lines) using the left-node from the adjacent
future time slab and superconvergent nodes on the current time slab. tR indicates the root of the left Radau polynomial
for r = 1.

of superconvergence properties of DG solutions at slab endpoints and Radau points [32]. It is
illustrated in Figure 2 for r = 1. We note that whereas reconstruction of the forward solution
may yield non-physical state values, no such problem exists in the reconstruction of the adjoint
variables, which are not subject to physical constraints. In addition, the temporal reconstruction
is essentially local: the additional information required for a high-order interpolant comes in
only from the left node of the adjacent future time slab.

3.2. Implementation

The error estimate is computed concurrently with the adjoint solve, which is performed after
the primal solve. Whether or not the problem is nonlinear, the primal state is always stored to
hard disk during the forward solve in the form of r + 1 vectors, each of size NH , per time slab.
During the adjoint solve, the primal state on the current slab is loaded into memory, injected
into the fine space, and used to calculate the fine-space residual. The adjoint problem is then
approximated on the current time slab by solving at spatial order p + 1 and temporal order r,
and then reconstructing in time to order r + 1. All linearizations required in the adjoint problem
are performed using the injected coarse forward solution, so that the fine forward solution is
never required. A coarse-space projection is subtracted from the fine-space adjoint to minimize
errors in the adjoint-weighted-residual calculation. The adjoint-weighted residual result from
the time slab increments the output error and running totals of the spatial and temporal adaptive
indicators, which are described in the next section.

4. Spatial and Temporal Adaptation

The output error estimate drives an adaptive process in which the unsteady problem is solved
on successively refined space-time meshes. The iterative process is illustrated in Figure 3. The
following subsections describe the error localization and adaptive optimization strategies.

4.1. Error Localization

The output error calculation in Eqn. 13 can be recast as a sum over space-time elements,

δJ ≈ −
(
Ψm

h

)T
R

m
h (UH,m

h ) =

Nslab,H∑
k=1

Nelem,H∑
e=1

εe,k,
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Figure 3: Steps of the proposed unsteady adaptive strategy.

where the error contribution of a coarse space-time element TH,e ⊗ IH,k is

εe,k = −
∑

m∈dofh(IH
k )

(
ZeΨ

m
h

)T
ZeR

m
h (UH,n

h ).

The mask matrix Ze contains Nh columns and returns the degrees of freedom associated with
coarse element e. The error indicator for a space-time element is obtained by taking the absolute
value of the elemental contribution,

space-time element error indicator = εe,k =
∣∣∣εH

e,k

∣∣∣. (14)

This indicator identifies the space-time elements most responsible for the error in the desired
output. The adaptive strategy is to reduce the output error by refining these elements in space
and time.

The indicator in (14) is sufficient for isotropic space-time refinement in which elements are
targeted for refinement in both space and time. However, isotropic refinement can produce inef-
ficient meshes. For example, if the discretization is under-resolved in the time domain, spatial
elements would needlessly be refined on account of the temporal error. Therefore, important for
an efficient adaptation strategy is a measure of the space-time anisotropy of the error. We present
two such measures.

The first measure of space-time anisotropy is a heuristic based on inter-element jumps in the
solution. For each space-time element, the average jump in the state, uH(x, t), is computed across
the spatial interfaces and across the time slab interfaces. For systems of equations, the average
jumps of each state component are summed together. The relative magnitudes of the average
spatial and temporal jumps are then used to calculate the anisotropy. This approach is motivated
by the successful use of solution jumps in guiding anisotropic spatial refinement on quadrilateral
and hexahedral elements in steady calculations [33]. Specifically, for element (e, k), we define
the fraction of output error attributable to the spatial, respectively temporal, discretization as
β

space
e,k , respectively βtime

e,k . For the inter-element jump measure, βtime
e,k is defined as the ratio of the

temporal jump to the sum of the temporal and spatial jumps, and βspace
e,k = 1 − βtime

e,k .
The second measure of space-time anisotropy is based on separate projections of the fine-

space adjoint onto coarse spatial and temporal spaces. We define spatial and temporal output
error estimates as

δJtime ≈ −Rh(uH ,ψHh), δJspace ≈ −Rh(uH ,ψhH), (15)
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where ψhH and ψHh are projections of the fine adjoint onto the coarse temporal and spatial spaces,

ψHh = Π
space
H ψh. ψhH = Πtime

H ψh,

Π
space
H and Πtime

H are least-squares projection operators to spatial order p and temporal order r, re-
spectively. These definitions are motivated by considering the spatial output error as the change
in the output observed when the spatial discretization is refined while keeping the temporal dis-
cretization unchanged, and similarly for the temporal output error. The contributions to these
quantities from space-time element (e, k) are

ε
space
e,k = −

∑
m∈dofh(IH

k )

(
ZeΨ

m
hH

)T
ZeR

m
h (UH,n

h ), εtime
e,k = −

∑
m∈dofh(IH

k )

(
ZeΨ

m
Hh

)T
ZeR

m
h (UH,n

h ),

where ΨhH ∈ RNh and ΨHh ∈ RNh are discrete fine-space representations of the projected adjoints.
In this measure, the spatial/temporal error fractions are given by

β
space
e,k =

|ε
space
e,k |

|ε
space
e,k | + |ε

time
e,k |

, βtime
e,k = 1 − βspace

e,k .

Finally, as discussed in the next section, in the present work we use tensor-product space-time
meshes in which the temporal discretization remains in slabs and the spatial resolution is static.
Independent refinement of individual space-time elements is not possible in this setting, and
instead aggregate adaptive indicators are sought for each spatial element and for each time slab.
These aggregate indicators are obtained by summing over time slabs and elements as follows:

spatial indicator on element e = εe =

Nslab,H∑
k=1

εk,eβ
space
e,k ,

temporal indicator on time slab k = εk =

Nelem,H∑
e=1

εk,eβ
time
e,k .

(16)

In the results we will also present conservative error estimates calculated as the sum of the ele-
ment indicators:

ε =

Nslab,H∑
k=1

Nelem,H∑
e=1

εk,e. (17)

4.2. Adaptation
In theory, with a discontinuous Galerkin space-time discretization, the space-time elements

could be refined independently, following for example a fixed-fraction strategy in which elements
with the highest error indicators are refined first. However, in the present work, we restrict the
adaptation as follows. First, to allow for solution of the unsteady discrete problem via the iter-
ative method described in Section 2.3, temporal refinement is limited to entire time slabs. That
is, at each time, all elements take time steps of the same size. Second, to minimize storage and
complexity of the data structures, the refinement of the spatial mesh remains fixed throughout the
unsteady simulation. Clearly this latter requirement limits the efficiency of the adaptation, espe-
cially for problems that exhibit spatially localized sources of error that move in time. Dynamic
spatial refinement is a topic of future work.
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The mesh is adapted by hanging-node refinement of spatial elements and bisection of time
slabs. The adaptive strategy must decide which elements and time slabs to refine based on the
localized error indicators εe and εk given in (16). In the present work, a fixed-growth strategy
is used in which the increase in the number of space-time elements at every adaptive iteration
is governed by a growth factor, f growth. The budget of new space-time elements, (1 − f growth)
times the current number of space-time elements, is approximate because of the tensor-product
requirement of the space-time mesh, and because the hanging-node adaptation marks certain
neighbors of flagged spatial elements to preserve a maximum factor of two refinement ratio
between neighbors.

The decision of which elements or time slabs to refine is made in a greedy fashion by allocat-
ing resources to the refinement choice that addresses the largest error with the fewest additional
space-time elements. To first approximation, the number of elements introduced in a time slab
division is estimated as Nelem,H , while the number of elements introduced in a spatial refinement
is estimated as Nslab,H times the number of new subelements obtained from a hanging-node re-
finement. The respective adaptive indicators εk and εe are divided by these quantities and then
sorted highest to lowest. The element or time slab with the highest error indicator per proposed
additional number of space-time elements is chosen for refinement first, and the process contin-
ues until the growth budget is reached or surpassed. We note that in some cases the refinement
could target only spatial elements or only time slabs, depending on the relative resolution in time
and space.

4.3. Alternative Adaptive Indicators
The results compare output-based unsteady adaptation to uniform refinement in space and

time and to two cheaper indicators: one based on the approximation error and one based on the
unweighted residual. Such indicators are relatively simple to evaluate and have been analyzed in
the past for steady problems [34].

The approximation error can be estimated in various ways. One method for a DG discretiza-
tion is to consider the inter-element jumps of the solution, which have been considered previously
for shock-capturing purposes [35, 36, 37]. Specifically, we define the jump indicator on space-
time element (e, k) as

ε
jump
e,k = average jump in the state across space-time element boundaries.

The element boundaries include interfaces between adjacent spatial elements on the same slab
and between adjacent past and future time slabs. The average jump is computed on a reference
space-time element so that no bias is introduced on the element size. For smooth solutions, this
indicator targets areas of the space-time domain where the solution is not approximated well in
the finite-dimensional spaceVH .

The unweighted residual indicator is given by a form similar to the output-error indicator, but
without the adjoint,

εres
e,k =

∑
m∈dofh(IH

k )

Ze

∣∣∣Rm
h (UH,n

h )
∣∣∣.

This indicator targets areas of the space-time domain where the partial differential equation is
not satisfied. Both the approximation error indicator and the residual indicator are cheaper to
evaluate than the output-based indicator, as they do not require an adjoint solution. The jump-
based space-time anisotropy measure is used for both adaptive indicators.
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4.4. Temporal Robustness Adaptation

On each time slab, the primal and adjoint solvers decrease the unsteady residuals to a low
relative tolerance using the iterative solver described in Section 2.3. We do not take advantage
of estimating the output error due to inexact solves [24], and instead for simplicity we use a
fixed relative residual tolerance of eight orders of magnitude. Since the iterative solver is based
on a Newton-Raphson method, it may occasionally fail to converge for time slabs that are large
relative to the spatial resolution. This is usually observed for initial coarse meshes that are under-
resolved in time. In such cases, a temporal robustness adaptation is performed: the current time
slab is bisected and the iterative solver begins anew on the smaller time slab. The adaptation only
affects the current time slab, so that each robustness adaptation adds only one time slab to the
temporal discretization. Both the primal and adjoint solvers employ this measure.

5. Results

This section presents results of adjoint-based unsteady adaptive runs for four problems. All
results are in two spatial dimensions on static body-fitted quadrilateral meshes. The solutions
are approximated using p = 2 tensor product polynomials in space and r = 1 polynomials in
time. Solutions obtained using the various adaptive indicators are compared to “actual” solu-
tions, which are computed on space-time meshes that are obtained by uniformly-refining the
final output-adapted meshes. The growth factor used in the adaptation iterations is f growth = 2.0.
A near-zero error tolerance is prescribed for the output adaptation so that the adaptive process
does not terminate; instead a fixed number of adaptive iterations is run to enable comparisons at
similar degrees of freedom.

We do not present timing results as these are subject to variability resulting from specifics
of code implementation and optimization, and to approximations made in the adjoint solution,
which have to be further investigated. As a rough estimate, with the authors’ current implemen-
tation, the cost of adjoint-based error estimation for the problems considered is on average five
times that of a forward solve on the same mesh.

5.1. Two-Dimensional Scalar Convection-Diffusion-Reaction

The first example is a demonstration of the adaptive method for a two-dimensional scalar
convection-diffusion-reaction problem. The governing equation for the scalar concentration u is

∂u
∂t

+ ∇ ·
(
~Vu

)
− ∇ · (ν∇u) + S (u) = 0,

where ~V is the convection velocity, ν is the viscosity, and S (u) is an Arrhenius-law reaction term,

S (u) = Au(c1 − u) exp
(
−

E
c2 − u

)
,

where A = 0.1, c1 = 2, E = .05, and c2 = 2.4. The computational domain is a square, (x, y) ∈
[0, 2] ⊗ [0, 2], and the initial condition is a Gaussian concentration profile centered at (x, y) =

(2.1, 0.9) with unit amplitude and variance of 1/50, as shown in Figure 4(a). The velocity field
is induced by an irrotational counterclockwise vortex flow centered at (x, y) = (−1,−1) and with
a vortex strength of Γ = 3; i.e. at a point a distance l away from the vortex center, the velocity
magnitude is |~V | = Γ/(2πl) and the direction is counterclockwise tangential relative to the vortex
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(c) Output definition

Figure 4: Scalar convection-diffusion-reaction: initial condition and point output overlayed on the coarse mesh, the
adjoint solution at the initial time, and the definition of the output time-integral quantity. The velocity field is induced by
an irrotational vortex outside the lower left corner of the domain.

center. The kinematic viscosity is 0.01, so that the Peclet number based on the vortex strength
is Pe ≡ Γ/ν = 300. The output is a time-integral near the end of the simulation, from t = 2 to
t = 2.2, of the scalar measured at one point, (x, y) = (1.05, 2.05), as shown in Figure 4(a,c).

The initial mesh for the adaptive runs is a 6 × 6 uniform spatial grid with 4 time slabs.
Figure 5b shows the output convergence with degrees of freedom for uniform refinement and
adaptive indicators based on the output error, approximation error, and residual. The degrees of
freedom are measured for the entire space-time mesh as the product of the spatial and temporal
degrees of freedom. The results show that output-based adaptation converges most rapidly to the
actual output value. The advantage over the other indicators depends on the desired output error
tolerance. For example, the result of output-based adaptation drops below 5% error in about
30 times fewer degrees of freedom than uniform refinement. The convergence results of the
approximation-error indicator and the residual indicator are more irregular and on par or slightly
worse than uniform refinement in this case.

The output-adapted results in Figure 5b are shown with error bars at ±δJ, using the adjoint-
weighted residual estimate in (13), and at the more conservative ±ε, using the sum of element
indicators in (17). In this example, the estimate δJ under-predicts the output error on some of
the adapted meshes, while ε generally over-predicts the error. Both quantities converge to zero
as the adaptation proceeds.

The time histories of the scalar output reading on several adapted space-time meshes are
shown in Figure 6a. The temporal solution is discontinuous in time, and the plot shows the in-
stantaneous output at the end of each time slab, where the solution is superconvergent at order
2r + 1 [32]. To obtain a representative continuous curve, these superconvergent points are in-
terpolated using a temporal cubic spline, which is expected to retain the optimal order 2r + 1
accuracy on the time slab interiors. The space-time meshes in Figure 6a are chosen to have com-
parable degrees of freedom. In this set, which consists of the seventh adaptive iteration of each
of the indicator-based methods and the second uniform refinement, the output-based adaptation
result is closest to the actual time history.

A more quantitative comparison is given in Figure 6b, which plots the L2 error in the time
histories versus the cube root of the degrees of freedom. The cube root is used to aid in the
illustration of the convergence rate under uniform refinement of three dimensions: two spatial
and one temporal. We remark that the observed third-order convergence for uniform refinement
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(a) Output convergence
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(b) Output convergence (zoom)

Figure 5: Scalar convection-diffusion-reaction: convergence of output under various adaptive indicators. Error bars at
±δJ and whiskers at ±ε are shown for the output-based results. “Actual” output value is computed on a uniformly-refined
final output-adapted space-time mesh.

is consistent with the expected rate for a spatially and temporally smooth problem with p = 2
and r = 1, since the spatial error is expected to converge at a rate of p + 1 = 3, and the temporal
error at a rate of 2r + 1 = 3 for a time integral quantity. From this figure, we see that the output-
based adaptation again shows the most rapid convergence, with savings of one to two orders of
magnitude in degrees of freedom, depending on the desired error tolerance.
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(b) L2 error convergence

Figure 6: Scalar convection-diffusion-reaction: sample point-value time histories and convergence of the L2 time history
error for various adaptive indicators. “Actual” time history is computed on a uniformly-refined final output-adapted
space-time mesh.

The adapted space-time meshes corresponding to the time histories in Figure 6a are shown
in Figure 7. In the spatial domain, the indicators based on approximation error and residual
target primarily the initial location of the scalar, where the concentration is highest due to the
subsequent reaction. On the other hand, the output-based adaptation also targets the area near
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the output sensor. In the temporal domain, the approximation error and residual indicators target
the initial time as this is where the reaction rate is highest. In contrast, the output error indicator
produces a fairly uniform temporal refinement for tracking the scalar profile until the output
reading at the end of the simulation.

(a) Adapted on output error (262 elements) (b) Adapted on approximation error (212 elements)

(c) Adapted on residual (202 elements)

0 0.5 1 1.5 2

Output error, iteration 7: 66 time slabs

Approximation error, iteration 7: 78 time slabs

Residual, iteration 7: 90 time slabs

Time
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|Temporally−marginalized output error|

(d) Temporal meshes

Figure 7: Scalar convection-diffusion-reaction: adapted spatial and temporal meshes for the seventh adaptive iteration.
Localized output error estimates εe and εk are shown for the output-error adapted spatial and temporal meshes.

Figure 8 compares convergence histories of output-based adaptation for four different initial
space-time meshes. These meshes consist of: the baseline mesh of 36 elements and 4 time-slabs;
the baseline refined temporally to 16 time slabs; the baseline refined spatially to 144 elements;
and the baseline refined both spatially and temporally. By 2×105 degrees of freedom, the outputs
from the various refinements are indistinguishable on the plot in Figure 8a. In addition, Figure 8b
shows the convergence of the L2 error in the output time histories. The differences in the initial

14



degrees of freedom are quickly washed out as the adaptive scheme targets the same space-time
regions for refinement.
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(b) L2 error convergence

Figure 8: Scalar convection-diffusion-reaction: relative insensitivity of the output convergence to initial mesh when
using output-based adaptation. The legend entries refer to the size of the initial mesh. Isotropic refers to ascribing the
space-time element error εe,k equally to the spatial and temporal discretization instead of using the anisotropy measure
described in Section 4.1.

Also shown in Figure 8a as a dashed curve is the convergence of the output using the baseline
initial mesh but without space-time anisotropy detection. Instead, the space-time elemental error
indicator εe,k is split equally between the spatial and temporal discretizations: βspace

e,k = βtime
e,k = 0.5.

As indicated in the figure, the resulting output convergence is slower by almost an order of
magnitude in terms of degrees of freedom.

5.2. Subsonic Laminar Gust Encounter
The second example is of a vertical gust encounter for a NACA 0012 airfoil in laminar vis-

cous flow at freestream Mach number M∞ = 0.4, angle of attack α = 2◦, and Reynolds number
Re = 5000. The initial condition is illustrated schematically in Figure 9a. Prior to unsteady simu-
lation, a steady solution is converged for a uniform freestream, imposed approximately 50 chord
lengths away from the airfoil. The gust field is then superimposed on the solution by perturbing
the vertical velocity with a Gaussian profile centered five chord lengths ahead of the airfoil. The
standard deviation of the Gaussian is a quarter chord length, and the profile is shifted so that the
perturbation is zero one chord length ahead of the airfoil. The result is an initial condition that
satisfies the physical flow tangency and no-slip boundary conditions on the airfoil.

The coarse initial spatial mesh of 510 elements is illustrated in Figure 9b. The elements
are curved using cubic shape polynomials to represent the geometry. The initial temporal mesh
consists of eight uniform time steps. The primal state in the form of entropy contours is shown
at the half-way point of the simulation in Figure 9b. A faint signature of the gust field is visible
1.5 chord lengths behind the airfoil. The wake at this time is clearly unsteady, and an alternating
pattern of shed vortices is visible.

The temporal domain spans 15 time units, where one time unit is the chord length divided
by the freestream velocity magnitude. The output of interest is chosen as the time integral of the
lift coefficient from t = 5 to t = 15. This quantity is illustrated in Figure 10a for a time history
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(a) Problem setup (b) Initial mesh

(c) Entropy at t = 7.5 (d) x-momentum adjoint at t = 7.5

Figure 9: Subsonic laminar gust encounter: problem setup showing a schematic of the initial condition, the starting
coarse mesh, and snapshots of the primal and adjoint solutions.
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computed with a fine solution. Note that the output time horizon captures most of the gust
encounter and the subsequent time. A snapshot of the unsteady x-momentum adjoint solution,
taken at t = 7.5, is shown in Figure 9d. The contours show that at this time the output is
sensitive to x-momentum residuals in the boundary layer above the leading edge, off the top-
middle surface, and below the trailing edge. This information is automatically incorporated into
the error estimates that drive the adaptation.
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Figure 10: Subsonic laminar gust encounter: time integral output definition and its convergence under various adaptive
indicators. Error bars at ±δJ and whiskers at ±ε are shown for the output-based results. “Actual” output is computed on
a uniformly-refined final output-adapted space-time mesh.

Starting with the initial space-time mesh, four adaptive runs were performed using the three
indicators (output error, approximation error, and residual) and uniform refinement in space and
time. The output at each adaptation iteration is shown in Figure 10b versus total degrees of
freedom. Error bars at ±δJ and ±ε are included on the output-based plot. On the initial coarse
meshes the output error is very high for all of the methods, and the error estimate reflects this. As
convergence proceeds, the error and error estimate are quickly reduced for the output-based run
as it converges to the actual value. Adaptation on approximation error produces a convergence
plot that looks reasonable in isolation; however, the value to which it appears to converge is
drastically incorrect. The residual indicator yields a somewhat more accurate output but exhibits
oscillations in the latter stages of convergence. Finally, uniform refinement yields results that
approach the true output, but with significantly more degrees of freedom. For example, for
10% output error, the factor difference in degrees of freedom between output-based and uniform
refinement is approximately 40.

The time histories of the lift coefficient for several adapted space-time meshes at comparable
degree of freedom counts are shown in Figure 11a. In this set, the output-based adapted mesh
most closely tracks the true time history of the lift coefficient. The quantitative comparison
in Figure 11b confirms that this is the case in the L2 error norm. In this metric, residual-based
adaptation comes next with an order of magnitude more degrees of freedom, followed by uniform
refinement. Uniform refinement exhibits a convergence rate of approximately 2.0 in this plot
against the cube root of degrees of freedom, which is less than the optimal expected rate of 3.0.
This suboptimal behavior could be caused by high-order spatial derivative discontinuities in the
initial gust profile. Finally, we note that adaptation on the approximation error indicator levels
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off at a high error value and clearly fails to converge.
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(b) L2 error convergence

Figure 11: Subsonic laminar gust encounter: sample lift coefficient time histories and convergence of the L2 time history
error for various adaptive indicators. “Actual” time history is computed on a uniformly-refined final output-adapted
space-time mesh.

The adapted spatial and temporal meshes at the seventh adaptive iteration for each indicator
are shown in Figure 12. The output error indicator localized to the spatial elements and time
slabs is overlayed on the output-adapted meshes. Focusing first on the spatial meshes, we see
marked differences in the areas targeted for refinement by the three indicators. The output-based
indicator refines the propagation path of the gust ahead of the airfoil, the leading and trailing
edges where the shed vortices are formed, and portions of the boundary layer and wake. On the
other hand, the approximation error indicator focuses primarily on the airfoil leading edge and
the wake: areas where the solution exhibits the largest spatial variation. It leaves the area in
front of the airfoil quite coarse, as the approximation error there is lower; however, this results in
errors in propagating the gust field, and these errors are significant for the lift prediction. Finally,
the residual indicator is distracted by propagation of the entire gust field and targets areas far
above and below the airfoil.

Looking next at the temporal meshes in Figure 12d, we again see important differences. The
output-based adaptation focuses on the time before the encounter, so as to accurately propagate
the gust, and on the time at the peak of the encounter. It leaves the time steps in the latter portion
of the simulation, when the lift is not changing much, relatively coarse. The approximation-error
indicator focuses instead on the time immediately after the gust encounter, when the vortex shed-
ding is strongest. Finally, the residual indicator produces a nearly uniform temporal refinement,
suitable for propagating the gust field throughout the simulation.

5.3. Transonic Inviscid Gust Encounter
The third example is another gust encounter simulation with a NACA 0012 airfoil, but this

time in inviscid transonic flow at M∞ = 0.95 and α = 0◦. The gust setup is as illustrated in
Figure 9a, except that the peak gust velocity is now 0.5U∞, where U∞ is the freestream velocity
magnitude. A steady solve is performed prior to each unsteady simulation.

Figure 13 shows the primal and adjoint solution snapshots at one time during the gust en-
counter. The vertical gust field, situated towards the aft of the airfoil, is visible on the Mach
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(a) Adapted on output error (2618 elements) (b) Adapted on approximation error (2002 elements)

(c) Adapted on residual (2875 elements)
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(d) Temporal meshes

Figure 12: Subsonic laminar gust encounter: adapted spatial and temporal meshes for the seventh adaptive iteration.
Localized output error estimates εe and εk are shown for the output-error adapted meshes.
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number contours. A “fishtail” shock structure is also evident behind the airfoil, and it is slightly
perturbed by the gust.

(a) Mach number contours at t = 6 (b) Mass-conservation adjoint at t = 6

0.06

0.06

−0.055
0.175

0.29

0.405

(c) y-Momentum contours at t = 6

Figure 13: Transonic inviscid gust encounter: primal and adjoint states in the middle of the simulation. Contours of
y-momentum, in units of freestream velocity magnitude, indicate that at this time the airfoil is just past the middle of the
gust.

The temporal domain spans 20 time units, where again each time unit is the chord length
divided by the freestream speed. The output of interest is the time integral of the drag coefficient
over the entire simulation, as illustrated in Figure 14a. A snapshot of the mass-conservation ad-
joint solution for this output is shown in Figure 13b. We note an asymmetric “lambda” structure
of the adjoint solution that is formed by characteristic curves in the supersonic regions.

The initial spatial mesh of 510 elements is the same as in the previous example, and the initial
temporal mesh contains 32 time slabs. The output convergence from four adaptive runs with the
different indicators is given in Figure 14b. The unweighted residual-based adaptation does not
converge at all, while the approximation-error adaptation “converges” but to the wrong value.
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The output-based adaptation converges to the actual value, with a similar advantage in terms of
degrees of freedom as in the previous examples. The error bars on the outputs under-predict the
actual error, as do the more conservative whiskers given by the sum of the adaptive indicators.
This observation is attributed to the more complex structure of this problem and to the fact that
error estimation in the presence of shocks is still an open area of research for high order methods.
Nevertheless, adaptive refinement based on these error indicators performs very well.
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(b) Output convergence

Figure 14: Transonic inviscid gust encounter: time integral output definition and its convergence under the adaptive
indicators. Error bars at ±δJ and whiskers at ±ε are shown for the output-based results. “Actual” output is computed on
a uniformly-refined final output-adapted space-time mesh.

Time histories of the drag coefficient are shown in Figure 15a, for adapted space-time meshes
with similar degrees of freedom. The residual-adapted result is incorrect right away even in
the initial steady drag coefficient, leading to a consistent over-prediction of the output. The
approximation-error adaptation does not predict the peak drag changes well, although the extent
of this error is masked somewhat in the integral output. On the other hand, uniform refinement
and output-based adaptation track the actual time history well.

Figure 15b shows the L2 time history error convergence. Non-convergence of the adaptations
based on residual and approximation-error is evident. Uniform refinement shows a convergence
rate of about 1.5 on the final refinement, a suboptimal rate that is likely caused by spatial dis-
continuities at the shocks. In this metric, the difference between output-based adaptation and
uniform refinement is lower: about an order of magnitude for sufficiently low error tolerance.
However, the success of uniform refinement rests on the quality of the initial space-time mesh,
which in this case was relatively well-suited for the problem. A mismatch in the spatial and tem-
poral resolutions on the initial mesh would remain uncorrected in uniform refinement compared
to output-based adaptation.

The adapted meshes corresponding to the time histories in Figure 15a are shown in Figure 16.
Output-based adaptation again targets propagation of the gust field ahead of airfoil, and the
leading and trailing edges of the airfoil. More notably, the adaptation does not target much
of the wake, leaving the fishtail shock structure quite under-resolved. Conversely, adaptation
on the approximation error is distracted by the shock structure, leaving the area ahead of and
above/below the airfoil relatively coarse. The residual-based adaptation targets the entire gust
field (the figures do not show the entire spatial domain) and not the airfoil vicinity, resulting in
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(b) L2 error convergence

Figure 15: Transonic inviscid gust encounter: sample drag coefficient time histories and convergence of the L2 time
history error for various adaptive indicators. “Actual” time history is computed on a uniformly-refined final output-
adapted space-time mesh.

errors in the steady drag value.
The adapted temporal meshes in Figure 16d show that the output-based indicator targets

the time before and during the encounter. The approximation error indicator focuses on the
gust encounter and the time shortly thereafter, leaving the propagation of the gust prior to the
encounter prone to error. Finally, the residual-based indicator shows mostly uniform refinement
as it attempts to propagate the gust accurately throughout the entire simulation.

5.4. Impulsively-Started Airfoil

The final example is an impulsively-started NACA 0012 airfoil in viscous flow, where for
t ≥ 0, the freestream conditions are M∞ = 0.25, α = 8◦, Re = 5000. To prevent a non-physical
step change in the velocity of the fluid at the airfoil surface, the initial condition at t = 0 consists
of the freestream with the velocity blended smoothly to zero in a circular disk around the airfoil.
Specifically, the velocity in the blended region, r1 ≤ r ≤ r2 is v = V∞(1 − cos(π(r − r1)/(r2 −

r1)))/2 where r1 and r2 are radial distances from the airfoil mid-chord, set to one and three chord
lengths respectively, and V∞ is the freestream velocity. No steady solve is performed prior to the
unsteady simulation.

Figure 17a shows the entropy contours at t = 10 units, the final time in the simulation. By
this time an alternating pattern of shed vortices has developed and is clearly visible. The output
of interest is the lift coefficient integral from t = 9 to t = 10, as illustrated in Figure 18a. A
snapshot adjoint solution for the y-momentum equation at t = 6 is illustrated in Figure 17b.
A “reverse wake” is evident in the adjoint solution, signifying an oscillatory sensitivity of the
output to y-momentum residual perturbations upstream.

For the adaptive runs, the same initial spatial mesh of 510 elements is used as in the previous
examples, and the initial temporal mesh contains 16 time slabs. The output convergence for the
various indicators is shown in Figure 18b. The residual indicator does not perform well at all
again: the output varies significantly from iteration to iteration. The other indicators converge,
with the fastest being output-based adaptation, followed by approximation error and then uniform
refinement. The advantage of the output-based refinement with degrees of freedom is not as
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(a) Adapted on output error (5492 elements) (b) Adapted on approximation error (8197 elements)

(c) Adapted on residual (5373 elements)
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(d) Temporal meshes

Figure 16: Transonic inviscid gust encounter: adapted spatial and temporal meshes for the seventh adaptive iteration.
Localized output error estimates εe and εk are shown for the output-error adapted meshes.
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(a) Entropy contours at t = 10 (b) y-momentum adjoint at t = 6

Figure 17: Impulsively-started airfoil: primal state at the final time and the adjoint state at t = 6.

pronounced in this case, with a factor of 3-4 savings over the approximation error indicator. The
error estimates under-predict the error in the middle stages of output-based refinement, while the
conservative whiskers at ±ε are more robust.
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Figure 18: Impulsively-started airfoil: time integral output definition and its convergence under the adaptive indicators.
Error bars at ±δJ and whiskers at ±ε are shown for the output-based results. “Actual” output is computed on a uniformly-
refined final output-adapted space-time mesh.

Figure 19a shows the time histories of the lift coefficient for adapted space-time meshes
of similar size. The source of the error in the residual-adapted case is clear: it does not predict
oscillatory vortex shedding, but rather an increasing lift coefficient. The other three adaptive indi-
cators track the actual time history well. Figure 19b shows the L2 time history error convergence
for all of the methods, versus the cube root of the degrees of freedom. Under uniform refine-
ment, the observed convergence rate is a suboptimal 1.5, which could be caused by high-order
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derivative discontinuities in the blended initial condition or the resolution not yet being in the
asymptotic regime. Of primary interest, however, is the performance of output-based adaptation,
which remains the fastest out of the methods tested. Even though the output is only measured on
the final 10% of the simulation time, accurate resolution prior to this metric time is important as
it affects the state at the start of the output measurement.
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Figure 19: Impulsively-started airfoil: sample lift coefficient time histories and convergence of the L2 time history error
for various adaptive indicators. “Actual” time history is computed on a uniformly-refined final output-adapted space-time
mesh.

The corresponding adapted meshes are shown in Figure 20. Output-based adaptation targets
the airfoil leading and trailing edges, the boundary-layer region above the front of the airfoil,
and slightly the stagnation line in front and the wake behind the airfoil. The approximation-error
indicator also targets the leading and trailing edges and puts more emphasis on the wake, where
the shed vortices propagate. The residual indicator is distracted by effects of the initial condition:
the velocity blending near the airfoil sends out acoustic waves that the residual indicator attempts
to track as they propagate away from the airfoil.

The temporal meshes are shown in Figure 20d. The output-based indicator creates a fairly
uniform temporal refinement, with slightly higher resolution prior to the metric time. The ap-
proximation error focuses on the initial time, as it tracks the evolution of the blended velocity
field, and the latter 1/3 time when the shed vortices develop. The residual indicator again creates
a mostly-uniform temporal mesh as it tracks the acoustic waves.

6. Conclusions

This paper presents an output-based adaptive solution strategy for unsteady simulations of
convection-dominated flows, including those governed by the compressible Navier-Stokes equa-
tions. The discretization is performed on tensor product space-time meshes in which the spatial
resolution is static and the temporal refinement is in slabs. Output error estimates are obtained
using an unsteady adjoint-weighted residual in which the discrete adjoint is obtained on a refined
space using the same approximate solver used for the primal. The adaptive strategy requires
multiple unsteady runs, with refinement of both the spatial and temporal meshes after every run.
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(a) Adapted on output error (5956 elements) (b) Adapted on approximation error (4585 elements)

(c) Adapted on residual (7929 elements)
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Figure 20: Impulsively-started airfoil: adapted spatial and temporal meshes for the seventh adaptive iteration. Localized
output error estimates εe and εk are shown for the output-error adapted meshes.
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The proposed strategy adds non-trivial costs to the solver: the forward state must be stored
at each time step for linearization in the adjoint solve, and the adjoint must be solved on an
enriched space. One source of cost reduction is approximation in the adjoint solution, and this
work presents a temporal reconstruction that avoids solving the adjoint on a temporally-enriched
space. However, the adjoint solution remains more expensive than the primal on the cases tested.
This expense must be weighed against the benefits, which consist of error estimates for outputs
of interest and long-run cost reductions through a targeted adaptive solution strategy.

In this work, adaptive results are presented for a scalar convection-diffusion-reaction problem
and for the compressible Euler and Navier-Stokes equations in two spatial dimensions. An im-
portant observation is that, at least for the cases tested, output-based adaptation is demonstrated
to be advantageous in terms of degrees of freedom. The factor of advantage over the next closest
strategy ranges from four to a couple orders of magnitude, depending on the case and on the error
tolerance. Computational time considerations reduce this advantage, but the precise amount is
not presented as it is sensitive to implementation and approximation choices. Further research
into these choices, and into the efficiency of the primal problem, is required to make quantitative
computational time comparisons. Moreover, we note that for highly nonlinear problems, such as
the unsteady Reynolds-averaged Navier-Stokes (RANS) equations, the cost of the linear adjoint
solution relative to the primal is expected to be very much reduced due to the expense of the
primal solve.

The comparison strategies include uniform refinement and indicators based on the unweighted
residual and a measure of the approximation error. Neither the unweighted-residual indicator
nor the approximation-error indicator is found to be robust. The residual indicator is distracted
by the entire gust field for the gust-encounter simulation, and by acoustic transients from the
impulsively-started airfoil. The approximation-error indicator targets space-time areas of poor
resolution that do not necessarily affect the output of interest; moreover, the adaptive results of-
ten “converge” to an incorrect value. In contrast, the output-based indicator targets only those
areas of the space-time domain important for the prediction of the output of interest. Space-time
anisotropy is shown to be an important factor affecting the performance of output-based adap-
tation; when properly incorporated into the adaptive algorithm, the convergence is found to be
relatively insensitive to the initial space-time mesh. In addition, due to the conservative localiza-
tion of the error, the entire time history is well-predicted in addition to the single scalar integral
quantity.

From the point of view of efficiency, the most important area of future work is the incorpora-
tion of dynamic spatial refinement. This will require changes in the implementation, to accom-
modate time-varying refinement, and in the theory, in terms of error localization and adaptive
optimization. However, significant savings are expected, especially for problems with moving
features such as shocks or vortices. Mesh motion is another path forward, to allow analysis
of more interesting unsteady problems including aeroelasticity and fluid-structure interaction.
Additional physics, such as unsteady RANS, and more complex configurations, including three
spatial dimensions, are also candidates for future work. We expect the adjoint-based adaptation
to be even more attractive for these challenging problems in which the primal problems are more
expensive and proper allocation of degrees of freedom is paramount for efficiency and robustness.

Appendix A. Approximate iterative solution schemes for r = 1 and r = 2

This appendix presents the multistep solution schemes of the system in (11) based on the
approximate factorization discussed in Section 2.3. For r = 1, the scheme consists of three steps
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and two matrix inversions:
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For r = 2, six steps and three matrix inversions are required:
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