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Physics-based modeling and simulation has become an essential tool in science and engineering for
analysis and design of complex physical systems. Computational fluid dynamics (CFD) is highly
prevalent in aerospace applications, allowing for the simulation of highly accurate flow fields. Indus-
trial processes such as design optimization often require simulations at many different sets of design
parameters, leading to a very high computational cost for large problems. Reduced-Order Models
(ROMs) can mitigate this issue, allowing for rapid, real-time surrogate modeling of flow fields using
some high-fidelity simulations as training data. Non-intrusive ROMs, which use a purely data-driven
approach, often use a proper orthogonal decomposition (POD) of the training data along with a
regression model such as Gaussian process regression (GPR) to make predictions at unseen design
parameters. In this work, we introduce a non-intrusive ROM using locally constructed POD bases
found using Isomap, a versatile technique for nonlinear dimensionality reduction. When tested on a
lid-driven cavity problem, results show that the ROM increases performance over a number of local
ROM dimensions.

1. Introduction

Physics-based modeling and simulation is an essential tool across many applications in engineering and science.
By solving a set of governing equations, often found in the form of parameterized partial differential equations (PDEs),
highly accurate representations of physical systems can be obtained that may otherwise be difficult to evaluate. In
aerospace applications, computational fluid dynamics (CFD) is widely used to obtain flow-field information. Param-
eterized PDEs discretized over a computational domain €2 can be associated with a set of design parameters p that
control properties such as the boundary conditions, geometry of the domain, and physical properties. Design opti-
mization processes often require high-fidelity simulation at many sets of design parameters, which leads to a large
computational cost that may render the process infeasible. Reduced-Order Models (ROMs) are commonly used to
drastically lower this computational cost. ROMs utilize training data from a small number of chosen high-fidelity
simulations to create a surrogate model that can be rapidly evaluated at unseen design parameters to obtain accurate
solutions. ROMs reduce the dimensionality of full-order models, which contain a large number of degrees of freedom.
In one approach to generating ROMs, a reduced basis of the solution space is computed in a compression phase, for
which a set of expansion coefficients can be used to obtain accurate approximations of full-order solutions. There exist
many methods for computing the reduced basis, with a very popular one being the proper orthogonal decomposition
(POD) [1, 2]. A singular value decomposition (SVD) of a matrix containing training data is used to obtain a POD basis
which consists of a low-rank set of linearly independent basis vectors. A linear combination of these basis vectors can
be used to approximate states lying within the solution space.

ROMs utilizing the POD involve both projection-based approaches [3, 4] and non-intrusive approaches [5, 6].
Projection-based ROMs project the physics of the governing equations onto the POD basis to solve a low-dimensional
model. Although they have been shown to offer robust performance, they can be computationally expensive for
certain nonlinear problems. In the case of non-intrusive ROMs, the physics of the model are only used to generate
training solutions. A regression model is used to predict expansion coefficients at unseen design parameters. Gaussian
process regression (GPR) is widely used in non-intrusive ROMs for this purpose [7, 8], and the combined method
is referred to as POD-GPR. In problems associated with different physical regimes in the solution space, building
ROMs with local POD bases has been shown to alleviate performance issues in both intrusive and non-intrusive
approaches [9, 10]. In this work, we introduce a method for constructing local POD bases based on Isomap [11], a
versatile technique for nonlinear dimensionality reduction. By using only training samples that are physically similar
to the given prediction point, the regression of the expansion coefficients in POD-GPR can be more robust leading to
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higher predictive performance. Isomap provides low-dimensional representations of training data along a manifold,
which can be used as a measure of similarity. The performance of this method will be tested on a lid-driven cavity
problem solved using the steady incompressible Navier-Stokes equations.

II. Methods

1. Full-Order Model

In this work, the full-order model (FOM) is considered to be the solution of a state variable () to a set of governing
parameterized partial differential equations (PDEs) that are discretized over a computational domain € R¢. The
design parameters g € D are used to define the parameters of the PDEs as well as the computational domain.
D C R? denotes the design parameter space such that  : D — RV, The computational cost of obtaining a solution
x increases with the size of the computational domain, which is in proportion to the number of degrees of freedom
N. In engineering design, it is often the case that sufficiently accurate solutions are only obtained when N is very
large, leading to a very large computational cost for a single solution. This computational cost can render industrial
processes such as design optimization infeasible, as the need to evaluate many different designs in real-time becomes
computationally intractable. The use of reduced-order models is motivated by this large computational cost, where
training data from the solutions to a small number of FOMs are used to construct a cheap and accurate surrogate model.
In this work, solutions to the steady incompressible Navier-Stokes equations, particularly the velocity, are considered.

1.1.  Flow Solution

OpenFOAM [12], an open-source toolbox for multiphysics simulation, is used for CFD simulation. Steady incom-
pressible laminar flow is simulated using simpleFoam, a standard OpenFOAM solver, by solving the Navier-Stokes
equations,
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where ﬁ = [u_,)v, w] is the velocity vector and u, v, and w are the velocity components in the z, y, and z directions
respectively; .S is the face-area vector; V' is the volume; v is the kinematic viscosity, and p is the pressure. The finite
volume method (FVM) is used to discretize the continuity and momentum equations over the computational domain.
The semi-implicit method for pressure-linked equations (SIMPLE) algorithm [13] is used to couple the equations
along with Rhie—Chow interpolation [14].

The SIMPLE algorithm solves the discretized momentum equation for an intermediate velocity field by using the
pressure field obtained from the previous iteration or an initial guess (p) in the first iteration. The momentum equation
is then semi-discretized as

—> — — —
apUp=—Y anUy —Vp’ = H(U) - Vp’, (3)
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where a is the coefficient resulting) fr_o)m the FVM diicretization, P and N denote a control volume cell and its
neighboring cells respectively, and H(U) = — )\, ayU y measures the influence of the velocity from cell neighbors.
A new variable ¢° (the cell-face flux) is introduced to linearize the convective term,
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where f denotes the cell face. ¢° is obtained from a previous iteration or from an initial guess. After solving Eq. (3),
the intermediate velocity field is obtained which does not satisfy the continuity equation.

Next, the continuity and momentum equations are coupled to form a pressure Poisson equation, from which a new
pressure field can be computed. The discretized form of the continuity equation is
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Rather than linearly interpolating, U ¢ is computed by interpolating the cell-centered velocity U p obtained from

equation (3) onto the cell face,
. HU 1
Ur= LICH) I () (Vp)y. (6)
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Rhie and Chow [14] proposed this method of momentum interpolation, which is effective in mitigating the checker-
board effect found in collocated meshes, in which pressure oscillations arise. Substituting Eq. (6) into Eq. (5) gives us

the pressure Poisson equation,
1 H(U
V-(Vp>V~< ( )>. @)
ap ap

Solving Eq. (7), an updated pressure field p! is computed. Finally, the cell-face flux is updated using the updated

pressure field p*,
S HU 1 -
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f f
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A new velocity field is computed by solving Eq. (3) with the updated pressure and cell-face flux. This process is
iteratively repeated until either a residual tolerance or maximum number of iterations is reached.

2. Reduced-Order Modeling

This section gives a brief overview of the POD-GPR method for constructing ROMs, also commonly referred to
as POD-Kriging, which assumes that there exists a functional dependence between the design parameters and full-
order solutions. This method involves calculating a proper orthogonal decomposition (POD) of a snapshot matrix
containing solutions to the FOMs that comprise the training data using the singular value decomposition (SVD). A
linear combination of a number of independent basis vectors found from the POD can be used to extract the underlying
structure of the solution space [1]. Gaussian process regression is then used to predict the expansion coefficients
associated with the basis vectors at a set of unrealized design parameters, allowing for accurate predictions of the
full-order solution.

2.1.  Proper Orthogonal Decomposition

Given a set of n solution snapshots calculated at chosen design points in the parameter space, a snapshot matrix
S € RVX" ig assembled,

S c RNXn — [.’1}172132, L ’;cn] = [w(ul),m(HQ),' e ,m(ﬂn)] ®)

There exists a subspace V associated with .S, such that V = span(.S). It is assumed that V provides a good approxi-
mation of the full-order solution manifold for p € D if S contains a sufficient number of solution snapshots. A rank
k set of orthonormal basis vectors [tp!, 12, -+ 9*] € RN, where N > k, is associated with V such that a solution
snapshot ¢, i € [1,2,---n] in S can be accurately represented as a linear combination of them

x' = alp! +abap? -+ alyp. (10)

Where a’ consists of the basis coefficients, also referred to as expansion coefficients, for a given solution snapshot. The
truncated singular value decomposition of S decomposes it into two orthonormal matrices U € RV *" and V' € R"*"
and a diagonal matrix ¥ € R"*"

S=UxVvT. (11)

We are interested in U, which contains a set of n left singular vectors that form an orthonormal basis for the
column space of S as well as diag(X) € R" = [01, 09, - ,0,] wWhich consists of the singular values in descending
order, ¢y > -+ > 0, > 0. The POD basis ¥ € RVY*F = [sp! 4p? ... 1p*] is formed by the first k left singular
vectors of U. The singular values are associated with the left singular vectors and often decay very rapidly. In many
ROM:s, it is common practice to use the first k& singular vectors such that the POD basis preserves only dominant basis
vectors. For any solution x the basis coefficients a that give the projection of  onto ¥ are computed as

a=9"g. (12)
Full-order solutions at unseen design parameters can be approximated using the POD basis
x(p') ~ wa* = ajyp' +azpp’ -+ gyt (13)

where a* is estimated using a regression model in non-intrusive ROMs.

30f12

American Institute of Aeronautics and Astronautics



4

Figure 1: Schematic of the proper orthogonal decomposition (POD), where the snapshot matrix S is decomposed
using the singular value decomposition (SVD) and the POD basis ¥ is obtained from U'.

2.2.  Gaussian Process Regression

Gaussian process regression (GPR) is commonly used in non-intrusive ROMs for expansion coefficient prediction. In
addition to being computationally inexpensive and easy to implement, GPR provides reasonable accuracy with limited
training data, making it a very flexible regression model. GPR is a supervised learning method and Bayesian approach
that is used for predictions of continuous outputs and had one of its first uses in the field of geostatistics [15]. In ROMs
using GPR, each expansion coefficient in a is predicted with an individual regression model,

filp) :RP 5 Rie 1,2,k (14)

ROMs using GPR allow for the number of expansion coefficients to be large as long as it does not degrade the quality
of the solution subpsace; in the case of POD-based non-intrusive ROMs, n = k usually provides the best accuracy
when using GPR [16]. Given training data consisting of inputs X = [z}, 2?---z"] and outputs Y = [y1,¥2 - Yn],
where each input ' € P C R” belongs to an input domain P corresponding to a single output y; € R, a probability
distribution over functions is inferred by GPR that is conditioned on the training data. A brief introduction to GPR is
given in this section, while a more formal overview is given in the work of Rasmussen [17].

A Gaussian process (GP) is a set of random variables, of which any finite number follow a joint Gaussian distribu-
tion. GPR makes the assumption that data are generated according to a GP with a mean function m(z) and covariance
function &,

f(@) ~ GP (m(z), k(z,27)), (15)
in addition to some Gaussian noise € ~ N (0, 05),
y=[f(z)+e (16)

A joint Gaussian on the training data { X, Y} and predictions at unseen points x* are given by

] >4 () [ )

The conditional expectation of f(x*), derived from the properties of conditional Gaussian distributions, is given as

E(f(@)Y) =m(X) + r(a”, X)(s(X, X) + oy )7 (Y —m(X)), (18)
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where [ is the identity matrix and a small positive regularization constant O'Z adds stability to the matrix inversion
operation. The mean function m (X)) is in practice usually set to the mean of the training outputs

n
m(X) = =LY, (19)
n
The inputs in X are also usually normalize before regression is performed, as this increases performance. There exist
many kernels that can be chosen to define the covariance function. The most well-known choice of kernel is the radial

basis function (RBF) kernel

d(X,z*)?
X,z") = 7 ). 20
R(X,2") exp( o (20)
Another choice of kernel, and the one that will be used in this work, is the Matern kernel,
1 V2
X,z)=—F— | —d(X.,z* 21

where d is the Euclidean distance function, I' is the gamma function, and K, is the modified Bessel function of
the second kind. [ and v comprise the set of hyperparameters 6 of the Matern kernel, and control the length scale
and smoothness respectively. The accuracy of the regression model is sensitive to the hyperparameter values, and
an optimal set of hyperparameters 6,y is found by using gradient-based optimizers to maximize the marginal log-
likelihood of the training data

1 _ 1 n
Oopt = argmax logp(Y'|X,0) = —§YT(;-;(X, X)+o, 1) - 5log K(X,X)+ o 1| — Slog2m.  (22)

3. Local POD Basis Construction Using Isomap

In this section, the use of Isomap in constructing local POD bases is discussed. A brief introduction to the Isomap
algorithm is given first, followed by the method used for selecting local POD bases for prediction points based on
their design parameters. The original work Tenenbaum et al. [11] contains a more complete overview of the Isomap
algorithm.

3.1. Isomap

Isomap is a nonlinear dimensionality reduction method that estimates an intrinsic low-dimensional manifold of high-
dimensional data. Given a data matrix X € R"*¥ with n observations and dimensionality IV, Isomap provides
a latent representation matrix W € R"*", where r < N, and often » = 2. The latent representation w € R"
for each sample represents its position on the low-dimensional manifold. Isomap utilizes multidimensional scaling
(MDS), a technique which preserves distances in a low-dimensional environment given a pairwise dissimilarity matrix
of high-dimensional data points. The dissimilarity matrix can contain any metric of dissimilarity between points; in
Isomap, this metric is related to the geodesic distance between points, which refers to the shortest distance along the
manifold. Isomap first builds a neighborhood graph G from the training data, connecting only a given number of
nearest neighbors for each observation, with the edges on the graph weighted by the Minkowski distance d between
two points,

N H
d(z,y) = (Z i — yi|q> : (23)
i=1

When g = 2, this becomes the Euclidean distance. The number of nearest neighbors can be decided using various
methods, including k-nearest-neighbors, kd trees, or ball trees [18]. The shortest path distances between all pairs of
data points is then found by applying appropriate algorithms including Dijkstra’s algorithm and the Floyd-Warshall
algorithm [19] to G to obtain a dissimilarity matrix. MDS is then used to obtain a low-dimensional representation of
the training data. Isomap is versatile algorithm for nonlinear dimensionality reduction, showing strong performance on
datasets ranging from various images to gene and protein expressions [11, 20]. Alternative nonlinear dimensionality
reduction techniques such as t-SNE and locally linear embedding (LLE) are also widely used in many fields. Although
we do not compare these methods in this work, Isomap was shown to offer better performance for the ROM task. A
popular benchmark for nonlinear dimensionality reduction methods is the Swiss roll dataset, an example of which is
shown in Figure 2, where data points along the roll vary in color spectrally. A 2-dimensional latent representation
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Original Swiss Roll Dataset Latent Representation of Swiss Roll Dataset
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Figure 2: Swiss roll dataset and 2-dimensional latent representation produced by Isomap.

of the data produced by Isomap is also shown in Figure 2. The manifold produced by Isomap successfully separates
points by their position along the roll by preserving their geodesic distances, rather than their Euclidean distances, as
shown in Figure 3. While the Euclidean distance between points far away on the roll is small, their separation on the
manifold produced by Isomap remains large.

3.2.  Local POD Basis Construction

In constructing local POD bases, the goal is to use only training samples that will be physically similar to a given
prediction point. The design parameters themselves may not be informative to this end, especially when the number of
parameters is large. Applying Isomap to the transpose of the snapshot matrix, S7', we can estimate a low-dimensional
manifold of our full-order solutions and obtain a latent representation w for each training sample. Using GPR, a
regression model can be obtained to estimate the latent representations w* for unseen design parameters p*. Guided
by the general idea of nonlinear dimensionality reduction that points closer to each other in the lower dimensional space
are more similar, we can create a local snapshot matrix S;, € RY*! for a prediction point with design parameters y¢*
consisting of the training samples corresponding to the [ closest latent representations to w* measured by Euclidean
distance. For the Euclidean distance to be a strong metric of similarity, we set 7 = 2. The local POD basis ®; € RV*!
is found from the SVD of Sy,. Since ROMs using the POD-GPR method are most accurate when using all of the basis
vectors, we choose k = [. Using this local snapshot matrix, the POD-GPR method can be used to make a prediction
of the unknown state *. This process is outlined in Algorithm 1.

R oy
e —

Small Euclidean distance Large geodesic distance

Figure 3: Comparison of Euclidean and geodesic distances between points for the Swiss roll dataset.
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Algorithm 1 POD-GPR method using local POD bases found using Isomap

Input: S, U ain, Upred, ! > Snapshot matrix, design parameter matrices, local POD basis dimension

Output: S* > Snapshot matrix containing predictions of full-order states
k=1 > ROM dimension is equal to local POD basis dimension
2: W « Isomap(S7) > Compute latent representations of training snapshots using Isomap
3: W* « GPR(W U yain, Uest) > Approximate latent representations of prediction points using GPR
4: forn € {1,2,... , Nprea } do > Loop over all predictions
5: w) +— W*n,:] > Obtain approximate latent representation for current prediction
6: d, < dist(w}, W) > Compute pairwise Euclidean distances between latent representations
7: iy, < sort(dy,)[1 : k] > Find indices of { closest training points to current prediction
8: S+ S|, in) > Assemble local snapshot matrix
9: P, <~ SVD(SL) > Compute local POD basis from SVD of local snapshot matrix

10: Ap (@%S L) ’ > Compute expansion coefficients of states in local snapshot matrix

11: form e {1,2,...,k} do

12: A% [:,m] < GPR(AL:, m], Utrain, Utest) > Approximate each expansion coefficient using GPR

13: S (<I’ LA*LT) > Compute approximated snapshot matrix of predictions

Iy
I;
Q(p) L
=0
p u=0v=0,
Vp=0 51
a) Lid-driven cavity boundary conditions. b) Lid-driven cavity design parameters.

Figure 4: Schematics describing the lid-driven cavity problem.

III. Numerical Results

The CFD case used in this work is a steady, incompressible, and laminar lid-driven cavity flow parameterized
by three geometric parameters controlling the computational domain €2 and one parameter controlling the kinematic
viscosity v by changing the Reynolds number. This problem has previously appeared in a work by Hesthaven and
Ubbiali [5], which also involved the use of non-intrusive ROMs. Figure 4 shows the boundary conditions on each edge
Ti,i €[1,2,3,4]; u, v = 0 on all of the edges except the top, where u = 1,v = 0, and Vp = 0 on all of the edges.
The reference pressure is set to O at the bottom left corner. The parameterization of the computational domain is alo
shown, which involves three parameters changing the length of the horizontal (1) and slanting edges (u2) as well as
the slanting angle (u3). The fourth parameter is the Reynolds number, Re (114), which is found as

max (1, f12)

o=

(24)
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Using the Latin hypercube sampling approach [21], 360 different sets of design parameters are generated with the
bounds for each parameter given as

The computational domain consists of 64 x 64 cells uniformly distributed in the x and y directions and one cell
spanning the z direction, resulting in N = 4096. The full-order states of u and v will be used for testing the POD-GPR
ROM using local POD bases, which will be referred to as the local ROM. Its performance will be tested against the
ROM using all of the available training data and every basis vector, referred to as the global ROM. Separate ROMs
are used for predicting u and v. Figure 5 shows contours of « and v for the lid-driven cavity problem at three different
sets of design parameters. The metric of performance that will be used is the relative /2 norm error e between the
approximated state & and true state x

Zf\;(iz —x;)?

e= ) (25)
N 2
Zi:l Ty
X Velocity X Velocity X Velocity
-0.37 0 0.35 0.7 1 -0.37 0 0.35 0.7 1 0. 35 1
- I ‘ _
a) u:(1.5,%,—g,200) b) 1 = (1.5,1.5,0, 300) ¢ p= (15, f,g,400
Y Velocity Y Velocity Y Velocity
0.6 -0.3 0 0.27 -0.6 0.3 0 0.27
—_— _ — -

d)u:(l.S,%,—%,QOO) e) u=(1.5,1.5,0,300) (15,f,g,400
Figure 5: Contours of u (top) and v (bottom) for the lid-driven cavity problem at three sets of design parameters.

To assess the performance of the ROM over the entire dataset, 5-fold cross-validation will be used to create 5
different splits of the data into 288 training samples and 72 test samples. For each fold, the average relative error
€i,1 € [1,2,3,4,5] will be taken over all of the test samples. The mean of these average errors will be taken over all
of the folds to report a cross-validation error écy

ecv = Lzt ., (26)
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In addition to using local POD bases found using Isomap, results will be shown for local POD bases found randomly
from the training set, where each test sample will be assigned a randomly selected local snapshot matrix. Isomap
and GPR are implented using scikit-learn [22], an open-source machine learning library for Python. For Isomap, the
Minkowski distance with ¢ = 5 is used, the manifold dimension is set to » = 2, and the number of neighbors to
consider is set to 5. The scikit-learn implementation of Isomap automatically selects an algorithm to use for deciding
the number of nearest neighbors and computing the shortest path distances. Figure 5 shows contours of u and v for
the lid-driven cavity problem at three different sets of design parameters. A sharp gradient in u exists at the top of the
cavity and a vortex moves throughout the cavity as the design parameters change. The contours of v show a vortex
which varies in shape and size with the design parameters. Both v and v exhibit very nonlinear behavior with changes
in p, making this a difficult prediction problem.

Figures 6 and 7 show plots of écy against the ROM dimension k € [50,250] for the Isomap and random local
ROMs respectively. The global ROM relative cross-validation error with k = 288 is also plotted for comparison.
Compared to the global ROM, we can see that using Isomap to generate local POD bases offers better predictive
performance in both « and v over a large number of ROM dimensions. When & is low, the amount of data available may
not be sufficient in both the quality of the POD basis and GPR model to outperform the global ROM. As k grows larger,
the performance offered by using local POD bases is greater than that of the global ROM, with peak performance
occuring at around k£ = 125 for both u and v, with percent decreases in écy of 4.11% and 3.11% respectively.
Generating random local POD bases does not exhibit this behavior; we can see that the global ROM outperforms this
method over all selected values of k, especially when k is low. The random local ROM error approaches that of the
global ROM as k grows large, with the decay in ecy showing exponential behavior. This great disparity in performance
at lower values of k shows that Isomap is highly effective in identifying training samples that are very similar to the
current test sample based on their latent representations when combined with GPR. Although the local POD basis ¥,
does not offer a lower projection error compared to ¥, the GPR model is more robust when working with states that
show a higher degree of similarity amongst themselves.

Although ecy is lower for most of the selected values of £ when using the Isomap local ROM, not all test samples
will exhibit a decrease in relative error when using this method compared to the global ROM. The difference in relative
error for test samples between the local and global ROMs will vary based on a number of factors including the values
of pu*, ¥y, and the GPR model. There is no clear way of distinguishing which ROM will perform better given only
p*. Figures 8 and 9 show two cases where the global ROM results in high relative errors and the Isomap local ROM
reduces them significantly for both v and v. Although the values of i3 and Re are similar for these two cases, the
contours of » and v show that they do not exhibit the same physical behavior. Figure 8 shows that a local ROM with
k = 125 reduces the relative errors in both u and v significantly; with percent decreases in e of 40.6% and 47.6%
respectively in the first case. For the second case, Figure 9 shows that a local ROM with & = 150 gives percent
decreases in e for v and v of 27.9% and 30.8% respectively.

Average CV Error in u, Isomap Local ROM Average CV Error in v, Isomap Local ROM
0.048 1 —&— Local ROM CV Error —&— Local ROM CV Error
= Global ROM CV Error 0.060 - = Global ROM CV Error
0.047 A
0.046 - 0.058 7
0.045 -
o . 0.056
O O
] ]
0.044 -
0.054 -
0.043 A
0.042 0.052
0.041 A
- - r T - - r r - 0.050 1 . : . . . . . .
50 75 100 125 150 175 200 225 250 50 75 100 125 150 175 200 225 250
Local ROM Dimension, k Local ROM Dimension, k
a) Relative CV error in u, Isomap local ROM b) Relative CV error in v, Isomap local ROM

Figure 6: Relative cross-validation error plots for Isomap local ROM.
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Average CV Error in u, Random Local ROM Average CV Error in v, Random Local ROM

—&— Local ROM CV Error 0.16 1 —&— Local ROM CV Error
0.12 A = Global ROM CV Error m=_Global ROM CV Error
0.14 4
0.10 A
0.12 1
> >
@ @
0.08 1 0.10 -
0.08 1
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50 75 100 125 150 175 200 225 250 50 75 100 125 150 175 200 225 250
Local ROM Dimension, k Local ROM Dimension, k
a) Relative CV error in u, random local ROM b) Relative CV error in v, random local ROM

Figure 7: Relative cross-validation error plots for random local ROM.

X Velocity Global ROM Difference, X Velocity Local ROM Difference, X Velocity
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a) u, Ground Truth b) u, Global ROM Difference ¢) u, Local ROM Difference
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0.28 0 0.02 0.04 0.061 o] 0.02 0.04 0.061
[

d) v, Ground Truth e) v, Global ROM Difference f) v, Local ROM Difference

Figure 8: Comparison between global and Isomap local ROMs at i = (1.601,1.832,0.3643,543.8) and k = 125.

10 of 12

American Institute of Aeronautics and Astronautics



X Velocity Global ROM Difference, X Velocity Local ROM Difference, X Velocity
037 Q 0.35 0.7 1 0 0.025 0.05 0075 0.1 0 0.025 0.05 0.075 0.1

. | | [

R —

a) u, Ground Truth b) u, Global ROM Difference ¢) u, Local ROM Difference
Y Velocity Global ROM Difference, Y Velocity Local ROM Difference, Y Velocity
056 03 0 0.3 0 0.02 0.04 0.063 0 0.02 0.04 0.063
| |
- - L - - -

J
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Figure 9: Comparison between global and Isomap local ROMs at i = (1.957,1.860,0.3163,513.2) and k£ = 150.

IV. Conclusions

This work presents a non-intrusive ROM utilizing the POD-GPR method based on local POD bases found using
Isomap. GPR can be used to estimate the latent representations of unseen design parameters, with local POD bases
generated from the closest training samples measured by Euclidean distance. When applied to a lid-driven cavity prob-
lem, this method shows greater accuracy for many local ROM dimensions, and greatly exceeds the performance found
from selecting local POD bases randomly. Isomap is found to be highly effective in creating latent representations
of the training data, with samples that are physically similar being closer together on the low-dimensional manifold.
Local POD bases consisting of physically similar samples are shown to allow for more robust prediction of expansion
coefficients when using GPR, even though the local POD bases do not provide a lower projection error. Although this
method does show an increase in overall performance, it is not possible to tell if a given set of unseen design parame-
ters will gain any boost in predictive performance. Future work will focus on increasing the utility of this method by
developing a method for finding an optimal local ROM dimension to use for a set of training snapshots.
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