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Abstract

This work presents and compares efficient implementations of high-order discontinuous Galerkin methods: a modal

matrix-free discontinuous Galerkin (DG) method, a hybridizable discontinuous Galerkin (HDG) method, and a primal

formulation of HDG, applied to the implicit solution of unsteady compressible flows. The matrix-free implementation

allows for a reduction of the memory footprint of the solver when dealing with implicit time-accurate discretizations.

HDG reduces the number of globally-coupled degrees of freedom relative to DG, at high order, by statically con-

densing element-interior degrees of freedom from the system in favor of face unknowns. The primal formulation

further reduces the element-interior degrees of freedom by eliminating the gradient as a separate unknown. This paper

introduces a p-multigrid preconditioner implementation for these discretizations and presents results for various flow

problems. Benefits of the p-multigrid strategy relative to simpler, less expensive, preconditioners are observed for

stiff systems, such as those arising from low-Mach number flows at high-order approximation. The p-multigrid pre-

conditioner also shows excellent scalability for parallel computations. Additional savings in both speed and memory

occur with a matrix-free/reduced version of the preconditioner.
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1. Introduction1

In recent years, high-order discontinuous Galerkin (DG) methods have garnered attention in the field of Com-2

putational Fluid Dynamics. With increasing availability of high-performance computing (HPC) resources, the use of3

high-order methods for unsteady flow simulations has become popular. The success of these methods can be attributed4

to attractive dispersion and diffusion properties at high orders, ease of parallelization thanks to their compact stencil,5
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and accuracy on unstructured meshes around complex geometries. However, the implementation of an efficient so-6

lution strategy for high-order DG methods is still a subject of active research, especially for unsteady flow problems7

involving the solution of the Navier–Stokes (NS) equations.8

Several previous studies, see for example [1, 2], demonstrated that implicit schemes in the context of high-9

order spatial discretizations are necessary to efficiently overcome the strict stability limits of explicit time integration10

schemes [3]. Implicit strategies require the solution of a large system of equations, which is typically performed with11

iterative solvers such as the generalized minimial residual method (GMRES). The choice of the preconditioner is a12

key aspect of the strategy and has been explored extensively in the literature, see for example [4, 5, 6, 7]. Among13

those, the use of multilevel algorithms to precondition a flexible GMRES solver [8] has been demonstrated as a14

promising choice for both compressible [4, 9, 10, 6] and incompressible flow problems [11, 12]. Superior iterative15

performance compared to single-grid preconditioned solvers has been observed, as well as better parallel efficiency16

on distributed-memory architectures.17

The application of implicit time integration strategies to DG discretizations is hindered by computational time and18

memory expenses associated with the assembly and storage of the residual Jacobian matrix. Although the Jacobian is19

sparse, the number of non-zero entries scales as k2d, where k is the approximation order and d is the spatial dimension.20

Thus, the costs grow rapidly with approximation order, particularly in three-dimensional problems. Motivated by21

this scaling, previous works [13, 14, 15, 12] considered the possibility of a reduced matrix storage ("matrix-free")22

implementation of the iterative solver. This implementation avoids the allocation of the Jacobian matrix but still23

requires the allocation of a preconditioner operator which in some cases may still be quite large. In this context,24

the use of multilevel matrix-free strategies with cheap element-wise block-Jacobi preconditioners on the finest level25

appears to balance computational efficiency and memory considerations with iterative performance for stiff systems.26

The latter is relevant to solvers applied to DG discretizations, for which the condition number scales as O(h−2) [16],27

where h is the mesh dimension.28

The size of the DG linear system can be reduced through hybridizable discontinuous Galerkin (HDG) methods,29

which have been recently considered as an alternative to the standard discontinous Galerkin discretization [17, 18].30

HDG methods introduce an additional trace variable on the mesh faces but can reduce the number of globally-coupled31

degrees of freedom relative to DG, when a high order of polynomial approximation is employed. The reduction occurs32

through a static condensation of the element-interior degrees of freedom, exploiting the block structure of the HDG33

Jacobian matrix. Thanks to this operation, the memory footprint of the solver scales as k2(d−1). Additionally, HDG34

methods exhibit superconvergence properties of the gradient variable in diffusion-dominated regimes. On the other35

hand, they increase the number of operations local to each element, both before and after the linear system solution.36

While several works have compared the accuracy and cost of HDG versus continuous [19, 20] and discontinuous [21,37

18] Galerkin methods, a comparison considering the efficiency of iterative solvers applied to the solution of unsteady38

flows is missing in this context. In fact, it is worth pointing out that, whereas HDG reduces the number of globally-39

coupled degrees of freedom relative to DG, at high approximation orders, its element-local operation count is non-40

2



trivial. This is particularly the case for viscous problems, in which the state gradient is approximated as a separate41

variable in a mixed-type fashion. An alternative approach is to only approximate the state, and to obtain the gradient42

when needed by differentiating the state. This leads to the primal HDG formulation [22, 23], which we also consider43

in this work. The advantage of primal HDG relative to standard, mixed HDG lies mainly in the reduction of element-44

local operations, which translates into improved computational performance.45

While for DG the use of multilevel strategies to deal with ill-conditioned systems has been previously studied,46

their use in HDG contexts appears not to have yet been explored, especially for unsteady flow problems. A multilevel47

technique has been introduced in the context of an h-multigrid strategy built using the trace variable projection on a48

continuous finite element space [16]. In addition, the use of an algebraic multigrid method applied to a linear finite49

element space obtained by Galerkin projection has been proposed in the context of elliptic problems [24]. A similar50

idea is also considered to speed-up the iterative solution process in HDG [25].51

The present work focuses on the comparison of implicit solution strategies in the context of unsteady flow sim-52

ulations for the three aforementioned implementations, i.e., DG, mixed HDG, and primal HDG. The comparison53

includes efficient preconditioning, such as p-multigrid, to deal with the solution of stiff linear systems arising from54

high-order time discretizations. In particular, an efficient algorithm to inherit the coarse space operators at a low55

computational cost in the context of HDG is presented for the first time. The scalability of the linear solution process56

is also considered and compared to standard single-grid preconditioners, such as a incomplete lower-upper factoriza-57

tion, ILU(0) [6]. The efficiency of the different solution strategies and the overall memory footprint is assessed on58

two-dimensional laminar compressible flow problems. The results of these cases demonstrate that (i) the different59

discretizations attain similar error levels, (ii) the use of a multilevel strategy reduces the number of linear iterations60

in all cases tested, (iii) only for the DG discretizations is this advantage reflected in the CPU time, and iv) the primal61

HDG and p-multigrid matrix-free DG solvers yield comparable solution times and memory footprints, faster than62

standard, single-grid preconditioners like ILU(0) applied to DG.63

The paper is structured as follows. Section 2 presents the differential equations, and Sections 3 and 4 show the64

spatial and temporal discretizations used in this work. Section 6 presents the p-multigrid preconditioner implemen-65

tations. Section 7 reports numerical experiments using different preconditioning strategies, including ILU(0), block66

Jacobi, and p-multigrid. These experiments are performed on a range of test cases, including two-dimensional airfoils67

and a circular cylinder. The methods are compared in terms of iterations, computational time, and memory footprint.68

To clarify our nomenclature, we report in Table 1 the meaning of each abbreviation that will be used throughout the69

text.70
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DG standard discontinuous Galerkin discretization

MB matrix-based (F)GMRES

MF matrix-free (F)GMRES

MFL matrix-free (F)GMRES with preconditioner lagging

mHDG mixed hybridizable discontinuous Galerkin discretization

pHDG primal hybridizable discontinuous Galerkin discretization

BJ element-by-element block Jacobi preconditioner

BILU partition-by-partition block ILU(0) preconditioner

Table 1: Nomenclature used throughout the text.

2. Governing equations71

This work considers solutions of the compressible Navier–Stokes (NS) equations, which can be written as72

∂ρ

∂t
+ ∇ · (ρ~v) = 0,

∂

∂t
(ρ~v) + ∇ · (ρ~v ⊗ ~v + pI) = ∇ · τ,

∂

∂t
(ρe0) + ∇ · (ρ~vh0) = ∇ ·

(
~v · τ − ~q

)
,

(1)

with ~v ∈ Rd the velocity, and d the number of space dimensions. The total energy e0, total enthalpy h0, pressure p,73

total stress tensor τ, and heat flux ~q are given by74

e0 = e + (~v · ~v)/2, h0 = e0 + p/ρ, p = (γ − 1)ρe,

τ = 2µ
(
S − 1

3
(
∇ · ~v

)
I
)
, ~q = −

µ
Pr∇h, S = 1

2

(
∇~v + (∇~v)T

)
.

75

Here e is the internal energy, h is the enthalpy, γ = cp/cv is the ratio of gas specific heats, µ is the viscosity, Pr is the76

molecular Prandtl number, and S is the mean strain-rate tensor. The space and time discretizations are outlined in the77

following sections.78

3. Spatial discretization79

Three versions of a modal discontinuous Galerkin (DG) finite element method are considered in this work. The80

first one is a standard DG implementation, which employs basis functions defined in the reference element space.81

The second one, commonly referred to as the hybridizable discontinuous Galerkin (HDG) method, introduces an82

additional set of variables defined on the mesh element interfaces to reduce the globally coupled degrees of freedom83

compared to DG, as shown in Figure 1. This implementation explicitly uses a mixed form for the gradient states84

(also known as the dual variable), i.e. the gradients are used as an additional element-wise variable, and increase the85

accuracy of the gradient evaluation. A third implementation, primal HDG [22], reduces the computational costs of the86

solver by removing the dual variable from the equations. This approach is desirable when an increased accuracy of87
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(a) DG (b) HDG

Figure 1: Schematic comparison of the solution approximation and flux evaluation in DG versus HDG.

the gradient variable is not strictly necessary or achievable for the problem. In all cases, two types of basis functions88

in the reference space have been considered: polynomial functions of maximum degree equal to k as well as tensor89

product functions of degree k in each dimension. In this work the former is employed within triangular grids, and90

the number of degrees of freedom per equation per element is n`v =
∏d

i=1 (k + i)/i. The latter approach is used for91

quadrilateral mesh elements, and nv = (k + 1)d.92

In all cases, the discretization is based on an approximation Ωh of the domain Ω and a triangulation Th = {K} of93

Ωh made by a set of ne non-overlapping elements, denoted by K. Here, F i
h stands for the set of internal element faces,94

F b
h the set of boundary element faces and Fh = F i

h ∪ F
b

h their union. We also define95

Γi
h =

⋃
F∈F i

h

F, Γb
h =

⋃
F∈F b

h

F, Γh = Γi
h ∪ Γb

h. (2)

where F denotes a generic mesh element face. Following Brezzi et al. [26], we also introduce the average trace96

operator, which on a generic internal face F ∈ F i
h is defined as {·} def

=
(·)++(·)−

2 , where (·) denotes a generic scalar97

or vector quantity. This definitions can be suitably extended to domain boundary faces by accounting for the weak98

imposition of boundary conditions.99

3.1. Discontinuous Galerkin100

In compact form, the system (1) can be expressed as101

∂u
∂t

+ ∇ · ~Fc(u) + ∇ · ~Fv(u,∇u) = 0, (3)

where u ∈ Rm is the vector of conservative variables and ~Fc, ~Fv ∈ Rm×d are the inviscid and viscous fluxes, with m102

the number of equations and d the number of space dimensions. Note that the diffusive fluxes are connected to the103

gradients of u via the functional relation ~Fd = −K∇u, with K the diffusivity tensor.104

The state vector is approximated by a polynomial expansion with no continuity constraints imposed between105

adjacent elements, i.e.uh ∈ [Vh]m where106

Vh = {φh ∈ L2(Ω) : φh|K ∈ Pk,∀K ∈ Th} , (4)
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and k is the order of polynomial approximation. The weak form of (3) follows from multiplying the PDE by the set107

of test functions in the same approximation space, integrating by parts, and coupling elements via numerical fluxes.108

The variational formulation for each element K ∈ Th reads: find uh ∈ [Vh]m such that109 ∫
K

wh ·
∂uh

∂t
dK −

∫
K
∇hwh : ~F(uh,∇huh) dK

+

∫
∂K

w+
h · F̂(u±h ,∇hu±h , ~n

+) dσ −
∫
∂K
∇w+

h : (K+ · ~n+)(u+
h − ûh) dσ = 0,

(5)

for all wh ∈ [Vh]m. Here, ~F is the sum of the inviscid and viscous flux functions, while F̂ is the numerical flux and110

ûh = (u+
h + u−h )/2. Note that the quantities (·)+ and (·)− denote element interior and element neighbor quantities,111

respectively.112

Uniqueness and local conservation of the solution are achieved by the use of proper numerical interface fluxes.113

The Roe [27] approximate Riemann solver is employed for the inviscid part F̂c, while the second form of Bassi and114

Rebay (BR2) [28] is employed for the viscous part, F̂v. Following BR2, the numerical viscous flux is given by115

F̂v

(
u±h ,∇hu±h , ~n

+
) def

= {~Fv (uh,∇huh)} · ~n + ηF{~δF(u+
h − u−h )} · ~n+, (6)

where, according to [29, 26], the penalty factor ηF must be greater than the number of faces of the elements. The116

auxiliary variable ~δ is determined from the jump of uh, via the solution of the following auxiliary problem:117 ∫
K
~τ+

h : ~δ+
F dK =

1
2

∫
F
~τ+

h :
(
K+ · ~n+) (u+

h − u−h ) dσ, ∀τh ∈ [Vh]d×m . (7)

At the boundary of the domain, the numerical flux function appearing in equation (5) must be consistent with the118

boundary conditions of the problem. In practice, this is accomplished by properly defining a boundary state which119

accounts for the boundary data and, together with the internal state, allows for the computation of the numerical fluxes120

and the lifting operator on the portion Γb
h of the boundary Γh, see [28, 30].121

A system of ordinary differential equations for the degrees of freedom (DoFs) arising from Equation (5) can be122

compactly written in the form123

M
dW
dt

+ R(W) = 0, (8)

where M is the block-diagonal spatial mass matrix, W is the vector of the DoFs of the problem, and R is the spatial124

residual vector.125

3.2. Hybridizable discontinuous Galerkin126

3.2.1. Mixed form127

The second spatial discretization considered in this work is the HDG method in mixed form (mHDG), see [18]. A128

system of first-order partial differential equations can be obtained from (1) by introducing ~q ∈ Rm×d,129

~q − ∇u = ~0,

∂u
∂t

+ ∇ · Fc(u) + ∇ · Fv(u, ~q) = 0.
(9)
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The HDG discretization approximates the state and gradient variables as uh ∈ [Vh]m and ~qh ∈ [Vh]m×d, with Vh130

defined in (4). An additional trace variable, λh ∈ [Mh]m, is defined on the faces, using the space131

Mh =
{
µ ∈ L2(F i

h) : µ|F ∈ Pk,∀F ∈ F i
h

}
, (10)

where Pk is the space of polynomials of order k on face F. We remark that the trace variable is defined on the internal132

faces only, while a properly defined boundary value is used for the flux computation on F b
h .133

The weak form is obtained by weighting the equations in (9) with appropriate test functions, integrating by parts,134

and using the interface variable λh for the face state. Consistent and stable numerical fluxes are required at the mesh135

element interfaces. The variational formulation reads: find uh ∈ [Vh]m, ~qh ∈ [Vh]m×d, λh ∈ [Mh]m, such that136 ∫
K
~vh : ~qh dK +

∫
K

(∇h · vh) · uh dK −
∫
∂K

(~v+
h · ~n

+) · λh dσ = 0, (11)

137 ∫
K

wh ·
∂uh

∂t
dK −

∫
K
∇hwh : ~F(uh, ~qh) dK +

∫
∂K

w+
h · F̂(u+

h , ~q
+
h , λh, ~n+) dσ = 0, (12)

138 ∫
∂K
µh ·

{
F̂(u+

h , ~q
+
h , λh, ~n+) + F̂(u−h , ~q

−
h , λh, ~n−)

}
dσ = 0, (13)

for all wh ∈ [Vh]m, ~vh ∈ [Vh]m×d, µh ∈ [Mh]m. The third equation, which weakly imposes flux continuity across139

interior faces, is required to close the system. We remark that, when using the mixed form, the same theoretical140

convergence rate is observed for the state variable uh and the gradient variable ~qh. In diffusion-dominated regimes,141

this allows for a local post-processing of the state to a higher order [17].142

In HDG, the numerical flux function F̂, which is the sum of the inviscid and viscous fluxes, is defined as143

F̂(uh, ~qh, λh, ~n) = ~F(λh, ~qh) · ~n + τ(λh,uh, ~n), (14)

where τ = τc + τv is a stabilization term for both the inviscid and viscous parts of the flux. In this work τc is chosen144

in a Roe-like fashion as145

τc =
∣∣∣∣~F′c(λh) · ~n

∣∣∣∣ (uh − λh), (15)

while the viscous stabilization term τv is based on the BR2 scheme,146

τv = ηF~δF(uh − λh) · ~n, (16)

with ~δF the lifting operator applied to the jump (uh − λh), and ηF the stabilization factor.147

Similarly to DG, at the boundary of the domain, the numerical flux function is made consistent with the boundary148

conditions of the problem through the definition of a boundary state which accounts for the boundary data and,149
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together with the internal state, allows for the computation of numerical fluxes and the lifting operator on the portion150

Γb
h of the boundary Γh.151

Defining RQ, RU and RΛ as the residual vectors arising from Equations (11), (12) and (13), the discretized system152

of nonlinear equations can be written as153

RQ = 0,

MU dU
dt

+ RU = 0,

RΛ = 0.

(17)

where MU is the element-based mass matrix. The compact form of (17) can be written using the solution vector of154

the discrete unknowns, W = [Q; U;Λ], and the concatenated vector of residuals R = [RQ; RU ; RΛ],155

M
dW
dt

+ R(W) = 0, (18)

where the matrix M is given by156

M =


0 0 0

0 MU 0

0 0 0

 . (19)

3.2.2. Primal form157

A variant of the mixed hybridizable discontinuous Galerkin method presented in Section 3.2.1 is the primal HDG158

(pHDG) method and follows the work in [22, 23]. In pHDG, the dual variable is eliminated by introducing the159

definition of the gradient in (12).160

The pHDG discretization approximates the variable uh ∈ [Vh]m, with Vh defined in Equation (4). The trace161

variable λh ∈ [Mh]m is still employed for hybridization, and the variational formulation reads: find uh ∈ [Vh]m,162

λh ∈ [Mh]m such that163 ∫
K

wh ·
∂uh

∂t
dK −

∫
K
∇hwh : ~F(uh,∇huh) dK

+

∫
∂K

w+
h · F̂(u+

h ,∇hu+
h , λh, ~n+) dσ −

∫
∂K
∇w+

h : (K+ · ~n+)(u+
h − ûh) dσ = 0,

(20)

164 ∫
∂K
µh ·

{
F̂(u+

h , ~q
+
h , λh, ~n+) + F̂(u−h , ~q

−
h , λh, ~n−)

}
dσ = 0, (21)

for all wh ∈ [Vh]m, µh ∈ [Mh]m. We note that (20)–(21) are not obtained by just substituting ~qh = ∇uh from (11)–165

(13). In fact the fourth term of (20) arises from the elimination of the variable ~qh. This term ensures symmetry166

and adjoint-consistency of the primal HDG discretization. This type of discretization, involving a smaller number of167

element-wise degrees of freedom than mixed HDG, does not suffer significantly from overhead costs of dealing with168

the gradients: eliminating the dual variable and adding the adjoint-consistency term typically results in a faster solver.169
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We note that in this case, the gradients are of one order lower accuracy than the state variable uh. Numerical flux170

functions, stabilizing terms, and boundary condition enforcement are defined in the same manner as in mixed HDG.171

Defining RU and RΛ as the residuals vectors arising from (20)–(21), the ODE system of equations can be written172

as173

MU dU
dt

+ RU = 0,

RΛ = 0,
(22)

where MU is the elemental mass matrix. Therefore, the compact form of (22) is written using the solution vector of174

discrete unknowns, W = [U;Λ], and the concatenated vector of residuals, R = [RU ; RΛ],175

M
dW
dt

+ R(W) = 0, (23)

where the matrix M is given by176

M =

 MU 0

0 0

 . (24)

4. Temporal discretization177

The temporal discretization used in this work is an explicit-first stage, singly-diagonal-implicit Runge–Kutta (ES-178

DIRK) scheme. The general formulation of the scheme for (18) is179

MWi = MWn − ∆t
i∑

j=1

ai jR(W j),

Wn+1 = Wn + ∆t
s∑

i=1

βiWi,

(25)

for i = 1, ..., s where s is the number of stages, ai j and bi are the coefficients of the scheme, and n is the time index.180

Within each stage, the solution of a non-linear system is required. This is performed by the Newton-Krylov method,181

which requires the solution of a sequence of linear systems within each stage. In this regard, the kth Newton–Krylov182

iteration assumes the form183 (
M

aii∆t
+
∂R
∂W

)
(Wi

k+1 −Wi
k) = −

M
aii∆t

(Wi
k −Wn) −

i−1∑
j=1

ai j

aii
R(W j) − R(Wi

k), (26)

with i = 1, ..., s. In this work the third-order ESDIRK3 scheme [31] is employed. The method involve three non-linear184

solutions, following an explicit first stage.185

5. Linear system solution186

The linear system of ODEs can be solved numerically using iterative solvers. To this end, we apply the generalized187

minimal residual (GMRES) method to the system in (26). The solution process differs between standard DG and188

HDG, as the latter discretization takes advantage of the introduction of face unknowns in order to reduce the size of189

the matrix to be allocated. This section provides details of the implementation.190
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5.1. Discontinuous Galerkin discretization191

The linear system arising from a DG discretizations takes the following general form192

Kx + b = 0, (27)

where K = (M/(aii∆t) + ∂R/∂W) is the iteration matrix, x = ∆W is the vector of degrees of freedom updates, and b193

is the right-hand side. The GMRES implementation can follow two approaches. The first one is denoted as matrix-194

based (MB) and consists of computing and storing the iteration matrix explicitly to perform matrix-vector products195

as needed within the iterative solution. A second, matrix-free (MF) approach takes advantage of the structure of the196

matrix vector products, which can be approximated using the matrix-free formula197 (
M

aii∆t
+
∂R
∂W

)
∆W ≈

M
aii∆t

∆W +
R(W + h∆W) − R(W)

h
, (28)

with198

h = ε

√
1 + ‖∆W‖
‖W‖

(29)

and ε ≈ 10−7. The latter approach offers several advantages over the former, as the Jacobian matrix is no longer199

required to maintain the temporal accuracy of the solution. The GMRES solver still requires a preconditioning matrix,200

which generally needs to be stored. However, this matrix can be approximated or frozen for a certain number of201

iterations without losing the formal order of accuracy of the time integration scheme, thus providing an improvement202

in computational efficiency. For example, when using a block-Jacobi preconditioning approach, the memory footprint203

required for the Jacobian matrix can be one order of magnitude lower, as only the memory for the on-diagonal blocks204

needs to be allocated. The additional residual evaluation, which are required in (28), have a computational cost similar205

to a matrix-vector product for high-order polynomials. Further details can be found in previous work [15, 13].206

5.2. Hybridizable discontinuous Galerkin discretization207

5.2.1. Mixed form208

The system in (26) can be conveniently arranged using the definition of element-interior and face DoFs. To this209

end, considering first the mixed form of the HDG discretization, it is convenient to define the following elemental210

block matrices at stage i of the Newton-Krylov method211

AQQ =
∂RQ

∂Q
, AQU =

∂RQ

∂U
, BQΛ =

∂RQ

∂Λ
,

AUQ =
∂RU

∂Q
, AUU =

MU

aii∆t
+
∂RU

∂U
, BUΛ =

∂RU

∂Λ
,

CΛQ =
∂RΛ

∂Q
, CΛU =

∂RΛ

∂U
, D =

∂RΛ

∂Λ
,

(30)
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while the right hand side of Eq. (26) is obtained as212

fQ = −

i−1∑
j=1

ai j

aii
RQ(Q j,U j,Λ j) − RQ(Qi

k,U
i
k,Λ

i
k),

fU = −
MU

aii∆t

(
Ui

k − Un
)
−

i−1∑
j=1

ai j

aii
RU(Q j,U j,Λ j) − RU(Qi

k,U
i
k,Λ

i
k),

g = −

i−1∑
j=1

ai j

aii
RΛ(Q j,U j,Λ j) − RΛ(Qi

k,U
i
k,Λ

i
k).

(31)

The full system of equations can be therefore written in the compact form as213 
AQQ AQU BQΛ

AUQ AUU BUΛ

CΛQ CΛU D




∆Q

∆U

∆Λ

 +


fQ

fU

g

 = 0. (32)

5.2.2. Primal form214

In the primal formulation, the elemental block matrices related to the gradient variables are no longer present in215

the linear system. Moreover, the right-hand side can be evaluated via the following equations216

fU = −
MU

aii∆t

(
Ui

k − Un
)
−

i−1∑
j=1

ai j

aii
RU(U j,Λ j) − RU(Ui

k,Λ
i
k),

g = −

i−1∑
j=1

ai j

aii
RΛ(U j,Λ j) − RΛ(Ui

k,Λ
i
k).

(33)

that do not depend anymore on the internal DoFs Q. The linear system for the primal HDG discretization assumes the217

form218  AUU BUΛ

CΛU D


 ∆U

∆Λ

 +

 fU

g

 = 0, (34)

5.3. Static condensation and back-solve219

Considering the block structure of the matrices appearing in (32) and (34), the solution of the system can involve220

a smaller number of DoFs by statically condensing out the element-interior variables. Partitioning the matrix into221

element-interior and face components, [A,B; C,D], and similarly for the right-hand side vector, [f; g], the Schur-222

complement linear system reads223

(D − CA−1B)︸          ︷︷          ︸
K

∆Λ = (g − CA−1[f])︸           ︷︷           ︸
b

, (35)

which assumes the same form as system (27) and can be solved using a GMRES algorithm. The definition of each224

block can be found from (32) and (34). The static condensation is an operation that involves matrix-matrix products225

for the iteration matrix, as well as matrix-vector products for the right-hand side. Fortunately, the compact structure226

of the residual Jacobian prevents us from having to allocate global matrices for the computation of the condensed227

matrix, i.e. the operations described in Eq. (35) are local to each element. In addition, the computation of A−1 can228
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be performed in place. By doing so, we do not increase the memory footprint of the HDG implementation during the229

solve.230

After the solution of (35), the interior states have to be recovered for the residual evaluation in the next time step.231

This operation is commonly referred to as the back solve and assumes the following form232

∆U = −A−1 (f + B∆Λ) . (36)

Our implementation choice of assembling the condensed matrix on-the-fly requires re-evaluation of the inverse of the233

matrix A in an element-wise fashion during the back-solve.234

As a final remark for the two solvers, we point out that for both the mixed and primal form of HDG, memory235

allocation and time spent on the global solve are lower than that of a DG solver due to the smaller number of globally-236

coupled degrees of freedom at high orders. On the other hand, the inversion of the A block-structured matrix of237

equation (35), although local to each element, increases the amount of element-wise operations.238

6. Multigrid preconditioning239

The use of a p-multigrid strategy to precondition a flexible implementation [8] of GMRES is explored in the240

context of the spatial discretizations presented. The basic multigrid idea is to exploit iterative solvers to smooth-out241

high-frequency components of the error with respect to an unknown exact solution. Such iterative solvers are not242

sufficiently effective at damping low-frequency error components, and to this end, an iterative solution built using243

coarser problems can be useful to shift, via system projection, the low-frequency modes towards the upper side of the244

spectrum. This simple and effective strategy allows us to obtain satisfactory rates of convergence over the entire range245

of error frequencies.246

In p-multigrid the coarse problems are built based on lower-order discretizations with respect to the original247

problem of degree k. We consider L coarse levels denoted by the index ` = 0, ..., L and indicate the fine and coarse248

levels with ` = 0 and ` = L, respectively. The polynomial degree of level ` is k` and the polynomial degrees of249

the coarse levels are chosen such that k` < k`−1, with k0 = k. These orders are used to build coarser linear systems250

K`x` = b`. In order to avoid additional integration of the residuals and Jacobians on the coarse level, we employ251

subspace inheritance of the matrix operators assembled on the finest space to build the coarse space operators Ki for252

both DG and HDG discretizations. This choice involves projections of the matrix operators and right hand sides, which253

are computed only once on the finest level. Compared to subspace non-inheritance, which requires the re-evaluation of254

the Jacobians in proper coarser-space discretizations of the problem, inheritance is cheaper in processing and memory.255

Although previous work has shown lower convergence rates when using such cheaper operators [32, 11, 12], especially256

in the context of elliptic problems and incompressible flows, we found these operators sufficiently efficient for our257

target problems involving the compressible NS equations, as will be demonstrated in the results section.258

In the context of standard discontinuous Galerkin discretizations, see for example [9, 6, 10, 11, 12], the p-multigrid259

approach has been thoroughly investigated and exploited in several ways, e.g. h-, p-, and hp-strategies. On the other260
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Algorithm 1 MGfull

1: for ` = L, 0,−1 do

2: if ` = L then

3: b` = I`0b0

4: SOLVE A`xFMG
`

= b`

5: else

6: b` = I`0b0

7: x̃` = I`
`+1xFMG

`+1

8: xFMG
`

= MGV (`,b`, x̃`)

9: end if

10: end for

11: return xFMG
`

Algorithm 2 MGV(`,b`, x`)
1: if ` = L then

2: SOLVE A`x` = b`

3: else

4: x`=SMOOTH(x`,A`,b`)

5: r` = b` − A`x`

6: r`+1 = I`+1
`

r`

7: e`+1=MGV (` + 1, r`+1, 0)

8: x̂` = x` + I`
`+1e`+1

9: x`=SMOOTH(x̂`,A`,b`)

10: end if

11: return x`

hand, the use of p-multigrid for HDG has not been as widely studied. See, for example, preliminary works [16, 24, 25]261

related to this research area. The definition of the restriction and prolongation operators, as well as the coarse grid262

operators and right hand sides, is not straightforward when considering the statically condensed system. We will263

therefore first introduce the concept of subspace inheritance for a standard DG solver and then extend it to HDG.264

We employ a full multigrid (FMG) V-cycle solver, outlined in Algorithm 1. The FMG cycle constructs a good265

initial guess for a V-cycle iteration, which starts on the fine space. To do so, the solution is initially obtained on the266

coarsest level (L), and then prolongated to the next refined one (L−1). At this point, a standardV-cycle is called, such267

that an improved approximation of the solution can be used for theV-cycle at level L − 2. This procedure is repeated268

until the V-cycle on the finest level is completed. The single V-cycle is outlined in Algorithm 2. Starting from a269

level `, the solution is initially smoothed using an iterative solver (SMOOTH). The residual of the solution, r`, is then270

computed and projected to the coarser level ` + 1, where anotherV-cycle is recursively called to obtain a coarse-grid271

correction e`+1. This quantity is prolongated to level ` and used to correct the solution to be smoothed again. When272

the coarsest level is reached, the problem is solved with a larger number of iterations to decrease as much as possible273

the solution error at a low computational cost.274

In this work the smoothers consist of preconditioned GMRES solvers. Any combination of single grid precondi-275

tioners can be coupled with an iterative solver to properly operate as a smoother in a multigrid strategy. Devising a276

methodology to optimally set the multigrid preconditioner is beyond the scope of the present work. However, previ-277

ous work [12] has shown that an optimal and scalable solver can be obtained using an aggressive preconditioner on278

the coarsest space discretization, where the factorization of the matrix can be performed at a low computational cost,279

and the system has to be solved with a higher accuracy. On the other hand, cheaper operators can be used on the280

finest levels of the discretization, where the systems need not be solved to a high degree of accuracy. In the following281
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subsections, the details are given about how the matrices and vectors are restricted and prolongated between multigrid282

levels.283

6.1. DG subspace inheritance284

Let us define a sequence of approximation spaces V` ⊆ Vh on the same triangulation Th, ` being a multigrid285

level, with Vh = V0 ⊃ V1 ⊃ ... ⊃ VL and L the number of coarse levels. Note that VL denotes the coarsest286

space. In our p-multigrid setting, each approximation space is defined similarly to (4), but using k` polynomials, with287

k0 > ... > k` > ... > kL.288

In this context, the prolongation operator can be defined as I`
`+1 : V`+1 →V` such that289 ∑

K∈Th

∫
K

(
I``+1u`+1 − u`+1

)
dK = 0, ∀u`+1 ∈ V`+1. (37)

Similarly, the restriction operator can be defined as the L2 projection I`+1
`

: V` →V`+1 such that290 ∑
K∈Th

∫
K

(
I`+1
` u` − u`

)
v`+1dK = 0, ∀(u`, v`+1) ∈ V` ×V`+1. (38)

Such a definition can be extended to operate on vector functions uh ∈ [V`]m component-wise, i.e. I`+1
`

uh =
{
I`+1
`

ui

}
.291

Regarding coarse-space matrices, discrete matrix operators I`+1
`
∈ Rp×q, with p = nen`vm, q = nen`+1

v m and n`v the292

number of DoFs on level `, have to be considered to inherit the fine-space iteration matrix K0. This matrix can be293

restricted up to level ` via K` = (I`0)K0(I0
`
). Fortunately, the explicit assembly of the operators can be avoided and the294

projection can be applied for each matrix block b of size (n`vm)2, which assumes the following form295

Kb
`+1 = M`+1,`K

b
`

(
M`+1,`

)T , (39)

where296 (
M`+1,`

)
= (M`+1)−1

∫
K
φ`+1 ⊗ φ` dK, M`+1 =

∫
K
φ`+1 ⊗ φ`+1 dK. (40)

Here, φ` denotes the set of basis functions defined in element K of order k`. We point out that, thanks to the use297

of basis functions defined in a reference element, the projection operators are identical for each element and pair of298

polynomial orders, and they can be used in the same way for the on-diagonal and off-diagonal blocks of the iteration299

matrix. As the prolongation operators can be obtained from the restriction by the transpose, I`
`+1 =

(
I`+1
`

)T
, the method300

requires the allocation of only L matrices of size n`+1
v ×n`v for each different type of element, which is inexpensive from301

a memory footprint viewpoint.302

6.2. HDG subspace approximate-inheritance303

In HDG, the globally-coupled unknowns are those related to the face DoFs, and the iteration matrix is obtained304

through static condensation, see Equation (35), which allows us to solve the system for the face unknowns only.305

Theoretically speaking, for element-interior degrees of freedom, the same operators of Section 6.1 can be employed,306
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while those for faces degrees of freedom can be obtained through similar considerations. In this case, the sequence of307

approximation spacesM` ⊆ Mh is properly defined on the interior mesh element faces, Fh, with ` a multigrid level.308

To this end, we defineMh = M0 ⊃ M1 ⊃ ... ⊃ ML. The prolongation operator is now J `
`+1 : M`+1 → M`, defined309

by310 ∑
F∈Fh

∫
F

(
J `
`+1λ`+1 − λ`+1

)
dσ = 0, ∀λ`+1 ∈ M`+1. (41)

The restriction operator is defined as J `+1
`

:M` →M`+1 such that311 ∑
F∈Fh

∫
F

(
J `+1
` λ` − λ`

)
µ`+1 dσ = 0, ∀(λ`, µ`+1) ∈ M` ×M`+1. (42)

These definitions can also be extended to operate on vector functions λh ∈ [M`]M and are assumed to act component-312

wise.313

Applying the same subspace-inheritance idea used for DG, one obtains the coarse space condensed HDG matrix314

and right hand side through the application of element-interior and face DoF projections,315

K` =

(
(J`0)D0(J0

` ) −
[
(J`0)C0(I0

` )
] [

(I`0)A0(I0
` )
]−1 [

(I`0)B0(J0
` )
])
, (43)

316

b` =

(
(J`0)g0 −

[
(J`0)C0(I0

` )
] [

(I`0)A0(I0
` )
]−1 [

(I`0)f0

])
. (44)

We point out that this operation involves the application of mixed element-interior and face degrees of freedom317

Galerkin projections prior to the static condensation of the system. Thus, it comes with an increased operation count318

compared to DG subspace inheritance. To minimize the number of operations involved in the projection, we introduce319

an approximate-inherited approach where the coarse space matrices and right-hand sides are obtained by simply320

applying face projections to the condensed matrices and vectors on the finest space. In other words, we obtainK` and321

b` through322

K` = (J`0)K0(J0
` ), (45)

323

b` = (J`0)b0. (46)

This coarse space matrix and right-hand side will in general differ from those of Equation (43) and (44), as the324

element-interior operator in the Schur complement term is projected differently.325

Similar considerations have to be made for the residual evaluation on the coarse levels, which are required in the326

projection from level ` to ` + 1. The residual on a level ` should be computed as327

r` =

(
RΛ
` −

[
(J`0)C0(I0

` )
] [

(I`0)AQQ
0 (I0

` )
]−1

RQU
`
,
)

(47)

and this requires the evaluation of the element-interior degrees of freedom from the face unknowns. This operation328

would require a back-solve on the coarse levels, which increases the amount of operations within each multigrid cycle.329
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To reduce the operation count as much as possible we again rely on the computation of an approximate projection that330

is evaluated using the working variable ∆Λ only:331

r` = K`∆Λ` + b`. (48)

Despite the use of those approximations compared to DG subspace inheritance, such a strategy exhibits very good332

performance in HDG solutions of the compressible Navier–Stokes equations, as will be demonstrated in the results333

section.334

Similarly to DG, the global assembly of the projection matrix J`0 for face degrees of freedom is not strictly required335

for HDG, since the projection is applied to each block b of the matrix of size (n`vm)2, with n`v related to face degrees336

of freedom on level `. The projection of each block b of the iteration matrix assumes the form337

Kb
`+1 = N`+1,`K

b
`

(
N`+1,`

)T , (49)

where338 (
N`+1,`

)
= (N`+1)−1

∫
F
µ`+1 ⊗ µ` dσ, N`+1 =

∫
F
µ`+1 ⊗ µ`+1 dσ. (50)

In this case µ` denotes the set of basis functions defined in the element face F of order k`. Thanks to the use of339

basis functions defined in the reference element of the space discretization, similar considerations to those related to340

element-interior degrees of freedom projection hold true.341

To assess the impact of the approximate inheritance approximation on the HDG coarse-space condensed matrix,342

K , we conduct an eigenvalue analysis of the inherited and approximate-inherited operators for a simplified test case.343

The problem of interest is scalar advection-diffusion in a unit square domain (L = 1), with advective velocity ~v =344

(0.8, 0.6), diffusivity ν = |~v|L/Pe, unit Dirichlet boundary condition on the bottom boundary, and homogenous zero345

Dirichlet boundary conditions on all other boundaries. Note, Pe is the P’ecl’et number, defined by Pe = |~v|L/ν.346

The computational grid consists of uniform NxN squares, each subdivided into two triangles, for a total of 2N2
347

elements. We use N = 8, a fine-space order of p0 = 2, and a coarse-space order of p1 = 1. For various Pe, we compute348

both the inherited condensed matrix, K inherited
1 via (43), and the approximate-inherited condensed matrix, K approx

1 via349

(45). Note that for this linear problem, the inherited matrix is equivalent to the condensed matrix computed directly350

on the coarse space. Figure 2 compares the eigenvalue spectra of the condensed matrices for three different P’ecl’et351

numbers. The eigenvalues are not identical, but they are located in generally the same areas and have similar real and352

imaginary components. Iterative solution properties of the matrices are therefore expected to be similar.353

6.3. Preconditioning options and memory footprint354

In this work we exploit single-grid preconditioners both for benchmarking and to precondition the smoothers of355

the multigrid strategy. Two operators will be considered in this work. The first and simplest one will be here labelled356

as element-wise block-Jacobi (BJ). The BJ preconditioner extracts the block-diagonal portion of the iteration matrix357

and factorizes it, in a local-to-each element fashion, using the PLU factorization. This cheap and memory saving358
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Figure 2: Eigenvalues of the inherited and approximate-inherited condensed HDG matrices, K , on the coarse p = 1 space for a scalar advection-

diffusion test case.

preconditioner becomes more effective as the time step of the discretization decreases, i.e. the matrix becomes more359

diagonally dominant and the condition number decreases. In addition, the BJ preconditioner is applied in the same360

way in serial and parallel computations.361

The second preconditioner is the incomplete lower-upper factorization with zero-fill, ILU(0). In particular, the362

minimum discarded fill reordering proposed in [5] is employed. The algorithm was shown to be suited for stiff spatial363

discretizations, and it allows for an in-place factorization [6]. When it is applied in parallel, the ILU(0) is performed364

separately on each square, partition-wise block of the iteration matrix. In this case this preconditioner will be labelled365

as block-ILU(0) (BILU). As a natural downside, BILU loses preconditioning efficiency when it is applied in parallel.366

A variant that compensates for this effect is the Additive Schwarz method, which extends the partition-wise block of367

the Jacobian with a number of overlapping elements between the mesh partitions. This algorithm, employed in the368

context of incompressible Navier–Stokes equations, increases the memory footprint of the solver when a few elements369

per partition are used [12]. We do not use such an approach in the present study of compressible flow.370

(a) Full-order basis functions (b) Tensor-product basis functions

Figure 3: Allocated number of non-zeros (NNZ) non-dimensionalized by the memory allocation of the DG Jacobian matrix. DG matrix-free solvers

compared to HDG for different values of polynomial orders and preconditioning type. p-multigrid preconditioning (pMG) is assumed to be that of

Table 3.
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We now provide estimates of the memory footprint of the solver as well as the computational time spent evalu-371

ating the matrix operators. It is worth pointing out that, for DG, the matrix assembly time, as well as its operation372

count, is a function of the number of non-zeros of the matrix itself, while HDG involves the overhead costs of the373

static condensation and back solve. Considering a square, two-dimensional, bi-periodic domain made of quadrilateral374

elements, we obtain the results shown in Figure 3, where the number of non-zeros (NNZ), non-dimensionalized by375

the number of nonzeros of the Jacobian arising from the DG discretization, is reported as a function of the number of376

elements per partition, ne/p. It can be observed that:377

1. The memory footprint of DG, matrix-based as well as HDG solvers is always equal to that of a Jacobian matrix,378

and this value is a function of the polynomial order for HDG. This is due to the fact that the preconditioner is379

always evaluated using the same memory as the Jacobian matrix.380

2. For a matrix-free, DG discretization, the allocation involves only the preconditioner operator. When BJ is381

considered, NNZ reduces by 80% with respect to the allocation of a full DG Jacobian. As ne/p → 1, the NNZ382

of the BILU solver approaches that of the element-wise block Jacobi, while for ne/p >> 1 it tends to be that of a383

Jacobian matrix. This is due to the fact that as the domain is partitioned, the ILU(0) factorization is performed in384

the squared, partition-wise block of the iteration matrix and therefore, in a matrix-free fashion, the off-partition385

blocks can be neglected during the assembly phase.386

3. The p-multigrid (pMG) matrix-free preconditioning approach applied to a DG discretization, here assumed to387

be that of Table 3, requires a memory footprint in line with that of an element-wise block Jacobi method, as388

already observed in [12]. In fact, when using lower-order polynomial spaces with k` << k, the size of those389

matrices is considerably smaller than that of the finest space since they scale with k2d.390

4. For HDG, only for high-order polynomials is NNZ reduced with respect to the iteration matrix of a DG method.391

For k = 6, a memory footprint in line with that of a BJ, matrix-free approach is observed, while for k = 1, 3 the392

memory is considerably larger. It is worth pointing out that the use of full-order basis functions (Figure 3(a))393

and tensor-product basis functions (Figure 3(b)) only affects the NNZ ratio in the HDG case: in particular, the394

memory footprint reduction when using a tensor-product basis is larger due to the higher amount of element-395

wise unknowns compared to internal face unknowns.396

5. The NNZ ratio for HDG increases when ne/p → 1. The reason for this is that the face-to-element ratio within397

the computational mesh of the domain partition increases.398

Finally, it is important to remark that for a matrix-free iterative solver employed in DG contexts, it is possible to399

optimize the matrix assembly evaluation to compute only the blocks required by the preconditioner. For example, for400

BJ, the evaluation of the off-diagonal blocks of the Jacobian can be neglected, while for pMG matrix-free with BJ on401

the finest space, the off-diagonal blocks could be computed at a reduced polynomial order consistent with that of the402

coarser spaces.403
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7. Numerical results on a model test case404

We present numerical experiments to assess the performance of the HDG discretizations in comparison to DG.405

First, Navier–Stokes solutions of a vortex transported by uniform flow at M = 0.05 and Re = 100 are reported. The406

objective is i) to show the convergence rates of the solver both in space and time; ii) to investigate the effects of grid re-407

finement for the approximate-inherited approach proposed for HDG, providing mesh-independent convergence rates;408

and iii) compare the effects of polynomial order, time step size and space discretization on the parallel performance409

of the solution strategy.410

7.1. Test case description411

The test case is a modified version of the VI1 case studied in the 5th International Workshop on High Order412

CFD Methods [33], and it consists of a two-dimensional mesh of the domain (x, y) ∈ [0, 0.1]×[0, 0.1] with periodic413

boundary conditions on each side. The flow initialization involves the definition of the following state414

u = U∞
(
1 − β

(y − Yc

R

)
e−r2/2

)
v = U∞β

( x − Xc

R

)
e−r2/2

T = T∞ −
(

U2
∞β

2

2Cp

)
e−r2

(51)

with the heat capacity at constant pressure Cp = Rgasγ/(γ − 1), the non dimensional distance to the initial vortex415

core position r =
√

(x − Xc)2 + (y − Yc)2/R, Xc,Yc the coordinates of the vortex center, and the free stream velocity416

U∞ = M∞
√
γRgasT∞. The fluid pressure p, temperature T , and density ρ are prescribed to ensure a steady solution417

of the problem in the freestream co-moving frame, i.e.ρ∞ = p∞/RgasT∞, ρ = ρ∞(T/T∞)1/(γ−1), p = ρRgasT . The418

parameters where chosen such that M∞ = 0.05, β = 1/50 and R = 0.005. In contrast to the inviscid-flow case studied419

in the workshop, the governing equations in the present study are Navier-Stokes, with Re = 100 based on the domain420

size.421

7.2. Assessment of the solution accuracy422

Numerical experiments have been performed to assess the output error, both in space and time. The meshes423

for the study consist of regular quadrilaterals. The mesh density ranges from 2×2 to 64×64, while the polynomial424

order range is k ∈ {1, 2, 3, 4, 5, 6}. The L2 state error was computed relative to the solution on a 128×128, P6 space425

discretization, after one convective period, T . Contour plots of the solution at the initial and final states are shown in426

Figure 4. Figure 5(a) reports space discretization errors. The tests were performed using a very small time step size,427

T/∆t = 4000, and the ESDIRK3 scheme to ensure a negligible time discretization error, with an absolute tolerance on428

the non-linear system of 10−10, and a relative tolerance of 10−5 on GMRES. Even though DG suffers less than HDG429

from pre-asympthotic behaviour on such a smooth solution, all three implementations show comparable error levels430
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Figure 4: Convected vortex at Re = 100, M = 0.05. Mach number contours. Solution at t = 0 (left) and t = T (right).
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Figure 5: L2 solution error. Laminar vortex test case at Re = 100, M = 0.05. Convergence rates for the DG (dashed), mHDG (solid) and pHDG

(crosses) discretizations versus theoretical estimates in space and time.

and converge with the theoretical convergence rates for every polynomial approximation shown. As a consequence431

of such analysis, and considering that both the DG and HDG implementations share the same code base, we will432

consider only the CPU time as a measure of the time-to-solution efficiency.433

Regarding the time integration scheme, the convergence rates of ESDIRK3 are also reported in Figure 5(b), and434

these were obtained using the 16×16 grid, with P6 polynomials for the three space discretization strategies. The435

theoretical third-order convergence rate of the ESDIRK3 time integration scheme can be observed for all three space436

discretizations with comparable error levels.437
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 6: Convected vortex at Re = 100, M = 0.05. Examples of triangular and quadrilateral meshes involving i) regular elements; ii) randomly

distorted elements; iii) regular and clustered elements; and iv) clustered-distorted elements.

7.3. Assessment of the approximate-inherited multigrid approach for HDG438

To demonstrate the efficacy of the multigrid approach proposed herein for HDG, we report numerical experiments439

obtained by reducing the mesh element size for different element types. Four mesh sequences are considered in the440

study, obtained as i) regular elements; ii) randomly distorted elements; iii) regular and clustered elements; and iv)441

clustered-distorted elements. The study was performed on both triangular and quadrilateral elements, see Figure 6.442

We remark that the random mesh perturbation was limited to 10% of the minimum dimension of the element, and443

that the clustering has been obtained by placing the mesh element nodes using Gauss-Lobatto rules. A full multigrid444

strategy has been employed for the study. The strategy combines three multigrid levels, and for each of them a BILU-445

preconditioned GMRES smoother is considered. To avoid the impact of domain decomposition, all computations are446

performed in serial. Three smoothing iterations were performed on each level, while 400 iterations were employed447

on the coarsest level to ensure that the results are not polluted by a lack of coarse-level resolution. This configuration448

was found to be optimal for the present serial computations, and it is consistent with previous work in the literature,449

see [12].450

Table 2 report the results on triangular and quadrilateral mesh elements. The numerical experiment consists of451

one time period such that T/∆t = 10 using the ESDIRK3 scheme, with T the convective period of the problem.452

The average number of iterations as well as the average convergence rate (CR) ρ are reported. The CR is defined as453

ρ = (rIT /r0)1/IT with IT the average number of GMRES iterations, r0 and rIT the residuals at the first and IT th iteration454
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Reg Tri Dis Tri Reg Grad Tri Dis Grad Tri

ne ITa ρa ITa ρa ITa ρa ITa ρa

162 · 2 3.000 0.0060 2.833 0.0056 3.000 0.0120 3.000 0.0131

322 · 2 3.000 0.0123 3.000 0.0119 3.500 0.0245 3.333 0.0195

642 · 2 2.500 0.0058 3.000 0.0132 3.667 0.0315 4.000 0.0422

1282 · 2 2.333 0.0047 2.667 0.0086 3.500 0.0290 4.167 0.0560

Reg Quad Dis Quad Reg Grad Quad Dis Grad Quad

ne ITa ρa ITa ρa ITa ρa ITa ρa

162 2.833 0.0053 2.333 0.0033 3.000 0.0069 3.000 0.0057

322 2.833 0.0101 2.833 0.0081 3.000 0.0087 3.000 0.0096

642 3.167 0.0183 3.000 0.0153 3.833 0.0386 3.667 0.0336

1282 3.333 0.0246 3.500 0.0273 4.333 0.0637 4.500 0.0659

Table 2: Laminar vortex test case at Re = 100, M = 0.05. h-independence test on tri-element (top) and quad-element (bottom) meshes. of a

FGMRES(MGfull) solver built on three levels. GMRES(BILU) smoothers with 400 iterations on the coarsest level ` = 2. 3 smoothing iterations

were employed for ` = {0, 1}.

respectively. In all of the numerical experiments, the p-multigrid strategy appears to work optimally as the number of455

iterations only slightly grows with the number of mesh elements, even for distorted and graded mesh sequences.456

7.4. Evaluation of the solver efficiency457

We report results of numerical experiments devoted to assess the performance of the p-multigrid preconditioning458

strategy for HDG in comparison to other operators, as well as state-of-the-art preconditioned DG discretizations. In459

particular, we take as a reference the matrix-based, BILU preconditioned DG discretization and we aim at reporting460

insights on the computational time of the solution, in order to provide an overall idea of the computational efficiency461

of the solver. The space discretization relies on the 16×16 mesh made by regular quadrilaterals and two polynomial462

orders, i.e. k = {3; 6}. As for the time discretization, non dimensional time steps of ∆t = {1; 0.1} are employed. In both463

cases, a single time step is computed, which corresponds to three non-linear problems. We observe that our Newton464

solver converges in two iterations, which means that the CPU time and the average number of iterations are evaluated465

considering a total of six linear system solutions. Each linear system is solved up to a non-preconditioned relative466

linear tolerance of 10−5, while an absolute tolerance of 10−10 was used for the nonlinear solver.467

Special attention is hereby given to the parallel efficiency of the computations, both in terms of CPU time and468

average number of GMRES iterations. To this extent, the ideas reported in [12] on the choice of the number of levels469

and the smoothing type have been proposed. A very similar behaviour of the solver has been presently observed and470

thus we explicitly refer to that work for a more in-depth discussion about the effects of the smoothing. We here report471

only the general idea: a scalable multigrid strategy to precondition linear systems arising from the Navier–Stokes472
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Level Order Solver Preconditioner Iterations

1 6 GMRES BJ 10

2 2 GMRES BJ 10

3 1 GMRES BILU 30

Table 3: Computational settings for the p-multigrid smoothers employed within the paper.

equations can be obtained by the use of simple BJ-preconditioned GMRES smoothers for all of the levels except473

the coarse one, where more powerful preconditioners can be cheaply introduced on the smoothers due to the low474

computational cost of the coarse matrix factorization.475

In the numerical experiments we rely on a three-level multigrid strategy. In both the cases, k1,2 = {2, 1} have476

been used on the coarser spaces smoothed with BJ- and BILU-preconditioned GMRES solvers, respectively. {10, 30}477

smoothing iterations have been employed, which were found to be sufficient to provide optimal results both in serial478

and in parallel computations for HDG and DG as well. On the finest space, 10 smoothing iterations of GMRES(BJ)479

were used. The computational settings are summarized in Table 3. We remark that these settings have been found to480

be sufficiently computationally efficient for all of the numerical experiments reported in this paper.481

Table 4 compares the performance of the multigrid preconditioner to those of BILU for k = 3 using ∆t = 1 (left)482

and ∆t = 0.1 (right), for three space discretizations, i.e. DG, mHDG and pHDG. The table is designed in such a483

way that the merits of the discretization are presented along vertical blocks, while the effects of the preconditioner484

and time step size are presented along horizontal blocks. For all three space discretization, the performance of the485

BILU preconditioner degrades in view of the considerable increase in the number of GMRES iterations moving from486

serial to parallel runs. On the other hand, the multigrid preconditioning strategy shows higher parallel efficiencies487

in all cases, with the increase in number of iterations either very low (for the largest time step) or non-existent (for488

the smallest time step). In fact, with the exception of the coarsest space solution, the algorithm is not affected by the489

domain decomposition.490

Regarding the CPU time, we report the speed-up values non-dimensionalized by the CPU time of the DG, matrix-491

based and BILU-preconditioned computation. For the largest time step size, switching from single-grid BILU to492

multigrid provides consistent benefits on all three space discretizations in view of a higher parallel efficiency of the493

approach. In fact, despite the speed-up factor being lower for serial computations, it peaks at 32 cores. The strategy494

provides a speedup of 2.09 for DG, 2.21 and 3.05 for mHDG and pHDG, respectively.495

For the smaller time step, the right-hand side of Table 4, the situation is slightly different. In fact, the reduced496

conditioning of the matrix reduces the iterative solution times, as well as increases the relative cost of the matrix497

assembly. For mHDG, where the assembly costs are the highest, we observed speed-up values below one. Conversely,498

pHDG still outperforms the reference, providing a speed-up factor in the range [1.29, 1.75] due to the smaller number499

of operations during the Jacobian assembly with respect to the mixed form. However, as opposed to what happens for500

DG, where an improvement in computational efficiency is still observed, the use of p-multigrid does not benefit the501
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Discr. k = 3, ∆t = 1 k = 3, ∆t = 0.1

Solver BILU-DG MGfull-DG BILU-DG MGfull-DG

np Time E ITa S UMB E ITa Time E ITa S UMB E ITa

1 38.52 81.00 1.03 3.50 23.51 27.83 0.88 2.17

2 27.53 0.70 137.33 1.43 0.97 3.50 15.12 0.78 53.17 1.08 0.96 2.17

4 15.10 0.64 154.83 1.51 0.94 3.50 7.68 0.77 55.33 1.06 0.92 2.17

8 8.72 0.55 181.17 1.58 0.85 3.67 4.15 0.71 65.50 1.04 0.84 2.17

16 6.03 0.40 229.50 1.78 0.69 4.00 2.23 0.66 72.33 0.99 0.74 2.17

32 5.82 0.21 284.50 2.09 0.42 4.67 1.57 0.47 81.83 0.96 0.51 2.17

Solver BILU-mHDG MGfull-mHDG BILU-mHDG MGfull-mHDG

np S UMB E ITa S UMB E ITa S UMB E ITa S UMB E ITa

1 1.49 45.17 1.23 2.50 0.96 20.33 0.79 2.00

2 1.75 0.82 77.17 1.54 0.88 2.50 1.03 0.83 36.00 0.88 0.87 2.00

4 1.63 0.70 95.50 1.50 0.78 2.50 0.91 0.72 41.00 0.80 0.78 2.00

8 1.67 0.62 113.17 1.56 0.70 2.50 0.90 0.66 46.83 0.78 0.70 2.00

16 1.76 0.47 138.67 1.75 0.57 2.83 0.79 0.54 52.67 0.68 0.56 2.00

32 1.93 0.27 183.50 2.21 0.37 3.50 0.81 0.39 64.50 0.70 0.42 2.00

Solver BILU-pHDG MGfull-pHDG BILU-pHDG MGfull-pHDG

np S UMB E ITa S UMB E ITa S UMB E ITa S UMB E ITa

1 2.45 44.33 1.95 2.00 1.62 44.33 1.19 2.00

2 2.83 0.81 75.17 2.48 0.89 2.00 1.75 0.84 75.17 1.36 0.89 2.00

4 2.60 0.68 94.17 2.26 0.74 2.50 1.55 0.73 94.17 1.22 0.79 2.00

8 2.57 0.58 112.33 2.34 0.67 2.50 1.51 0.66 112.33 1.19 0.71 2.00

16 2.67 0.44 136.83 2.60 0.53 2.67 1.29 0.52 136.83 1.05 0.58 2.00

32 2.59 0.22 182.83 3.05 0.32 3.50 1.38 0.40 182.83 1.05 0.41 2.00

Table 4: Computational efficiency comparison using DG and HDG discretizations. Laminar vortex test case at Re = 100, M = 0.05, discretized

using 16×16 mesh with P3 polynomials. Two time steps, ∆t = {1; 0.1} using the ESDIRK3 scheme are reported. S UMB stands for the speed-up

factor relative to the DG, matrix-based, BILU-preconditioned computation, E is the parallel efficiency and ITa the average number of GMRES

iterations.

performance of the solver.502

Table 5 shows the same results for a k = 6 space discretization. Similar observations to those reported in Table 4503

can be made on the overall parallel performance of the preconditioning strategies here considered, i.e. the increase in504

the number of iterations of the preconditioner reflects the performance degradation of the solution strategy when np505

increases. However, in this case, the advantages arising from the use of a multigrid preconditioning strategy are more506

evident. In fact, for the largest time step size, the speed-up values are higher than those reported in Table 4 involving507

3rd order polynomials. In particular, when using 32 cores, the speedup reaches 2.65, 1.87 and 3.84 for DG, mHDG and508

pHDG respectively. In contrast to what was observed previously, when reducing the time step size, the advantages509

of using a multigrid strategy still appear evident for DG, which provides speed-ups in the range [1.86, 2.29]. While510

for higher-order polynomials and smaller time steps a mixed HDG implementation provides performance in line with511
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Discr. k = 6, ∆t = 1 k = 6, ∆t = 0.1

Solver BILU-DG MGfull-DG BILU-DG MGfull-DG

np Time E ITa S UMB E ITa Time E ITa S UMB E ITa

1 533.69 87.33 1.73 5.67 390.37 32.00 1.90 3.00

2 381.18 0.70 190.83 2.37 0.96 5.83 247.56 0.79 80.83 2.29 0.95 3.00

4 198.53 0.67 213.50 2.42 0.94 5.83 123.33 0.79 85.33 2.25 0.94 3.00

8 109.00 0.61 257.50 2.69 0.95 5.33 62.84 0.78 99.17 2.24 0.92 3.00

16 63.14 0.53 313.17 2.55 0.78 6.33 32.33 0.75 105.83 2.04 0.81 3.00

32 47.91 0.35 392.33 2.65 0.53 7.17 19.61 0.62 110.67 1.86 0.61 3.00

Solver BILU-mHDG MGfull-mHDG BILU-mHDG MGfull-mHDG

np S UMB E ITa S UMB E ITa S UMB E ITa S UMB E ITa

1 1.46 46.50 1.45 2.67 1.08 23.17 1.07 2.17

2 1.75 0.84 112.50 1.76 0.85 2.67 1.16 0.85 50.67 1.16 0.85 2.17

4 1.58 0.73 139.50 1.61 0.75 2.67 1.01 0.74 54.50 1.01 0.74 2.17

8 1.58 0.66 155.83 1.61 0.68 2.83 0.94 0.68 62.17 0.93 0.68 2.17

16 1.52 0.55 203.83 1.59 0.58 3.67 0.83 0.58 71.83 0.83 0.58 2.17

32 1.74 0.42 268.50 1.87 0.45 5.17 0.80 0.46 82.50 0.80 0.46 2.17

Solver BILU-pHDG MGfull-pHDG BILU-pHDG MGfull-pHDG

np S UMB E ITa S UMB E ITa S UMB E ITa S UMB E ITa

1 3.15 45.83 3.11 2.50 2.36 22.17 2.30 2.00

2 3.71 0.83 106.50 3.81 0.86 2.50 2.52 0.84 48.50 2.50 0.86 2.00

4 3.35 0.71 133.00 3.46 0.75 2.67 2.20 0.74 52.50 2.18 0.75 2.00

8 3.35 0.65 149.33 3.46 0.68 2.67 2.04 0.67 59.50 2.03 0.69 2.00

16 3.19 0.54 193.33 3.39 0.58 3.50 1.80 0.58 69.17 1.78 0.58 2.00

32 3.38 0.37 257.00 3.84 0.43 5.17 1.73 0.46 79.67 1.71 0.46 2.00

Table 5: Computational efficiency comparison using DG and HDG discretizations. Laminar vortex test case at Re = 100, M = 0.05, discretized

using 16×16 mesh with P6 polynomials. Two time steps, ∆t = {1; 0.1} using ESDIRK3 are reported. S UMB stands for the speed-up factor referred

to the DG, matrix-based, BILU-preconditioned computation, E is the parallel efficiency and ITa the average number of GMRES iterations.

that of a matrix-based, BILU-DG solver, the primal implementation exhibits better performance overall, even when512

it shows an overall lower parallel efficiency. In particular, BILU-pHDG is the best performing solution strategy,513

providing speed-up values in the range [1.73, 2.36]. In this case, p-multigrid performs similarly to BILU.514

Table 6 reports for comparison the speed-up values obtained using a matrix-free implementation of the iterative515

solver for the DG space discretization. In particular, we compute the matrix-based speedup S UMB using as a reference516

the matrix-based, BILU-DG solver to show the performance compared to the reference algorithm. The performance517

is evaluated using the same preconditioners reported in Tables 4 and 5. Considering the single-grid matrix-free,518

BILU-DG numerical experiments, one can summarize that:519

1. For k = 3, switching MB to MF penalizes the CPU time. The reason for this is two-fold: first, the serial520

computation is 35% slower for MF than for MB. Second, when the solver is applied in parallel, the matrix-free521
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∆t = 1 ∆t = 1/10

BILU-DG MGfull-DG BILU-DG MGfull-DG

Case np MF MFL MF MFL MF MFL MF MFL

k = 3

1 0.73 0.97 0.76 0.89 0.84 1.53 0.67 0.85

2 0.68 0.80 1.02 1.21 0.74 1.09 0.81 1.04

4 0.65 0.72 1.07 1.28 0.72 1.03 0.78 1.02

8 0.61 0.73 1.13 1.32 0.68 0.91 0.80 1.03

16 0.56 0.63 1.20 1.36 0.61 0.79 0.72 0.90

32 0.59 0.62 1.41 1.59 0.58 0.71 0.69 0.86

k = 6

1 1.03 2.10 1.84 2.56 1.00 3.10 1.97 3.36

2 0.99 1.47 2.42 3.18 0.99 2.03 2.33 3.98

4 0.96 1.37 2.41 3.32 0.98 1.92 2.23 3.78

8 0.93 1.25 2.69 3.78 0.95 1.75 2.18 3.65

16 0.85 1.06 2.35 3.11 0.90 1.56 1.90 3.15

32 0.78 0.98 2.37 3.03 0.86 1.41 1.70 2.77

Table 6: Computational efficiency of a matrix-free DG strategy. Laminar vortex test case at Re = 100, M = 0.05, discretized using 16×16 mesh

with P3 and P6 polynomials. Two time steps, ∆t = {1; 0.1} using the ESDIRK3 scheme are reported. S UMB stands for the speed-up factor referred

to the matrix-based, BILU-DG computation reported in Tables 4 and 5, S UMF is the speedup computed considering the matrix-free BILU-DG

settings. Results obtained by lagging the preconditioner evaluation (MFL) for the entire solution process, i.e. six linear systems, are also reported.

implementation seems to be less parallel efficient, since the speed-up factor decreases with an increasing the522

number of processors.523

2. For k = 6, the penalization decreases. In fact, in serial computation, the same computational time has been524

recovered, meaning that a matrix-free iteration performs similarly to a matrix-vector product. However, a525

slightly lower parallel efficiency is still observed.526

3. When a small time step is employed, higher speed-up values are achieved for MF compared to MB. In other527

words, the lower the number of GMRES iterations, the higher the performance. A slightly higher parallel528

efficiency is also observed.529

The possibility of lagging the preconditioner evaluation is also explored and the results are reported in Table 6530

(MFL). In particular, we skip the recomputation of the preconditioner for six consecutive iterations, which means that531

the Jacobian matrix is evaluated only for the first non-linear iteration of the first stage of the ESDIRK3 scheme. By532

doing so, it is observed that the linear system converges with the same number of iterations, which are not reported for533

brevity. This shows, at least for this kind of problem, that the preconditioner does not lose its efficiency throughout534

the stages of the same time step. Moreover, it confirms the powerful properties of the matrix-free iterative strategy,535

which allow skipping of Jacobian evaluation without degrading the convergence of the linear solver. Obviously, from536

the CPU time point of view, lagging the preconditioner improves the computational efficiency, since the matrix is537

evaluated only once. This is reflected by the speed-up values (see the MFL result columns). We point out that the538

maximum speed-up values are obtained for high orders, when the impact of the Jacobian assembly is large on the539
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overall CPU time, and for small time step sizes: in this case the conditioning of the matrix and the CPU time spent on540

the iterative solution process reduce, and so the computational time saved by skipping the Jacobian assembly reflects541

on the overall efficiency of the method. It is worth pointing out that by doing so, the matrix-free penalization at low542

orders is reduced, while speed-up values in the range [1.41, 3.10] are achieved for the k = 6, ∆t = 0.1 case.543

Similar observations hold true when the matrix-free approximation is employed within a multigrid strategy. Also544

in this case, the problem has been solved using the same number of GMRES iterations with respect to the non-lagging545

computation. However, from the CPU time view, a higher speed-up value is achieved both in serial and in parallel546

runs thanks to the optimal multigrid scalability with respect to single-grid BILU preconditioning. The speed-up factor547

for the largest polynomial order is now in the range [2.56, 3.78] and [2.77, 3.98] for the large and small time step,548

respectively. Those speed-up values are larger than the ones obtained for a fully matrix-based implementation of the549

DG discretization, see Table 5. In comparison to HDG, it can be seen that by using the Jacobian lagging option, larger550

speed-up values are generally achieved for small time step sizes at high order. However, the use of MGfull-pHDG551

may be preferred to MGfull-DG, even coupled with matrix-free and preconditioner lagging for the largest time step552

employed, as better suitability for dealing with very stiff and high-order discretizations has been highlighted.553

We remark that, for computational efficiency, we employ the matrix-free implementation of the iterative solver554

only on the finest space of the multilevel iterative solution, similarly to what has been done in [12]. This choice is555

consistent with the results obtained for the single-grid preconditioner in Table 6. In fact, the matrix-free iteration cost556

is similar to that of a matrix-based one only for high orders, while it is larger for lower-order polynomials. It therefore557

is appropriate to employ matrix-based smoothers on the coarse levels. When discretizing the equations using high558

orders, this idea seems to work optimally. Note also that the overall memory footprint of the application is dominated559

by the allocation of the block-Jacobi preconditioner for the finest space smoother, as shown in Figure 3.560

7.5. Remarks561

We summarize the main points of the previous section. First, we see clearly that having large time step sizes562

maximizes the advantages of coupling HDG and p-multigrid, since the expense of using static condensation together563

with a more powerful and expensive preconditioning strategy produce a faster solver only for high condition numbers564

of the system, while the higher scalability of the multigrid algorithm as opposed to single-grid reflects on the overall565

scalability of the solver. On the other hand, for small time step sizes, the computational time is dominated by the566

Jacobian assembly and condensation for HDG, thus the CPU time as well as the parallel efficiency is dominated by567

the matrix assembly.568

For HDG, we demonstrate how the mixed and primal formulations provide comparable results in terms of error569

levels by refining both in space and time, despite the fact that the primal form provides a one order lower convergence570

rate for the gradient variable. From the algorithmic point of view, the statically condensed system is typically solved571

using roughly the same number of iterations. However, the computational time is considerably lower for the pHDG572

formulation, since it does not deal with the Jacobian entries, albeit local to each element, related to the state gradient.573
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For this reason, in the remainder of the work, only the primal formulation will be employed for benchmarking.574

We stress that even for small time step sizes, the single-grid preconditioned pHDG solver performs fairly well in575

comparison to the other solution strategies, showing the benefits of the approach for unsteady flow computations.576

We remark that the current implementation of the parallelization strategy makes HDG less parallel efficient than577

DG. This fact is ascribed to the higher amount of duplicate operations due to the integration over halo mesh elements578

and faces created by the domain decomposition required for the static condensation of the interior degrees of freedom579

of the Jacobian matrix. On the other hand, in DG the duplicate work involves only partition faces. Other implemen-580

tation choices, such as those related to the minimization of the duplicate work on the partition boundaries, may be581

considered in future works.582

We finally point out that, despite being appealing, a matrix-free implementation of the hybridizable discontinuous583

Galerkin method is not at all straightforward for obtaining satisfactory performance in CPU time [24], and thus its584

development is beyond the scope of the present work.585

8. Results on complex test cases586

The second family of numerical experiments deals with the solution of two test cases: i) laminar flow over a587

two-dimensional circular cylinder at Re = 100 and M = 0.2 [34]; and ii) the solution of the plunging motion of a588

NACA 0012 airfoil at Re = 1000 and Mach number M = 0.2. The latter case is solved by using the ALE mesh motion589

formulation introduced in [18]. Those results are devoted to extend the comparison to more complex unsteady flow590

problems. In all the cases reported herein, the right-preconditioning approach is still employed such that the conver-591

gence of the linear solver is not affected by changing the preconditioning operator, and therefore all the numerical592

experiments are performed using a similar accuracy.593

8.1. Circular cylinder594

Laminar flow around a circular cylinder at Mach number M = 0.2 and Reynolds number Re = 100 has been595

solved on a grid of ne = 960 mesh elements using a P6 space discretization. Figure 7 shows a snapshot of the596

computed Mach number contours. To integrate the governing equations in time, the four-stage, third-order explicit-597

first-stage, diagonally-implicit Runge–Kutta method (ESDIRK3) was employed. The solution accuracy was assessed598

by comparing with literature data [34]. To this end, Table 7 shows the averaged drag and lift coefficients, as well as the599

Strouhal number of the body forces (Cd, Cl, S t) for several temporal refinements on the same grid. The coefficients600

were obtained by averaging a statistically-developed solution over ten shedding periods. An overall good agreement601

has been found, while a temporal convergence can be observed by using a non-dimensional time step of ∆t ≤ 0.25.602

It is well known [15] that the time step size greatly affects the iterative solution process, and therefore it has to be603

taken into account to evaluate the performance. Presently, we use the largest time step size that yields both converged604

body forces and Strouhal numbers, and this maximizes the efficiency of the solution strategy. Considering the results605
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Figure 7: Laminar flow around a circular cylinder at Re = 100, M = 0.2. Mach number contours.

(U/L)∆t Cd Cl S t

0.5 1.3468 3.383e-03 0.16327

0.25 1.3519 -1.441e-03 0.16410

0.125 1.3527 -1.400e-04 0.16410

0.05 1.3528 -1.718e-04 0.16410

0.025 1.3528 -6.353e-06 0.16410

Table 7: Laminar vortex test case at Re = 100, M = 0.05. Time convergence rates for the DG and HDG spatial discretizations and the ESDIRK3

temporal scheme.

in Table 7, we choose ∆t = 0.25. The parallel performance of the solution strategies introduced in the previous606

sections is also assessed. To do so, a fully-developed flow field is integrated in time for 10 time steps to compute the607

average number of GMRES iterations and the convergence rates during the non-linear solution. The computations are608

performed on the range of 1 to 64 cores (np) on a platform based on two 16-core AMD Opteron processors arranged609

in a two-processor per-node fashion, for a total of 32 cores per node. A fixed relative tolerance of 10−6 to stop the610

GMRES solver is used, as well as an absolute tolerance of 10−5 for the Newton-Raphson method.611

Figure 8 report the results of the computations. As observed for the convected vortex test case, the BILU pre-612

conditioner shows an increase in the number of GMRES iterations with increasing number of processes in both the613

DG and pHDG space discretizations. This can be observed in Figure 8(a), which reports the total number of itera-614

tions performed on the finest level of the discretization, averaged throughout the solution process. This behavior is615

attributed to the way the incomplete lower-upper factorization is performed, as it deals with the square, partition-wise616

block of the iteration matrix. Therefore, the preconditioner effectiveness naturally decreases as np grows, since the617

number of off-diagonal blocks neglected by the ILU increases with np. By switching from MB to MF, the number618

of iterations remains the same and it is not reported for brevity. On the other hand, the use of a multigrid algorithm619

with the provided settings results in an ideal algorithmic efficiency, i.e., the number of fine space iterations do not620
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Figure 8: L2 solution error. Laminar vortex test case at Re = 100, M = 0.05. Convergence rates for the DG (dashed), mHDG (solid) and pHDG

(crosses) discretizations versus theoretical estimates in space and time.

grow by increasing the number of parallel domains, for both DG and pHDG. In the multigrid case, the number of621

fine space iterations is computed by multiplying the number of outer FGMRES iterations with the number of pre and622

post smoothing on the finest space, which are reported in Table 3. Note that the computational cost of a multigrid fine623

space iteration is way cheaper than that of a BILU algorithm, since the element-by-element block Jacobi precondi-624

tioner is employed. It is worth also mentioning that in such a practical application the same numerical set-up as that625

of a DG solver reported in Table 3 has been employed to precondition the system, and that the method proves to work626

pretty well. Considering pHDG with BILU preconditioning, the iterative solution process still suffers of algorithmic627

degradation by parallelizing the computation, despite the increase in the number of iterations being smaller than that628

observed for DG. In addition, we observe a lower number of iterations on average, meaning that the condition number629

of the matrix has been reduced by the static condensation. The superior parallel efficiency of the multigrid algorithm630

is clearly visible in Figure 8(b), which reports the strong scalability of the algorithms. While the use of BILU-DG-MB631
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drops the parallel efficiency below 80% by partitioning the computation on just two computational cores, the multi-632

grid algorithm allows to keep good parallel efficiencies up to 32 cores. The parallel efficiency of the pHDG solver633

lies somehow in between the two, and it does not change by modifying the preconditioner, which suggests that it is634

dominated by the scalability of the static condensation/back solve portion of the application.635

Figure 8(c) reports the speed up values of the matrix free (MF) and lagged matrix free (MFL) algorithms, which636

updates the preconditioner operators only once per time step. The performance of the pHDG is also reported. In all637

of the cases, the reference algorithm is BILU-DG-MB. An improvement in computational efficiency can be observed638

for the MFL and pHDG cases, which speeds up values in favor of the latter. When switching to the full multigrid639

preconditioner, see Figure 8(d), we observe an overall increase of performance for the DG algorithms. On the other640

hand, the costs of pHDG, associated with the static condensation and back solve, cannot be offset simply by the use641

of a better preconditioner and still dominate the percentage of the overall computational time. As a result, the MGfull-642

DG-MFL strategy performs the best, with speed-up values in the range [2.24, 3.15]. Note that a similar performance643

between MGfull-DG-MB, MGfull-DG-MF and pHDG is observed, but while the matrix based one requires a full644

Jacobian matrix allocation, the matrix free and the hybridizable methods reduce considerably the memory footprint645

according to what is reported in Figure 3.646

As a final comparison, Table 8 reports the same test case solved using a grid obtained by splitting the quadrilateral647

elements into triangles. Full-order basis functions were employed. Only the computation with np = 64 is reported.648

It is worth pointing out that this space discretization reduces the total number of DoFs by the 23.8% with respect to649

the previous one. By comparing the computational time and average number of GMRES iterations, similar speed-up650

values are obtained using the DG-MB solver as well as pHDG. On the other hand, the DG-MF solver seems to be651

slightly penalized with respect to the MB one, as the speed-up values of the computations drop by a factor between 7652

to 15 percent. It is worth pointing out that the matrix-free penalization that arise in this case is in line to what reported653

in previous studies [15, 12] using broken polynomial spaces, which reduce by increasing the number of DoFs per654

element, for example in three-dimensional computations. On the other hand, a slightly larger speedup for pHDG655

computations has been observed, which makes this solution strategy the most convenient from the CPU time point of656

view.657

8.2. Laminar flow around a heaving and pitching NACA 0012 airfoil658

This test case is the CL1 (heaving and pitching airfoil) proposed for the 5th international workshop on high-order659

CFD methods (HiOCFD5), see [33]. The simulation involves the compressible Navier–Stokes equations, with γ = 1.4,660

Pr = 0.72, and constant viscosity, to simulate flow over a moving NACA 0012 airfoil. The airfoil is modified to obtain661

a closed trailing edge via the equation662

y(x) = ±0.6
(
0.2969

√
x − 0.1260x − 0.3516x2 + 0.2843x3 − 0.1036x4

)
, (52)
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Preconditioner BILU

Case DG-MB DG-MF DG-MFL pHDG

np Time ITa S UMB S UMB S UMB ITa

64 322.26 129.050 0.80 1.00 2.40 49.750

Preconditioner MGfull

Case DG-MB DG-MF DG-MFL pHDG

np S UMB ITa S UMB S UMB S UMB ITa

64 1.66 4.525 1.43 1.77 2.05 3.388

Table 8: Circular cylinder test case at Re = 100, M = 0.2, discretized using 1920 mesh elements with P6 full-order basis functions. Computational

efficiency comparison of DG and pHDG solvers using BILU and p-multigrid, respectively. S UMB stands for the speed-up factor relative to the

matrix-based, BILU-DG computation and ITa for the average number of GMRES iterations.

Figure 9: Laminar flow around a heaving NACA 0012 airfoil. Re = 1000, M = 0.2. Mach number contours at the final time T = 2.

with x ∈ [0, 1]. The initial condition is a steady state solution at a free-stream Mach number of M = 0.2 and a663

Reynolds number Re = 1000. The motion is a pure plunging motion governed by the following function664

h(t) = t2(3 − t)/4, (53)

and the output of interest is the total energy and vertical impulse exchanged between the airfoil and the fluid,665

W =

∫
T

Fy(t)ḣ(t)dt, I =

∫
T

Fy(t)dt, (54)

where Fy(t) is the vertical force computed on the airfoil surface, and ḣ(t) is the time derivative of Eq. (53). In666

particular, the output is evaluated at a non-dimensional time T = 2. The mesh consists of a triangulation of the667

domain by ne = 2137 elements, shown in Figure 9, and the solution approximation space is P6.668

The time step size of the simulation has been evaluated through a time-convergence analysis of the output quan-669

tities, reported in Table 9. Table 10 compares the computational efficiency of the solution strategies in terms of the670

speed-up factor, S UMB, and the number of iterations, ITa. Only the computation with the larger number of cores is671

reported to show the efficiency on large and practical computations. The reference to compute the speed-up is the672
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T/∆t W I

20 -1.3860 -2.3667

40 -1.3839 -2.3444

80 -1.3837 -2.3391

160 -1.3837 -2.3378

Table 9: Time convergence analysis of the laminar flow around a plunging NACA 0012 airfoil. A satisfactory accuracy is observed for T/∆t = 2,

where T = 2 is the length of the simulation and ∆t is the time step size.

Preconditioner BILU

Case DG-MB DG-MF DG-MFL pHDG

np Time ITa S UMB S UMB S UMB ITa

64 900.19 136.119 0.69 0.81 2.35 49.750

Preconditioner MGfull

Case DG-MB DG-MF DG-MFL pHDG

np S UMB ITa S UMB S UMB S UMB ITa

64 1.49 4.477 1.06 1.13 2.13 2.754

Table 10: Circular cylinder test case at Re = 100, M = 0.2, discretized using 2137 mesh elements with P6 full-order basis functions. Computational

efficiency comparison of DG and pHDG solvers using BILU and p-multigrid, respectively. S UMB stands for the speed-up factor referred to the

matrix-based, BILU-DG computation and ITa for the average number of GMRES iterations.

computational time of the matrix-based, BILU-DG solver. By switching from a matrix-based to a matrix-free im-673

plementation, the computational strategy is penalized by higher computational cost of a single iterations, see the MF674

column. By employing the Jacobian lagging (MFL), this penalization is reduced only slightly. On the other hand, the675

pHDG implementation provides a solver which is more than twice as much as fast, while the system require a con-676

siderably lower number of GMRES iterations with respect to the reference. The use of p-multigrid preconditinoing677

in a DG context provides a speed-up factor of about 1.49 for a fully matrix-based implementation, and the number of678

iterations drops from 136 to around 4.4 on average. The use of matrix-free in this case still penalizes the solver, which679

is about 12% faster for the MFL case. Multigrid preconditioning is shown to be robust enough to precondition the680

linear system arising from the pHDG discretization, since it converges using an average of 2.754 iterations. However,681

this gain is not reflected on the CPU time, which is slightly higher.682

9. Conclusions683

The paper compares, within the same framework, the computational efficiency of different high-order discontinu-684

ous Galerkin implementations. The first involves a modal discontinuous Galekin method coupled with matrix-based685

and matrix-free iterative solvers, while the second one considers a hybridizable discontinuous Galerkin implementa-686

tion, both in the mixed form, which allocates the components of the Jacobians related to the gradient variable, and687

in the primal form, which forgoes separate approximation of the gradient variable and symmetrizes the discretization688
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by adding an additional adjoint-consistency term. The efficiency of the solution strategies is assessed by comparing689

different single-level preconditioners as well as multilevel ones such as p-multigrid, on a variety of two-dimensional690

test cases involving laminar viscous flows, including mesh motion, on meshes made by triangular and quadrilateral691

elements. The effects of parallel efficiency and the use of different basis functions have also been considered. The692

paper shows that the use of a matrix-free implementation of the iterative solver in the context of implicit discontinuous693

Galerkin discretizations provides a memory footprint which is in line to that of an HDG method if a block-diagonal694

preconditioner is employed within the smoother on the finest space. Moreover, the primal HDG method becomes695

more efficient than the mixed one, having a lower number of non-zeros Jacobian entries, and it provides comparable696

error levels. If compared to pHDG, the p-multigrid matrix-free solver is competitive in terms of CPU time when the697

problems involve time marching with small time steps, since the preconditioner evaluation can be lagged. On the other698

hand, HDG methods require expensive element-wise operations that become a bottleneck in those conditions. Finally,699

a novel approximate-inherited p-multigrid strategy has also been introduced for HDG. Such a strategy is more robust700

and efficient for different test cases and mesh types, and it is able to reduce considerably the number of iterations of the701

solution process. However, this gain in number of iterations is not reflected in the CPU time of the solver. Future work702

will be devoted to the validation of those strategies on stiff three-dimensional cases involving laminar and turbulent703

flows, and possibly hybrid RANS-LES models.704
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