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AN ENTROPY ADJOINT APPROACH TO MESH REFINEMENT∗
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Abstract. This work presents a mesh refinement indicator based on entropy variables, with an
application to the compressible Navier–Stokes equations. The entropy variables are shown to satisfy
an adjoint equation, an observation that allows recent work in adjoint-based error estimation to be
leveraged in constructing a relatively cheap but effective adaptive indicator. The output associated
with the entropy-variable adjoint is shown to be the entropy production in the computational domain,
including physical viscous dissipation when present, minus entropy transport out of the domain.
Adaptation using entropy variables, which is equivalent to adapting on the integrated residual of the
entropy transport equation, thus targets areas of the domain responsible for numerical, or spurious,
entropy production. Adaptive results for inviscid and viscous aerodynamic examples in two and three
dimensions demonstrate performance efficiency on par with output-based adaptation, as measured by
errors in various engineering quantities of interest, with the comparative advantage of the proposed
approach that no adjoint equations need to be solved.
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1. Introduction. Solution-based adaptive methods are becoming increasingly
popular in computational fluid dynamics (CFD), where they are used to obtain ac-
curate solutions to problems that exhibit a wide range of spatial length scales whose
distribution is generally not known a priori [6, 7, 10, 17, 23, 26, 38]. While adaptive
methods can vary greatly in the mechanics by which degrees of freedom are added
or removed from the computational mesh, they generally all rely on some form of
indicator to drive the adaptation. Various indicators have been studied in the liter-
ature, ranging from ones that are cheap but lacking in robustness to ones that are
theoretically sound but expensive to compute. In this work, we take advantage of a
connection between entropy variables and adjoints to devise an inexpensive adaptive
indicator that is something of a compromise.

Adaptive indicators may be described as heuristic if the theoretical link between
the indicator and any measure of numerical error is tenuous or nonexistent. One
popular class of heuristic indicators relies on solution features to dictate mesh refine-
ment [2, 4, 39]. These features could be gradients, curvatures, or any other directly
computable solution characteristics. While such indicators are cheap to evaluate and
can yield visually pleasing results, they are not robust for controlling numerical error.
In particular, feature-based adaptation schemes often perform poorly for hyperbolic
problems when scalar outputs are of interest: they are liable to overrefine areas of the
domain that do not affect the output and underrefine relatively featureless areas that
are nevertheless important for the output calculation [38, 40].
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1262 KRZYSZTOF J. FIDKOWSKI AND PHILIP L. ROE

To address these shortcomings, output-based adaptation methods have been de-
veloped and demonstrated for practical CFD computations [5, 9, 13, 17, 26, 38]. The
main idea behind these methods is to specifically target for refinement areas of the
computational domain that are important for predicting the output quantity of inter-
est. Output-based adaptation thus properly accounts for the propagation effects that
are intrinsic to hyperbolic problems [19]. A critical requirement in these methods is an
output-specific adjoint solution, which is used for its role as the sensitivity of the out-
put to local residuals. Adaptive solution techniques based on output error estimates
provide efficient meshes for prediction of the output in question. A common assump-
tion is that adaptation on several key outputs yields an adequate, general-purpose
solution.

Choosing representative outputs involves a certain degree of arbitrariness, and
in some cases no clear outputs present themselves. More practically, a code may not
possess adjoint capability, or the required multiple adjoint solutions may be too expen-
sive. A natural question is whether it is possible to obtain a “good” general-purpose
solution without choosing specific outputs. In this work, a cheap and general adaptive
indicator is analyzed that targets areas of spurious entropy generation. Specifically,
the entropy variables, which derive from the state variables by a simple transforma-
tion, are shown to be equivalent to an adjoint solution corresponding to an output
that measures the net entropy production in the computational domain. The entropy
variables are thus used as adjoints in an output-based adaptation framework even
though the flow and generation of entropy are not normally considered to be of direct
interest. The method can also be regarded as a form of “feature-based” adaptation,
without any requirement for a user to define the features. Instead, the error indicator
can be thought of as defining “features” to be those areas where entropy production
is difficult to compute.

The final form of the resulting adaptive indicator is not completely novel. Anal-
ysis in section 4.4 shows that the error indicator derived from the entropy variables
is equivalent to an integrated residual of the entropy transport equation, with a pre-
scribed procedure for calculating this residual from any given approximate solution.
This entropy residual has been investigated for error estimation and adaptation in
previous works. In [8], energy norm estimates are derived for the Navier–Stokes equa-
tions by using symmetrizing entropy variables. In [1], a cell-average approximation
of the entropy residual, motivated in part by a desire to combine the residuals of
the original conservation laws, is used in a cell vertex finite volume method to drive
mesh movement. In [25], a weighted entropy residual is related to the truncation error
of the conservative equations in a finite element discretization of the incompressible
Euler equations. A general review of the use of entropy and the second law in CFD
is presented in [24].

Novel aspects of the present work include the interpretation of the entropy vari-
ables as adjoint solutions; the formal calculation of the corresponding output quanti-
ties in inviscid and viscous flows; and a comparison of the performance of the resulting
indicator to existing adjoint and feature-based indicators for flows of engineering in-
terest in two and three dimensions. The outline of the remainder of this paper is as
follows. Section 2 reviews properties of continuous adjoint solutions, and section 3
discusses the use of adjoint solutions for output error estimation and mesh adaptation.
In section 4 the entropy variables are defined and shown to satisfy an adjoint equa-
tion. The corresponding output is derived for inviscid and viscous conservation laws.
Section 5 discusses the implementation of the proposed method in a finite element
adaptive strategy, which is then used to generate the results in section 6.
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2. Continuous output adjoints. Output-based error estimation techniques
identify all areas of the domain that are important for the accurate prediction of an
engineering output. The resulting estimates properly account for error propagation
effects that are intrinsic to hyperbolic problems, and they can be used to ascribe
confidence levels to outputs or to drive adaptation. As mentioned in the introduction,
a key component of output error estimation is the solution of an adjoint equation for
the output of interest. In a continuous setting, an adjoint is a Green’s function that
relates residual source perturbations in the original equation to an output of interest.
This definition can be used to derive the adjoint equations and to formulate an output
error estimation framework [11]. In this work, we take a more formal approach by
employing a Lagrange multiplier definition of the adjoint. This approach allows for
a more rigorous discussion of the adjoint equations and boundary conditions, which
are crucial to the entropy variable exposition in section 4.

Consider a primal differential equation arising from a conservation law,

r(u) = ∂iFi = 0 on Ω,(2.1)

where Ω is the computational domain, u ∈ V is a state vector, V is an appropriate
function space, i indexes the spatial dimension, and summation is implied on the
repeated index. Fi is a general flux that may consist of convective and diffusive
components. Suitable boundary conditions are assumed to be specified on the domain
boundary, ∂Ω.

Given a scalar output J(u), we define a Lagrangian as

L = J(u) −
∫
Ω

ψT r(u)dΩ,(2.2)

where the Lagrange multiplier, ψ ∈ V , is the adjoint solution [5, 22]. Enforcing
stationarity of L with respect to permissible variations in the state yields the adjoint
equation

J ′[u](δu) −
∫
Ω

ψT r′[u](δu)dΩ = 0 ∀ δu ∈ Vperm,(2.3)

where Vperm denotes the space of permissible state variations, that is, those allowed by
the boundary conditions. The primes above denote Fréchet linearization with respect
to the arguments in square brackets. Using the conservation form in (2.1), (2.2) can
be integrated by parts and linearized to yield an interior differential equation and
boundary conditions for the adjoint:

J ′[u](δu) +
∫
Ω

∂iψ
TF ′

i [u](δu)dΩ −
∫
∂Ω

ψTF ′
i [u](δu)nids = 0.(2.4)

For example, if J(u) consists of an integral along a subset of ∂Ω, then the domain
integral term above yields the interior adjoint equation

(F ′
i [u])

T
∂iψ = 0,(2.5)

while the remaining terms impose boundary conditions on ψ:

J ′[u](δu) −
∫
∂Ω

ψTF ′
i [u](δu)nids = 0 ∀ δu ∈ Vperm.
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For an arbitrary output J(u), variations in the state permitted by the boundary
conditions constrain ψ, whereas components of the state fixed by the boundary con-
ditions do not constrain ψ [22]. This observation suggests a duality in the boundary
conditions for the primal and adjoint solutions: where u is unconstrained, ψ must be
fully specified. However, such a duality is not necessary if J(u) is chosen such that
the two terms in the above equations cancel for all permissible δu. This point is key
to the entropy-variable analysis in section 4.

3. Output error estimation. An adjoint solution can be used to estimate the
numerical error in the corresponding output of interest. The error estimation process,
termed the adjoint-weighted residual method, relies on the following key observations:

• An approximate solution uH in a finite-dimensional space VH will generally
not satisfy the original PDE: r(uH) �= 0. If δu ≡ uH − u is small, we can
write

r(uH) = r(u + δu) ≈ r′[u](δu),

where r(u) = 0 was used, and terms high-order in δu were dropped.
• The adjoint ψ translates the residual perturbation to an output perturbation
via the Lagrangian stationarity property in (2.3):

δJ ≈ J ′[u](δu) =
∫
Ω

ψT r′[u](δu) ≈
∫
Ω

ψT r(uH).(3.1)

This expression quantifies the numerical error in the output via a weighted
residual of the approximate solution. The approximation signs indicate that
for noninfinitesimal perturbations the above expression is not exact and yields
only an estimate of the numerical error. Note that if mean-value linearizations
are used in the adjoint equation and in the output linearization, which is
not the case in this work, then the approximation signs become equalities
[3, 5, 17, 30].

The continuous adjoint ψ must be approximated to make the error estimate in
(3.1) computable. In practice, a discrete version of the adjoint equations is solved
approximately or exactly on a finer finite-dimensional space, Vh ⊃ VH , to yield ψh ∈
Vh [3, 31, 35]. This finer space can be obtained either through mesh subdivision or
approximation order increase. The procedure for obtaining a consistent set of discrete
adjoint equations is described in [16, 22, 27].

Working with ψh ∈ Vh in a variational formulation, (3.1) becomes

δJ ≈ Rh(uH ,ψh),(3.2)

where Rh(·, ·) : Vh × Vh → R is a semilinear form associated with the weak form of
the differential equation in (2.1). This adjoint-weighted residual evaluation can be
localized to yield an adaptive indicator consisting of the relative contribution of each
element to the total output error. The right-hand side of (3.2) can be written as a
sum over elements,

δJ ≈
∑

κH∈TH

∑
κh∈κH

Rh(uH ,ψh|κh
),(3.3)

where TH is the mesh triangulation associated with VH , Th is the triangulation as-
sociated with Vh, κH and κh are elements of the coarse and fine triangulations, re-
spectively, and |κh

refers to restriction to element κh. Note that the coarse and fine
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spaces can consist of the same triangulations, in which case κH = κh. Equation (3.3)
expresses the output error in terms of contributions from each coarse element. A
common approach for obtaining an adaptive indicator is to take the absolute value of
the elemental contribution in (3.3) [3, 5, 15, 17, 38]:

ηκH =
∣∣∣ ∑
κh∈κH

Rh(uH ,ψh|κh
)
∣∣∣.(3.4)

For nonvariational discretizations, ψh in the above equation is replaced with ψh−ψH ,
where ψH is an adjoint solution computed with the coarse discretization, in order to
target the remaining error in the output [11]. The two approaches are identical in
a variational formulation with local Galerkin orthogonality, as is the case for discon-
tinuous Galerkin methods. When the orthogonality is not local, the substitution of
ψh − ψH cannot be made in (3.4) but instead must be introduced in (3.2). For sys-
tems of equations the authors have found slightly improved adaptation robustness by
additionally placing absolute values around contributions from each equation in the
inner product in (3.4). Due to the absolute values in (3.4), the sum of the indicators,∑

κH
ηκH , is greater than or equal to the original output error estimate. However, it is

not a bound on the actual error because of the approximations made in the derivation.

4. Adaptation using entropy variables. The adaptive indicator derived in
the previous section is specific to a user-defined scalar output of interest and requires
the solution of an adjoint problem. In this section, a cheaper indicator is presented
based on the entropy variables. This indicator is motivated by the observation that
the entropy variables serve the role of an adjoint solution for an output that measures
the net entropy production in the computational domain. In addition, the final form
of the error indicator is shown to be equivalent to an integrated residual of the entropy
transport equation.

4.1. First-order conservation laws. Consider a steady-state set of first-order
conservation laws, in which Fi = fi(u), together with a scalar entropy conservation
law

r(u) = ∂ifi = 0, ∂iFi = 0,(4.1)

where Fi(u) is the entropy flux associated with an entropy function U(u). The entropy
conservation law holds only if the compatibility relation UuAi = (Fi)u is satisfied,
where each Ai = fi,u(u) is a flux Jacobian matrix. For a convex entropy function U ,
the set of corresponding entropy variables is defined by v ≡ UT

u . The entropy variables
symmetrize the conservation laws in the sense that [4, 20] the following hold:

• the transformation Jacobian matrix, uv, is symmetric, positive definite;
• Aiuv is symmetric.

Using these symmetry properties, the conservation law in (4.1) can be linearized about
u and manipulated as follows:

0 = Ai∂iu = Aiuv∂iv = (Aiuv)
T ∂iv = uT

vA
T
i ∂iv = uvA

T
i ∂iv

⇒ AT
i ∂iv = 0.(4.2)

Comparing the above expression to (2.5), with Ai = F ′
i [u], suggests that the entropy

variables satisfy an adjoint equation for an output that has no domain integral contri-
bution. To verify the validity of this assertion and to determine the associated output
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functional, we substitute the entropy variables in place of ψ in the adjoint equation,
(2.4), to obtain

J ′[u](δu) +
∫
Ω

∂iv
TAiδudΩ−

∫
∂Ω

vTAiδunids = 0.

The domain integral drops out due to (4.2), leaving a relationship between the output
and a domain boundary integral. Solving for the output perturbation and employing
the definition of the entropy flux, we have

δJ = J ′[u](δu) =
∫
∂Ω

vTAi︸ ︷︷ ︸
(Fi)u

δunids = δ

[∫
∂Ω

Finids︸ ︷︷ ︸
J

]
.(4.3)

Therefore the entropy variables serve as the adjoint solution to an output that, up to
an additive constant, measures the net entropy flow out of the domain. The enabling
property of the entropy variables that allows this derivation is the symmetrizing prop-
erty that produced (4.2). By a suitable definition of the output as an entropy flux
integral over the domain boundary, the adjoint boundary conditions are then auto-
matically satisfied; that is, the Lagrangian in (2.2), with ψ = v, is stationary with
respect to permissible variations in the state.

Replacing the adjoint in (3.4) with the entropy variables yields an adaptive indi-
cator that corresponds to the output J =

∫
∂Ω Finids. For an inviscid, shock-free flow,

this integral should of course vanish. If it fails to vanish in a discrete solution, then the
indicator will identify those flow regions responsible for the failure. Typically, these
are found at the leading and trailing edges of an airfoil, and of course at shockwaves,
although we examine the latter only briefly in the results.

4.2. Second-order conservation laws. A canonical set of viscous conservation
laws reads as

r(u) = ∂ifi − ∂i(Kij∂ju) = 0,(4.4)

whereKij∂ju is the viscous flux, so that Fi = fi−Kij∂ju is the total flux. The entropy
variable definitions from the previous section still hold, with an additional requirement
on the entropy function U(u): the entropy variable choice v = UT

u must now also

symmetrize Kij , in the sense that K̃ij = K̃T
ji, where K̃ij ≡ Kijuv [20]. Substituting

∂iu = uv∂iv into (4.4) and taking the transpose yields a useful relationship:

∂iv
TAiuv − ∂i(∂jv

T K̃ji) = 0.(4.5)

By contrast to the inviscid case, this is no longer a mathematical adjoint to the primal
equation, (4.4); the sign of the second term should be reversed. However, the entropy
variables still represent the sensitivity to residual perturbations of a specific output,
although that output is no longer expressible as an integral solely over the domain
boundary. To demonstrate this statement, we again use v in place of ψ in the adjoint
equation, (2.4), to obtain

δJ = J ′[u](δu) =−
∫
Ω

∂iv
T [Aiδu−Kij,u(δu)∂ju−Kij∂j(δu)] dΩ

+

∫
∂Ω

vT [Aiδu−Kij,u(δu)∂ju−Kij∂j(δu)] nids,



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

ENTROPY ADJOINT REFINEMENT 1267

where we have used

F ′
i [u](δu) = Aiδu−Kij,u(δu)∂ju−Kij∂j(δu).

Using δu = uvδv, applying (4.5) to the first term in the domain integral, and applying
vTAi = (Fi)u to the first term in the boundary integral yields

δJ =−
∫
Ω

∂i(∂jv
T K̃ji)δv dΩ +

∫
Ω

∂iv
T [Kij,u(δu)∂ju+Kij∂j(δu)] dΩ

+ δ

[∫
∂Ω

Finids

]
−
∫
∂Ω

vT [Kij,u(δu)∂ju+Kij∂j(δu)] nids.

The first term integrated by parts is

−
∫
Ω

∂i(∂jv
T K̃ji)δv dΩ =

∫
Ω

∂jv
T K̃ji∂i(δv)dΩ −

∫
∂Ω

∂jv
T K̃jiδvnids

=

∫
Ω

∂i(δv
T )Kij∂judΩ−

∫
∂Ω

δvTKij∂junids,

where we have used (∂jv
T K̃ji)

T = K̃ij∂jv = Kijuv∂jv = Kij∂ju. Substituting into
the expression for δJ and grouping terms,

δJ = δ

[∫
∂Ω

Finids

]
+

∫
Ω

[
∂i(δv

T )Kij∂ju+ ∂iv
TKij,u(δu)∂ju+ ∂iv

TKij∂j(δu)
]
dΩ

−
∫
∂Ω

[
δvTKij∂ju+ vTKij,u(δu)∂ju+ vTKij∂j(δu)

]
nids

= δ

[∫
∂Ω

Finids+

∫
Ω

∂iv
TKij∂ju dΩ−

∫
∂Ω

vTKij∂junids

]
.

Thus, the entropy variables serve as an “adjoint” solution for the output:

J =

∫
∂Ω

Finids+

∫
Ω

∂iv
TKij∂ju dΩ−

∫
∂Ω

vTKij∂junids.(4.6)

We put quotes around the word adjoint because, as mentioned above, the entropy
variables do not satisfy a differential equation that is strictly adjoint to (4.4) in a
mathematical sense. The presence of the integral over the domain in the output
accounts for this difference. With this output definition, the entropy variables fulfill
their role as Lagrange multipliers that yield a stationary Lagrangian with respect to
permissible variations in the state. Hence, they can be used in the same capacity as
other adjoint solutions for output error estimation.

Furthermore, the terms in (4.6) have a physical meaning. The first term is the
convective outflow of entropy across the domain boundary, the second term is the
generation of entropy due to viscous dissipation within shear layers and vortices or
across shocks, and the last term is the entropy diffusion across the boundary [20, 37].
In the next section, the entropy flux Fi will be defined for an entropy function U
that is the negative of physical entropy. This means that, for the outward pointing
normal ni, the first term in (4.6) is the net convective inflow of physical entropy
into the computational domain, and the last term with the minus sign is the net
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diffusive inflow of physical entropy into the computational domain. Including the
middle generation term means that J is zero for the analytical solution: the net
outflow of physical entropy equals the physical entropy generated in the domain at
steady state. The terms in J balance each other in the analytical solution but not
necessarily in an approximate numerical solution. Adapting on J using the entropy
variables as adjoints therefore targets areas of spurious entropy production.

4.3. Choice of entropy function. Up to additive and multiplicative constants,
only one choice of entropy function will yield entropy variables that symmetrize both
the inviscid and viscous terms in the Navier–Stokes equations with heat conduction
included [20]. This choice corresponds to taking

U = −ρS/(γ − 1), S = ln p− γ ln ρ,

where p is the pressure, ρ is the density, S is the physical entropy, and γ is the ratio
of specific heats. Differentiating with respect to u yields the entropy variables

v = UT
u =

[
γ − S

γ − 1
− 1

2

ρV 2

p
,
ρui

p
, −ρ

p

]T
,(4.7)

where ui are the velocity components, V 2 = uiui, and p = (γ−1)(ρE−ρV 2/2), where
E is the total energy per unit mass. Note that the entropy variables are obtained via
a nonlinear transformation of the conservative variables. The corresponding entropy
flux is Fi = uiU .

4.4. Relation to the entropy residual. With the above choice of entropy
variables, an entropy transport equation can be derived from the Navier–Stokes equa-
tions [20, 37]

∂iFi + ∂iv
TKij∂ju− ∂i

(
vTKij∂ju

)︸ ︷︷ ︸
vT r(u)

= 0,(4.8)

where the entropy flux, Fi, and the viscous coefficient matrix, Kij , are as defined
earlier in this section. For an approximate solution, an entropy residual can be defined
as the left-hand side of the above equation. This residual contains information on how
well the entropy transport equation is satisfied. As indicated by the underbrace, taking
the inner product of the primal residual in (4.4) with the entropy variables yields the
left-hand side of (4.8). Therefore, the entropy-variable weighted primal residual used
for the output error estimate in the previous section, for example in (4.6), is precisely
the entropy residual. The adaptive indicator thus targets areas of the computational
domain where the entropy residual is high, that is, where entropy transport is not
predicted well.

We note that the calculation of the entropy residual for approximate finite-
dimensional solutions and the resulting formation of an adaptive indicator are not
unique. The nonlinear transformation from conservative variables, uH ∈ VH , to en-
tropy variables, vH ∈ VH , can be done first, with the result substituted into (4.8)
and evaluated on a finer space, Vh; alternately the conservative residuals evaluated
on the finer space can be combined using the entropy variables calculated from either
uH or a finer approximation, uh ∈ Vh. The resulting residual can then be measured
in a pointwise, average, or integrated sense in forming the adaptive indicator. The
analogy between entropy variables and adjoint solutions presented in this work pro-
vides a formalism for these choices in the context of an output-based error estimation
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framework, in particular dictating how the indicator should be formed to be consistent
with the net entropy production output.

5. Numerical implementation. The adaptive indicator in (3.4) was imple-
mented in a discontinuous Galerkin (DG) finite element code and was used to drive
a fixed-fraction hanging-node mesh adaptation strategy. The DG discretization of
the compressible Navier–Stokes equations employs the Roe approximate Riemann
solver [32] for the inviscid fluxes and an interior penalty formulation of the viscous
fluxes [18, 34]. The steady-state solution is obtained via a Newton-GMRES implicit
solver with line-Jacobi preconditioning and backward Euler with local time stepping
for improved robustness during initial iterations. This DG discretization and solution
method are similar to those used in existing works [12, 29]. While a DG finite element
method was used in this work, the idea of treating the entropy variables as adjoint
solutions is applicable to general finite element and finite volume formulations.

A discrete adjoint solution for an engineering output of interest is obtained
by solving the weak form of (2.3). The same line-Jacobi preconditioned GMRES
solver was used for the adjoint solve in this work. Careful attention was given to
the various discretization and output calculation terms to ensure adjoint consistency
[16, 22, 27].

The fine approximation space, Vh, required for the adjoint solution ψh in (3.3)
and (3.4) is obtained by increasing the approximation order from p to p + 1 on the
same mesh. To minimize sources of error in the method comparisons, both the primal
and the adjoint problems are solved exactly on Vh for the two-dimensional results.
For the three-dimensional runs, a full fine-space solve is prohibitively expensive, and
the exact solves are replaced by νfine iterations of a block-Jacobi smoother on Vh.
Experiments have shown that several smoothing iterations on Vh yield adaptive results
very similar to an exact solve on Vh, which is to be expected as the perturbation
estimate in (3.2) is insensitive to adjoint errors lying in the coarse space, VH [11].
In this work νfine = 5 is used for both the primal and the adjoint problems. The
error indicator on each element of the mesh is then calculated using (3.4), which in a
discrete setting reduces to an inner product between the discrete adjoint and residual
vectors on the fine space, with absolute values as described in section 3.

When the entropy variables are used in place of ψh, they are calculated from the
fine-space solution uh on each element by least-squares projection in Vh. Alternatively,
the entropy variable values derived from uh at element quadrature points can be used
directly in the evaluation of the semilinear form in (3.4). This latter approach, which
was not used in the present work, may prove more robust in the presence of solution
discontinuities. We note that a nonzero indicator can also be obtained by calculating
the fine-space entropy variables, vh ∈ Vh, directly from uH ∈ VH , at significantly
reduced cost. However, this indicator is nonzero only due to the nonlinear variable
transformation, and experiments by the authors have shown that its performance is
not robust.

The elemental adaptive indicator, ηκH , drives a fixed-fraction hanging-node adap-
tation strategy. In this strategy, a certain fraction fadapt of the elements with the
largest adaptive indicators is marked for refinement. Marked elements are adapted
uniformly, creating hanging nodes as illustrated in Figure 5.1 for two dimensions.
Note that additional elements may be flagged for refinement, uniform or in one direc-
tion, such that two neighboring elements differ by at most one level of refinement. No
element coarsening is performed in this study. The choices of a fixed-fraction adap-
tation strategy and of hanging-node refinement were made to simplify the adaptive
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Fig. 5.1. Hanging-node adaptation for a quadrilateral mesh, with a maximum of one level of
refinement separating two elements. The shaded element on the left is marked for refinement, and
the dashed lines on the right indicate the additional new edges formed.

indicator comparisons. The steps in each adaptation iteration can be summarized as
follows.

Adaptive solution steps.
1. Solve the primal problem on the current mesh at order p to obtain uH . If

adapting on an engineering output, solve the adjoint problem to obtain ψH .
2. Inject uH into an order p + 1 space, and either solve the primal problem

exactly or iteratively smooth νfine times to obtain uh.
3. If adapting on an engineering output, solve or iterate the fine-space adjoint

problem to obtain ψh. Instead, if adapting using entropy variables, compute
vh(uh) using (4.7).

4. Calculate the adaptive indicator, ηκH , for each element using (3.4) with either
ψh or vh.

5. Refine a fraction fadapt of the elements with the largest indicator.
6. Initialize the solution on the adapted mesh with a projection of uH and return

to step 1.
Note that no termination criterion is imposed in the adaptive solution, but rather
a fixed number of iterations is used. Whereas an engineering output error can be
driven below a certain user-prescribed tolerance, an allowable amount of spurious
entropy generation is not straightforward to quantify. The formulation of a reasonable
termination criterion for entropy-based adaptation is a topic for future work.

6. Results.

6.1. Entropy variables in flow over a Gaussian bump. To demonstrate the
equivalence between entropy variables and output adjoints, an entropy flux output is
constructed for an inviscid flow calculation in a duct with a Gaussian bump perturba-
tion. The duct is discretized with 320 quartic, q = 4, curved triangular elements, as
shown in Figure 6.1(a). The freestream Mach number is 0.5, and the solution is ap-
proximated with cubic, p = 3, polynomials. To increase the complexity of the flow, a
nonuniform inflow entropy is prescribed by a linearly varying total temperature field.
The corresponding entropy contours, which are of course simply the streamlines, are
shown in Figure 6.1(b).

An integral entropy flux output is defined as

J =

∫
∂Ω

Fi(u
b
h)nids,(6.1)

where ub
h is the boundary state, Fi(u

b
h) is the entropy flux, and the integral is taken

over the entire domain boundary. This output corresponds to the perturbation derived
in (4.3). According to that derivation, the entropy variables, vh, serve as the adjoint
solution to J . This statement is verified by linearizing J in (6.1) and computing the
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(a) Computational mesh (b) Entropy contours

(c) x-momentum entropy flux adjoint (d) x-momentum entropy variable

Fig. 6.1. Gaussian bump, M∞ = 0.5: Numerical illustration of the equivalence between entropy
variables and entropy flux output adjoints.

corresponding discrete adjoint solution. The x-momentum component of the adjoint
solution is shown in Figure 6.1(c), and the x-momentum entropy variable is shown
in Figure 6.1(d). Qualitatively, the two fields are nearly identical. The practical
difference is that Figure 6.1(c) is obtained from a separate adjoint solve, whereas
Figure 6.1(d) is almost free.

A quantitative comparison of the difference between entropy variables, vh, and the
adjoint, ψh, corresponding to the entropy flux output in (6.1) is shown in Figure 6.2.
This error is an L2 measure of the difference between the two quantities, calculated
in a continuous fashion over the domain, and in a discrete fashion over the state
components:

(Entropy variable adjoint error)2 =

∫
Ω

||ψh − vh||22dΩ.

The error decreases with mesh refinement at an optimal rate of O(hp+1), indicating
that the adjoint variables for this problem are indeed equivalent to the discrete adjoint
of the entropy integral output.

6.2. NACA 0012 in inviscid flow M∞ = 0.4, α = 5◦. In this example,
the geometry is a NACA 0012 airfoil with a closed trailing edge and a farfield ap-
proximately 40 chord lengths away. The initial mesh is illustrated in Figure 6.5(a).
This mesh consists of quadrilaterals, with cubic (q = 3) elements representing the
geometry. While the initial mesh appears structured, this structure disappears with
the first adaptation iteration, and the mesh storage is always fully unstructured. In
the following results, quadratic solution approximation, p = 2, was used in the dis-
cretization, and the adaptation fixed fraction was set to fadapt = 0.1, meaning that
at each step of the adaptation those cells lying in the top 10% of the error criterion
were chosen for refinement.
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Fig. 6.2. Gaussian bump, M∞ = 0.5: L2 error between the entropy variables and the adjoint
variables corresponding to the entropy flux output in (6.1). Convergence shown for uniform grid
refinement, using approximation orders p = 1, 2, 3.

(a) Mach number contours (b) x-momentum moment adjoint

Fig. 6.3. NACA 0012, M∞ = 0.4, α = 5◦: Contours of the Mach number and the x-momentum
component of the moment adjoint.

Mach number contours for the airfoil in inviscid flow at M∞ = 0.4, α = 5◦ are
shown in Figure 6.3(a). Three different engineering outputs are considered: drag
coefficient, lift coefficient, and leading-edge moment coefficient. All of these outputs
were computed using integrals of the inviscid momentum flux, that is, the pressure, on
the airfoil surface. Adjoint solutions associated with these outputs were used to drive
three different adaptation runs. One adaptation run was performed using the entropy
variable indicator. For comparison, an unweighted residual indicator, equivalent to
summing the absolute values of the discrete residuals on Vh, was also tested.

Figure 6.4 shows the results of adaptation runs driven by the different indicators.
Uniform mesh refinement results are given for comparison. The plots show the er-
ror in the engineering outputs versus degrees of freedom. Each “truth” output was
calculated from a p = 3 solution on a mesh obtained by uniformly refining the finest
output-adapted mesh. For all three outputs of interest, the entropy and adjoint-based
adaptive strategies perform similarly and are orders of magnitude better than uniform
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(b) Lift output

10
4

10
5

10
6

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

Degrees of freedom

|M
om

en
t c

oe
ffi

ci
en

t e
rr

or
|

 

 

Drag adjoint
Lift adjoint
Moment adjoint
Entropy adjoint
Residual
Uniform refinement

(c) Moment output

Fig. 6.4. NACA 0012, M∞ = 0.4, α = 5◦: Comparison of output convergence histories for
various adaptation strategies.

mesh refinement. The unweighted residual indicator performs well for the drag out-
put but somewhat worse for the lift and moment outputs compared to the entropy
adjoint. Interestingly, the refinement based on the entropy adjoint actually gives bet-
ter predictions for lift and moment than the refinements that specifically target those
outputs. The prediction of drag is just as good as the specifically targeted prediction.

These results are certainly surprising, but not actually paradoxical, because the
procedure does have empirical elements. One aspect worth mentioning is that the
lift and moment adaptive indicators excessively target the stagnation streamline in
front of the airfoil. As shown in Figure 6.3(b) for the moment output, the adjoint
varies rapidly across the stagnation streamline. This behavior was suggested in the
analysis of Giles and Pierce, who found that a square root singularity with respect to
distance from the stagnation streamline exists for sources that perturb the stagnation
pressure [14]. Intuitively, a force output on the airfoil should respond differently to
perturbations that affect the flow over the upper surface of the airfoil versus to those
that affect the flow over the lower surface of the airfoil. The singularity is strongest for
the lift and moment outputs, and for these cases the performance of the output adjoint
adaptation deteriorates the most. The noise created by polynomial interpolation of
the adjoint on discrete finite elements in this area may be responsible for the excessive
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refinement. On the other hand, the entropy variables remain smooth throughout the
domain for this problem. In fact, they will always have the same smoothness as the
primal solution.

The meshes after eight adaptation iterations of each strategy are shown in Fig-
ure 6.5. The leading edge, trailing edge, and upper surface of the airfoil are consis-
tently targeted for refinement by the output and entropy adjoint indicators. In the
adjoint interpretation, these areas are important for the accurate prediction of the
engineering outputs. In the entropy adjoint interpretation, these areas are locations
of largest spurious entropy generation. The unweighted residual adaptation targets
the vicinity of the leading edge and the trailing edge, but not the upper surface of the
airfoil, leading to errors in the lift and moment outputs. Refinement of the stagnation
streamline is evident in the adjoint-based runs, especially for the lift and moment
adaptations.

(a) Initial mesh (b) Drag adaptation

(c) Lift adaptation (d) Moment adaptation

(e) Entropy adjoint adaptation (f) Residual adaptation

Fig. 6.5. NACA 0012, M∞ = 0.4, α = 5◦: Meshes after eight adaptation iterations for the
tested adaptation strategies.

6.3. NACA 0012 in viscous flow, M∞ = 0.5, α = 2◦, Re = 5000. The
second example consists of a NACA 0012 airfoil in viscous flow. The Mach number
distribution is illustrated in Figure 6.6. The three engineering outputs of interest
considered in this case are drag coefficient, lift coefficient, and a wake “rake,” taken as
the integral of the x-momentum through the wake 50 chord lengths behind the airfoil.
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Fig. 6.6. NACA 0012, M∞ = 0.5, α = 2◦, Re = 5000: Mach number contours.

As in the first example, adaptation runs were performed using adjoints associated with
each of these outputs, using the entropy adjoint, and using the unweighted residual.

Figure 6.7 shows the results of the adaptation runs for the different strategies as
well as for uniform mesh refinement. Each truth output was computed with a p = 3
solution on a uniform refinement of the finest output-adapted mesh. The various
adjoint strategies perform similarly for the drag and lift outputs. For the wake rake
output, the drag and lift adjoint indicators do not sufficiently resolve the wake and
hence do not perform very well. The unweighted residual performs well for the drag
and wake rake outputs but somewhat worse for the lift output. Among the adjoint
methods, the entropy adjoint is generally one of the two best, except in the case of
lift, where the results are somewhat erratic.

The meshes after eight adaptation iterations are shown in Figure 6.8. All strate-
gies target the leading edge and sections of the upper and lower boundary layers.
Lift-based adaptation targets the vicinity of the airfoil, leaving the wake relatively
coarse, especially further downstream. On the other hand, entropy-based adaptation
strikes a balance between adaptation near the airfoil surface and in the wake. Note
that while entropy is created by viscous dissipation in the boundary layer and wake,
this generation is already taken into account in the output corresponding to the en-
tropy adjoint. The entropy adjoint adaptation introduced in this work targets areas
of spurious entropy generation, not just areas of large entropy. If some region creates
a lot of entropy, but does so correctly, then the output is not actually sensitive to
this region. To emphasize this point, we have made a study of refinement driven by
an indicator based on the entropy scalar. This indicator is obtained by integrating
the physical entropy minus the freestream entropy over each element. As shown in
Figure 6.7, this indicator does not perform well at all. The corresponding mesh is
shown in Figure 6.8(f): the entropy scalar indicator targets mainly the wake while
leaving the vicinity of the airfoil too coarse.

6.4. NACA 0012 in three-dimensional flow M∞ = 0.4, α = 3◦. The
third example consists of a NACA 0012, untapered, untwisted, aspect ratio 10 wing
geometry with a closed trailing edge and a rounded body of revolution wing tip. In
the computational domain, the farfield is approximately 40 chord lengths away from
the wing. The domain is meshed with cubic, q = 3, hexahedral elements that are
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(a) Drag output
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(b) Lift output
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(c) Wake rake output

Fig. 6.7. NACA 0012, M∞ = 0.5, α = 2◦, Re = 5000: Comparison of output convergence
histories for the different adaptation strategies.

curved to conform to the geometry. The initial mesh of 4608 elements is shown in
Figure 6.10(a). As in two dimensions, the apparent structure of the initial mesh
disappears after the first adaptation iteration. Isotropic refinement is used in this
example, with each flagged hexahedron divided into eight identical (in reference space)
subhexahedra. To maintain at most one level of refinement between adjacent elements,
additional elements are flagged for refinement, similarly to the two-dimensional case.
This additional refinement need not be isotropic and is determined by an algorithm
that minimizes the degrees of freedom introduced. Quadratic solution approximation,
p = 2, was used for all adaptive runs, and the adaptation fixed fraction was set to
fadapt = 0.1. Finally, artificial viscosity stabilization, discussed in the next section,
was included in the discretization to add stability to the solution, especially near the
wing-tip trailing edge, on underresolved meshes.

It is worth giving consideration to what we might expect from an inviscid cal-
culation with trailing vorticity. We know from experiment [36] that a wake forms
behind the trailing edge, partly as an extension of the surface boundary layer and
partly in the form of streamwise vorticity that is shed due to variation in the lift
distribution. As the viscosity goes to zero, the first of these vanishes, but the second
does not. At the tip, vorticity is shed strongly, and the wake begins to roll up. The
exact mechanism involved when the viscosity is vanishingly small is not clear. Even
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(a) Drag adaptation

(b) Lift adaptation

(c) Wake rake adaptation

(d) Entropy adjoint adaptation

(e) Residual adaptation

(f) Entropy adaptation

Fig. 6.8. NACA 0012, M∞ = 0.5, α = 2◦, Re = 5000: Meshes after eight adaptation iterations
for various adaptation strategies. The entropy indicator flags many elements in the full, 50 chord
extent of the wake, and hence the mesh in the vicinity of the airfoil appears sparser for the same
number of adaptation iterations.
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the careful study by Krasny [21] is of a very idealized case, and the structure close to
the trailing edge does not appear to be known. Our numerical results seem to show a
very concentrated vortex lying almost in a straight line, with extremely low pressures
in its core, and carrying the great majority of the shed vorticity.

Two outputs are considered for this wing: drag and lift. The convergence of
both of these outputs is compared for adaptive runs using five different indicators.
These include two indicators based on the drag and lift adjoints, an indicator based on
the entropy adjoint, an indicator based on the unweighted residual, and an indicator
based on the entropy scalar. Figure 6.9 shows the results of the adaptation runs with
each of the five indicators compared to uniform refinement. Six adaptive refinements
were performed with each indicator. Exact values of the outputs were not computed
due to limits on computational resources. Hence, the values plotted in Figure 6.9
are the lift and drag coefficients themselves, instead of their errors. For the drag
output, adaptation based on the drag adjoint appears to be converging to a final
value most rapidly. Assuming that this value is indeed the correct drag, the next most
rapid convergences come almost equally from adaptation based on the lift adjoint and
adaptation based on the entropy adjoint. Next is the residual-based indicator, with a
performance that is still better than uniform refinement. Finally, adaptation on the
entropy scalar performs the least well, stagnating at a drag value that appears worse
than the drag at the first iteration in any of the other runs. For the lift output, the
performance of the indicators is more clustered relative to uniform refinement, with
the entropy adjoint close to the lift and drag adjoint. Adaptation on the entropy
scalar performs least well, again apparently converging to an incorrect output value.

The final meshes after six adaptation iterations are shown in Figure 6.10. From
the symmetry-plane and wing-surface meshes, it is clear that the indicators based on
the output adjoints and the entropy adjoint target the leading and trailing edges the
most. The entropy scalar adaptation instead mostly adds degrees of freedom to the
wake and does not resolve the primary source of this entropy, which is the insufficient
resolution near the wing. The symmetry-plane meshes show that, as in the two-
dimensional case, the lift and drag adjoint indicators are targeting the stagnation
streamline in front of the wing. This is again most likely due to the singularity in
the adjoint solution across the stagnation streamline. It is not clear whether this
level of refinement is necessary, as the lift adjoint indicator did not exhibit the best
performance in the two-dimensional case.

The cut plane behind the wing tip in each of the mesh plots in Figure 6.10 shows
the level of relative refinement of the wing-tip vortex. The entropy adjoint and residual
indicators target the tip vortex most strongly, while the lift adaptation targets the
tip vortex the least. Figure 6.11 illustrates the solution behavior near the tip vortex
in more detail. It shows an entropy isosurface in the flow and entropy contours in
a transverse cut of the wing-tip vortex. In an infinitely resolved vortex line, the
entropy isosurface would disappear. However, with finite mesh resolution, the vortex
line singularity cannot be fully resolved, leading to spurious entropy generation in a
tube of diameter on the order of the mesh resolution. The entropy adjoint indicator
targets the vortex line because of this spurious entropy generation. However, it does
not target just the vortex, since spurious entropy is also generated in other parts of
the flow, notably at the leading and trailing edges. The fact that all areas of spurious
entropy generation are targeted leads to a very good performance of the entropy
adjoint indicator for both the drag and the lift outputs.

For this three-dimensional case, some reasonable representation of the trailing
vortex is necessary to give an account of induced drag and lost lift, but in this re-
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(b) Drag output (zoom)
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(c) Lift output
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(d) Lift output (zoom)

Fig. 6.9. NACA 0012 wing, M∞ = 0.4, α = 3◦: Comparison of output convergence histories
for various adaptation strategies.

gard, the present simulations extending to 40 chord lengths downstream are probably
overkill. This is demonstrated by the fact that those calculations driven by either the
lift or drag adjoints do not heavily refine the vortex wake region but actually allow
the vortex to disappear about 3–4 chord lengths behind the trailing edge. Bearing
this in mind, it is interesting to see what happens to the vortex as it extends further
downstream.

Figure 6.12 shows the vortices produced by refining on the drag adjoint, the un-
weighted residual, the entropy adjoint, and the entropy scalar. Respectively, these
extend the existence of the vortex to 4 chord lengths, 12 chord lengths, and appar-
ently indefinitely for both the entropy adjoint and the entropy scalar, as measured
by the contiguity of the entropy isosurface chosen for visualization. The excessive
refinement of the vortex region certainly handicaps the efficiency of the entropy ad-
joint in the comparisons of lift and drag, although it still comes out quite well. It
would probably come out much better if the downstream extent of the domain were
truncated. However, there are many circumstances in which vortices must be tracked
much further, such as vortices shed from helicopter blades or from high-lift systems,
and in these cases the entropy adjoint might show considerable advantage.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1280 KRZYSZTOF J. FIDKOWSKI AND PHILIP L. ROE

(a) Initial mesh (b) Drag adaptation

(c) Lift adaptation (d) Entropy adjoint adaptation

(e) Residual adaptation (f) Entropy adaptation

Fig. 6.10. NACA 0012 wing, M∞ = 0.4, α = 3◦: Initial mesh and meshes after six adaptation
iterations for various adaptation strategies.

6.5. NACA 0012 in inviscid transonic flow: M∞ = 0.8, α = 1.25◦. The
fourth example consists of a NACA 0012 airfoil in inviscid transonic flow. The Mach
number contours are shown in Figure 6.13 for an adapted solution. A resolution-
based artificial viscosity is used to stabilize the solution in the presence of shocks [28].
The initial mesh is the same as that used in the first example, and p = 2 solution
approximation is used. Four adaptive indicators are compared: drag adjoint, lift
adjoint, entropy adjoint, and the unweighted residual. Seven adaptation iterations
are performed with fadapt = 0.1.
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(a) Initial mesh (b) Drag adaptation

(c) Lift adaptation (d) Entropy adjoint adaptation

(e) Residual adaptation (f) Entropy adaptation

Fig. 6.11. NACA 0012 wing, M∞ = 0.4, α = 3◦: Entropy isosurfaces and tip vortex entropy
contours for each of the adaptation strategies.

In an inviscid flow with shocks, entropy is no longer conserved but is created
abruptly at the shocks. Apparently, this does not bode well for the entropy adjoint
indicator, which could target shocks for their seemingly spurious entropy produc-
tion. That is, the residual of the inviscid entropy transport equation is nonzero at
a shock, so that the entropy adjoint indicator will never be zero on elements strad-
dling shocks, and therefore the shock will always be targeted for refinement. Such a
problem is common in feature-based adaptation methods, where a single prominent
feature draws into itself all of the computational resources. However, it can also be
argued that the output function J(u) will no longer be sensitive to mesh refinement
once the shock is sufficiently refined, such that the jumps across it (including the
jump in entropy) are sufficiently accurate. According to this interpretation, which
may require implementation changes to be realized, the refinement at the shock will
not be seen as more urgent than at other entropy-producing areas, such as under-
resolved geometric features. Note that with the addition of physical viscosity in the
Navier–Stokes equations the refinement will eventually terminate, but only when the
element size is on the order of the shock thickness, which is impractical for realistic
flows.
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(a) Drag adaptation (b) Entropy adjoint adaptation

(c) Residual adaptation (d) Entropy adaptation

Fig. 6.12. NACA 0012 wing, M∞ = 0.4, α = 3◦: Entropy isosurfaces of the tip vortex for
several adaptation strategies, showing the extent downstream.

Fig. 6.13. NACA 0012, M∞ = 0.8, α = 1.25◦: Mach number contours.

The purpose of this example is to empirically test this trade-off for one flow.
Figure 6.14 shows the convergence of the lift and drag errors using the various in-
dicators and using uniform refinement. Truth values were computed using p = 3
approximation on uniformly refined versions of the final output-adapted meshes. The
entropy adjoint performs very similarly to the output-based adjoints in both cases,



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

ENTROPY ADJOINT REFINEMENT 1283

10
4

10
5

10
6

10
−6

10
−5

10
−4

10
−3

10
−2

Degrees of freedom

|D
ra

g 
co

ef
fic

ie
nt

 e
rr

or
|

 

 

Drag adjoint
Lift adjoint
Entropy adjoint
Residual
Uniform refinement

(a) Drag output
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(b) Lift output

Fig. 6.14. NACA 0012, M∞ = 0.8, α = 1.25◦: Comparison of output error convergence
histories for various adaptation strategies.

(a) Drag adaptation (b) Lift adaptation

(c) Entropy adjoint adaptation (d) Residual adaptation

Fig. 6.15. NACA 0012, M∞ = 0.8, α = 1.25◦: Meshes after seven adaptation iterations. The
box in the entropy adjoint mesh indicates the region used for the element count.

although the scatter in the convergence histories precludes a definitive ranking. The
final meshes are shown in Figure 6.15. The entropy adjoint indicator targets not only
the shocks, but also the leading and trailing edges, although to a lesser extent than the
output adjoints. To test whether the entropy adjoint overrefines the shock region, we
count the number of cells with centroids lying inside the rectangular region outlined
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in Figure 6.15(c). The resulting element counts are 2990 for the drag adjoint, 2997 for
the lift adjoint, 2814 for the entropy adjoint, and 2372 for the unweighted residual.
Note that the entropy adjoint targets the wake contact discontinuity more than the
other indicators, which accounts for the fewer degrees of freedom in the vicinity of the
airfoil compared to the output adjoints. The unweighted residual indicator also tar-
gets the contact discontinuity and areas of the domain extending 10–12 chord lengths
above and below the airfoil.

At least for this particular transonic case, the performance of the entropy adjoint is
very satisfactory. In other cases, involving stronger or more numerous shocks, we have
found that overrefinement can occur in the shock region. Accordingly, the analysis of
the entropy adjoint indicator for flows with shocks is the subject of ongoing research.

7. Conclusions. This paper introduces an adaptive indicator based on entropy
variables. In the spirit of recent success with output-based adaptation, the entropy
variables are related to adjoint solutions for an output that measures the net en-
tropy production in the computational domain. In the inviscid case, the output
consists of the entropy flux integral across the domain boundary, and the entropy
variables satisfy the differential adjoint equation and the required boundary condi-
tions. With the addition of viscosity, a domain-interior source term is included in the
output, which accounts for the entropy generation present due to viscous dissipation.
In this case, the entropy variables no longer satisfy the differential adjoint equation
in a mathematical sense; however, the presence of a domain integral in the output
accounts for this difference, so that the entropy variables fulfill the adjoint role as
Lagrange multipliers that can be used in output error estimation. Hence, the same
adaptive indicator developed for output-based error estimation applies when using
entropy variables as the adjoints. Adaptive results for the compressible Euler and
Navier–Stokes equations demonstrate comparable performance between adaptation
based on the entropy adjoint and that based on selected engineering output adjoints.
In a three-dimensional wing test, the entropy adjoint indicator is shown to resolve
both the tip vortex and the leading and trailing edges of the wing. Similarly, for an
airfoil in transonic flow, the entropy adjoint indicator targets not only the shock but
also the leading and trailing edges.

An advantage of the entropy adjoint adaptation is the simplicity due to the fact
that an independent adjoint solution is not required: the entropy variables are ob-
tained by a simple change of state variables. Solutions driven by the entropy adjoint
can therefore be obtained at a computational savings of up to a factor of two over
solutions driven by output adjoints, depending on the adjoint solver implementation.
It is important to realize that the indicator does not simply target regions of large
entropy or regions of large entropy production, nor does it attempt to conserve en-
tropy. It targets only regions of large spurious entropy production. That has to be
interpreted to include errors of entropy transport.

Future work can proceed in several directions. We will apply the method as
presently developed to progressively more complicated situations, such as those in-
volving rotorcraft with extensive vortex shedding. We will investigate the suitability
of this indicator for unsteady flows, to which the entropy adjoint connection extends
in a straightforward manner. We will also exploit the fact that our technique will ap-
ply to any set of governing equations with the same mathematical structure, that is,
comprising conservation laws with an entropy extension. For example, the equations
of ideal magnetohydrodynamics should yield to the same attack [4]. There are other
systems of equations that do not possess a thermodynamic entropy but do possess
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a mathematical entropy that is conserved in smooth dissipation-free flow and which
symmetrizes the equations [33]. For incompressible flow the Bernouilli “constant”
serves this purpose, and for the shallow-water equations it is the total energy. Since
the properties of symmetry and conservation are the only ones involved in the develop-
ment of our method, we expect to obtain equally satisfying results. Finally, there are
systems of equations, including popular Reynolds-averaged Navier–Stokes (RANS)
closures, for which symmetrizing entropy variables do not exist and hence to which
the entropy adjoint approach does not apply directly. This observation motivates
further research in this area, for example into symmetrizable RANS models.

We have not yet explored any variations of the numerical technique. The code
used here was not written specifically for this purpose, although it had been used
previously for adjoint-based error estimation. We believe that results will be essen-
tially similar for structured and unstructured grids and for any type of regularization
involving artificial viscosity or limiting procedures. Likewise, the choice between finite
element and finite volume discretizations is likely not relevant. Nevertheless, at the
level of detailed coding, there are some not unimportant decisions to be made. We
are certainly prepared to find that some of these decisions will influence the success
of the method in dealing with strong shockwaves.

Acknowledgments. The authors would like to acknowledge the constructive
feedback from the manuscript referees. In addition, the second author is grateful for
hospitality provided by Dr. Nikos Nikiforakis at the Department of Applied Mathe-
matics and Theoretical Physics, University of Cambridge, UK.

REFERENCES

[1] J. Andrews and K. Morton, Spurious entropy generation as a mesh quality indicator, in
Proceedings of the Fourteenth International Conference on Numerical Methods in Fluid
Dynamics, Lecture Notes in Phys. 453, Springer-Verlag, Berlin, Heidelberg, 1995, pp. 122–
126.

[2] T. J. Baker, Mesh adaptation strategies for problems in fluid dynamics, Finite Elem. Anal.
Des., 25 (1997), pp. 243–273.

[3] T. Barth and M. Larson, A posteriori error estimates for higher order Godunov finite vol-
ume methods on unstructured meshes, in Finite Volumes for Complex Applications III,
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