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Abstract

The inclusion of transition-to-turbulence effects in Computational Fluid Dynamics
(CFD) simulations is essential to accurately predict drag reduction from the use of
laminar flow technologies. The parabolized stability equations (PSE) method takes
into account nonlocal and nonparallel effects on boundary layer dynamics. Its com-
putational cost compares to that of linear stability theory (LST) analysis, which does
not account for these effects. However, difficulties related to the robustness of PSE
have prevented its application to industrial cases, where the more straightforward LST
approach has been adopted because of its relative ease of use. When using PSE with
an eN transition method, it is necessary to determine the stability modes that trigger
transition and their neutral points. We propose a robust PSE-based transition frame-
work that includes a boundary layer solver, a database method, and an LST solver that
provides the required stability modes and the corresponding neutral points so that a
robust PSE calculation is automatically performed. Our approach leverages an auto-
matic framework for the application of PSE-based transition prediction to aerodynamic
flow analysis.

Nomenclature

A, B, C, D = Flow stability matrix operators
E(x) = 1

2

∫∞
0

(|û|2 + |v̂|2 + |ŵ|2) dy, disturbance kinetic energy
f = Dimensional frequency (Hz)
F = ωr/Reδ1 , reduced frequency
hx, hy = Curvature metrics
H12 = Boundary layer shape factor
i =

√
−1, imaginary number
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N = ln(A/A0), amplification factor
Ncrit = Critical amplification factor
q = (ρ, u, v, w, T ), flow state vector
q̄ = Steady, base flow state vector
q̃ = Unsteady, disturbance state vector
q̂ = Disturbance amplitude state vector
Re = Ueδ(x)/ν, local Reynolds number based on the characteristic length scale
Tu = Freestream turbulence intensity
x = Coordinate in the streamwise direction
y = Coordinate in the wall-normal direction
z = Coordinate in the spanwise direction
û = Disturbance velocity amplitude vector
u = Velocity component in the streamwise direction
v = Velocity component in the spanwise direction
w = Velocity component in the wall-normal direction
α = Streamwise wave number
−αi = Disturbance growth rate in the local, parallel stability problem
β = Spanwise wave number

δ =
√
νx/Ue, characteristic length scale

δ1 = Boundary layer displacement thickness
δ2 = Boundary layer momentum thickness
ε = Linear perturbation amplitude factor
ω = Angular frequency
Θ = Phase function
σ = Disturbance growth rate
σE = Disturbance kinetic energy based growth rate

Subscripts

0 = Neutral point location
1 = Initial marching location
e = Boundary layer edge
E = Energy
i = Imaginary part
NP = Neutral point
p, l = PSE-based, local, parallel
r = Real part

1 Introduction
In airplane aerodynamic design, the inclusion of transition-to-turbulence effects into
the computational fluid dynamics (CFD) process allows the aerodynamicist to explore
the benefits of laminar flow airframes, which leads to lower-drag airplanes. Laminar
flow aircraft concepts (both natural and active) have recently gained traction as a
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means to reduce airframe drag [1–3] Predictive computational fluid dynamics (CFD)
models for laminar to turbulent flow transition are needed to design and optimize such
concepts. Typical jetliners have a drag breakdown at cruise in which around 55% of the
total drag comes from viscous effects [4]. Turbulent boundary layers present a larger
momentum transfer in the wall-normal direction when compared to laminar boundary
layers, and therefore, the velocity profiles are fuller in the former [5]. As a consequence,
the skin friction coefficient is larger in turbulent boundary layers, leading to increased
viscous drag for turbulent, wall-bounded flows. Lower drag through laminar flow tech-
nology means reduced fuel consumption and greenhouse gas emissions. A significant
portion of the direct operational cost (DOC) is attributable to fuel consumption and,
therefore, laminar flow technology is a valuable asset in modern airplane design. Be-
yond laminar flow technology applications, including transition-to-turbulence effects
improves computational results for conventional airframes. As an example, high-lift
devices typically present small Reynolds numbers in slats and flaps, and, therefore,
transition-to-turbulence should be included to improve the comparisons of numerical
results to experimental data, and to improve flight performance predictions [6].

Transition to turbulence starts with the receptivity of external disturbances in the
laminar boundary layer. These disturbances can be caused by surface roughness, wavi-
ness, steps and gaps, freestream turbulence, and acoustic noise. Different routes leading
to turbulence are possible, all originating in the receptivity process mentioned above.
For aircraft at cruise conditions, two paths are the most common ways to originate
turbulence. The receptivity mechanisms may give rise to instabilities that, at first,
present an exponential growth, also called modal growth. In this scenario, Tollmien–
Schlichting (TS) waves, both traveling and stationary crossflow (CF) disturbances, and
Görtler vortices are considered. Eventually, these initially amplifying modes lead to
nonlinear effects followed by breakdown to turbulence. This is the most common path
to turbulence when low turbulence levels are present, as in cruise flight conditions and
quiet wind tunnels. A complete review of the process outlined above is available in
the literature [7, 8]. In a second possible route to turbulence, all the linear effects are
bypassed, and the so-called bypass mechanism leads to turbulence breakdown directly.
This path takes place in high freestream turbulence environments or, in the case of
free flight conditions, in the scenario where the turbulent wake of one element of the
airframe interacts with a second airframe element, bypassing the exponential growth
stage in the second element.

Different linear stability methods have been proposed for engineering transition to
turbulence prediction [9]. The first practical transition prediction tools date back
to the work of Smith and Gamberoni [10] and van Ingen [11], with the use of an eN

method.
The Orr–Sommerfeld equation, assuming a parallel base flow without boundary

layer history effects, served as the basis for the linear stability theory (LST) approach.
Some of the drawbacks of this approach are the lack of boundary layer history effects,
as well as nonparallel effects that characterize boundary layer flows. In addition, it
is not consistent to include curvature effects into LST simulations since, for airfoils
and wings, they are typically of the order of magnitude of the terms ignored in the
formulation [12].
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To better represent the physics of transition in boundary layer flows, the inclusion
of nonparallel, nonlocal, and curvature effects was considered by Bertolotti and Her-
bert [13]. The method, based on the parabolization of the Linearized Navier–Stokes
(LNS) equations, is referred to as parabolized stability equations (PSE). One attrac-
tive aspect of the PSE approach is that, in its linear version, the computational cost
is of the same order as that of LST computations [12]. When the technique first ap-
peared in the early 1990s, it was expected that it would be used as an engineering
tool to perform transition-to-turbulence prediction [14]. However, despite its improved
agreement with experiments and low computational cost, the PSE approach has not
been broadly adopted for engineering applications [15]. There are several reasons for
this. First, the correct computation of N -envelopes using the PSE approach depends
on the knowledge of the neutral point location for each of the wave modes consid-
ered in the integration procedure [16]. Second, the estimation of the stability modes
to be considered to form the N -envelope is not necessarily straightforward and may
be computationally expensive. It is known that, depending on the mode generation
strategy, spurious wave modes that lead to unbounded amplification may be included
in the PSE computation. Industrial practices favor computational methods that can
be automated with little user intervention, whereas PSE methods are currently mostly
used by expert users in custom research environments. The lack of literature on how to
perform the PSE initialization in an efficient, automatic way is an obstacle in the use
of nonlocal, nonparallel flow stability tools in industrial environments. Among the few
investigations on PSE-based transition prediction for industrial applications available
in the literature, the work of Kosarev et al. [15] suggests a procedure to automate the
solution from the linear stability problem needed to initiate the PSE computations in
the first marching station. To this end, the authors introduced an inflow empirical
correlation. However, information on the flow stability modes that should be selected
to perform the N -envelope computation is not provided.

To address the issues mentioned above, we propose a robust, automatic PSE-based
transition prediction framework. The novelty of our approach lies in the efficient cou-
pling of a database method [17], an LST code [18], and a PSE solver. Based on the
boundary layer characteristics, a two-entry look-up table that uses results obtained
with the database method suggests a set of waves to be used in the transition to turbu-
lence analysis, including both TS waves and CF vortices. For the former, following the
suggestion of Krumbein [19], we focus on TS waves that are aligned with the external
streamline direction. This is valid because, in typical flight situations, the TS waves
of interest do not deviate from the inviscid streamline significantly. After the set of
initial modes is determined by the database method, the LST tool starts a computation
inside the unstable region, marching upstream until the lower branch of the neutral
curve is crossed, indicating the neutral point location. With information on the modes
and neutral points, the PSE tool is automatically initiated. In the present work, we
restrict ourselves to the study of transition to turbulence triggered by TS wave amplifi-
cation. The effects of CF mode amplification, which are currently included in the mode
initialization and PSE computation processes, will be addressed in a future study. We
also provide information on discretization, domain size selection, mesh refinement, and
other relevant aspects related to a robust PSE implementation.
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We present airfoil transitional flow results, including an in-depth analysis of the
stability modes involved. We believe that the present framework serves as a step
towards the use of the PSE technique in engineering applications.

This paper is organized as follows. Section 2 provides an overview of the PSE
formulation. The complete PSE-based transition prediction framework, including im-
plementation details, is discussed in Sec. 3. Section 4 presents numerical results for
the NLF(1)-0416 airfoil and Sec. 5 concludes the paper with final remarks.

2 Parabolized Stability Equations
In modal linear stability theory, the stability problem is solved by using a set of wave
modes, each of which is solved independently. Both PSE and LST are examples of
modal linear stability methods. The overall principle is based on the decomposition of
the flow state vector q into a steady base flow state q̄ and an unsteady perturbation
component, q̃. The decomposition reads q(x, t) = q̄(x) + εq̃(x, t), where x is the space
coordinate vector, t is the time, and q = (ρ, u, w, v, T ) is the flow state vector, and
ε� 1.

The PSE method is appropriate for the analysis of streamwise disturbance growth
in slowly varying shear flows such as boundary layers [13, 14, 20]. Mathematically, this
is expressed as

∂xq̄� ∂yq̄; ∂zq̄ = 0, (1)

q̄(x) = q̄(x∗, y), (2)

where x∗ is a scaled version of x used to represent the base flow slow variation in the
x direction.

The base flow velocity components ū and v̄, aligned with the streamwise and span-
wise directions, respectively, exhibit small variations in the streamwise (x) direction
and are constant along the spanwise (z) direction. We introduce the local Reynolds
number, Re = Ueδ(x)/ν where ν is the kinematic viscosity and δ(x) is a length scale
proportional to the boundary layer thickness, δ(x) =

√
νx/Ue, where Ue is the unper-

turbed boundary layer edge velocity. The length scale, δ(x), is typically used in PSE
analysis [21, 22]. The reference length scale used to nondimensionalize the equations
is δ evaluated at the first marching streamwise coordinate [13]. The wall-normal com-
ponent, w̄, is nonzero and scales with 1/Re. Formally defining the slowly varying scale
x∗ = x/Re, the scalings are:

w̄ ∼ 1

Re
,

∂

∂x∗
∼ 1

Re
,

α = α (x∗) ,

q̂ = q̂ (x∗, y) .

(3)

In a linear PSE analysis, the perturbation vector is expanded in terms of a single
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mode, truncated Fourier component assuming time-periodicity,

q̃(x, y, x, t) = q̂(x, y) exp

[
i

(∫
x

α (x′) dx′ + βz − ωt
)]

, (4)

where q̂(x, y) has a slow variation in x. The flow disturbance amplitudes, q̂, present
the three velocity components even when a two-dimensional base flow is considered.

To obtain the linear PSE equations, we replace the flow state vector decomposition,
q(x, t) = q̄(x) + εq̃(x, t), in the linearized Navier–Stokes equations and neglect terms
of O(ε2). We also consider the scaling from Eq. (3) and neglect higher derivatives with
respect to x in the viscous terms (noting that ∂

∂x
1
Re
∼ ε2). The resulting linear PSE

equations, in compact form, read

Aq̂ + B
1

hy

∂q̂

∂y
+ C

1

h2y

∂2q̂

∂y2
+ D

1

hx

∂q̂

∂x
= 0, (5)

where hx and hy are curvature metrics. The entries for the compressible PSE operators
A, B, C, and D are detailed by Hanifi et al. [21]. The boundary conditions are:

û = v̂ = ŵ = T̂ = 0 at y = 0, (6)

û = v̂ = ŵ = T̂ = 0 as y →∞. (7)

In the PSE framework, changes in amplitude along the slowly varying spatial direc-
tion are contained both in the amplitude function q̂ and in the phase function defined
in Eq. (4). To remove such ambiguity, a normalization condition is required. One
possibility for the normalization is to impose that the total kinetic energy of the shape
function be independent of x so that fast disturbance variations in the streamwise
direction are absorbed into the phase function [14],∫ ∞

0

û†
∂û

∂x
dy = 0, (8)

where the superscript † represents the complex conjugate. This normalization condition
also ensures an assumed scaling of ∂q̂/∂x with 1/Re. The disturbance kinetic energy
is used to measure the disturbance growth,

E(x) =
1

2

∫ ∞
0

(
|û|2 + |v̂|2 + |ŵ|2

)
dy. (9)

The disturbance kinetic energy-based disturbance growth ratio reads

σE =
1

hx

(
−αi +

d

dx
ln
√
E(x)

)
. (10)

The linear PSE (5) are intended to be parabolic. Therefore, it is possible to treat the
streamwise direction as a pseudo-time and then to implement a marching strategy in
this spatial direction. Numerical instabilities appear when the streamwise integration
step is too small [22]. The reason for that, as explained by Herbert [14], is that

6



there are traces of ellipticity that inject ill-posed characteristics. One remedy for this
is the use of a first-order backward difference scheme with a lower integration step
limit ∆x > 1/|αr|. To relax this limit, Andersson et. al. [23] propose a stabilization
procedure leading to ∆x > 1/|αr| − 2s, where s is a small number.

When three-dimensional base flows are considered, there are some possibilities for
the marching direction. Using an orthogonal coordinate system, the most common
approach is to orient the streamwise direction towards a normal to the leading edge,
where the spanwise direction is parallel to the leading edge. [24] Another choice would
be to perform a marching that follows the inviscid streamline. A complete discussion
on suitable marching directions is available in the literature [15, 25].

Due to the predominantly parabolic character of the linear PSE (5), the disturbance
evolution is influenced by both local and upstream flow information and, therefore, the
PSE method is recognized as a nonlocal approach, in contrast to, for instance, the Orr–
Sommerfeld equation, which is a local formulation. We present details of an efficient
PSE implementation oriented towards transition prediction in Sec. 3.4.

3 PSE-based Transition Prediction Framework
The boundary layer dynamics are governed by nonlocal, nonparallel effects. The PSE
approach consists of a linear flow stability problem for a base flow configuration that
considers these boundary layer dynamics. Lack of information on key numerical aspects
in the literature is one of the factors that has prevented practicing engineers from
employing the PSE method in transition prediction computations. Aspects such as
neutral point location selection, effects of mesh refinement, marching initialization, and
the choice of domain size have been neglected in previous studies. The present study
includes information on these aspects and provides guidelines for a robust PSE-based
transition prediction computation. When selecting modes for use in the N -envelope
calculation, it is relevant to avoid or filter out spurious modes that could lead to
unbounded amplification in the PSE computation.

The transition prediction framework based on the PSE computation combines the
boundary layer solver, database method, linear stability theory (LST) solver, and the
PSE solver itself. The PSE-based transition framework is illustrated in Fig. 1.

The pressure coefficient distribution from a RANS, Euler, or potential flow solver is
used as the freestream boundary condition in the boundary layer solver. The boundary
layer solver provides the base flow information required in the LST and PSE computa-
tions. The stability modes are computed using a database method that considers the
base flow characteristics. The neutral point locations for the stability modes are com-
puted by the LST solver. With base flow, wave modes, and neutral point information,
the PSE computation is performed.

We introduce our boundary layer solver in Sec. 3.1. The database method is in-
troduced in Sec. 3.2, while the LST solver and details on the PSE computation are
presented in Secs. 3.3 and 3.4, respectively. The N -factor computation and transition
onset estimation processes are illustrated in Sec. 3.5. We present further details on the
complete transition framework in Sec. 3.6.
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Figure 1: PSE-based transition prediction framework. The PSE code outputs the
transition location.

3.1 Boundary Layer Solver

Our boundary layer solver considers a conical boundary layer topology. In the conical
boundary layer assumption, ∂p/∂r = 0, where r is the distance along the generator from
a fictive origin [26]. Since we use a compressible formulation, the laminar boundary-
layer system consists of the continuity, momentum, and energy equations, forming a
system of parabolic partial differential equations [27].

The boundary layer governing equations are discretized using a second-order ac-
curate, central-difference scheme in the wall normal direction [28]. The streamwise
direction, which represents the marching direction, is discretized using a second-order
backward finite difference scheme. We solve the nonlinear differential equations using
Newton’s method [29], where each Newton step is solved with the block-elimination
method in this finite-difference solver [28].

Flow parameters such as the Mach and Reynolds numbers are used as inputs to
the boundary layer solver. The freestream boundary condition is based on a pressure
coefficient distribution. The boundary layer solver provides the displacement thickness,
δ1, the momentum thickness, δ2, the boundary layer shape factor, H12, the boundary
layer velocity profiles and its derivatives in the streamwise and wall-normal directions.
Shi et al. [28] provide further details on the boundary layer solver.

3.2 Database Method and Mode Selection

We use a two-entry lookup table based on the database method proposed by Arnal [30],
which was further developed by Perraud et al. [17], and an LST implementation follow-
ing the details presented by Shi et al. [18] to generate the stability modes that are used
as the initial guess in the first PSE station. A PSE station corresponds to a discrete
streamwise location.

The stability modes for a given base flow represented by the Mach number, Me, and
the boundary layer shape factor, H12, are stored in a two-entry (Me, H12) lookup table
that outputs the mode information (α, β, ω.) The database method is embedded in

8



the boundary layer solver described in Sec. 3.1. As will be further detailed in Sec. 3.4,
we initialize the first station in the PSE calculation by solving a parallel, local problem
based on the PSE operators. The angular frequency, ω, the streamwise wave number,
α, and spanwise wave number, β, used in this initial section are provided by the two-
entry lookup table. A deeper discussion on the database method and LST method can
be found in previous work [28].

The mode generation process is based on the stability characteristics of a large
number of three-dimensional Falkner–Skan–Cooke (FSC) similarity profiles [30]. The
boundary layer states are computed based on the relation between the FSC auxiliary
variable and a stream function. The stream function relates directly to the flow states.
A detailed derivation of the FSC equations is available in the literature [5, 31].

The database method represents the local, parallel growth rate, σ = −αi, by a
curve that envelopes two inverted parabolas. These parabolas mimic the dependency
of αi on the displacement thickness Reynolds number, Reδ1 . The representation of
σ(Reδ1) is based on the maximum of two parabolas, one involving viscous effects, σV ,
and the other restricted to inviscid phenomena, σI . These two parabolas are functions
of Reδ1 and parameters that define the abscissa points where the parabolas intersect
the Reδ1 axis, RK , and where σ reaches a maximum, RM ,

σI = σI (Reδ1 , RMI
, RKI

) , (11)

σV = σV (Reδ1 , RMV
, RKV

) , (12)

where the subscripts V and I denote, respectively, viscous and inviscid growth rates.
A detailed derivation of the parabolas defined by Eqns. (11) and (12) is provided in by
Perraud [17] and by Shi et al. [28]. The resulting envelope σ = −αi obtained by the
database method reads

σDB = max (σI , σV ) . (13)

To obtain the two-entry lookup table that provides the wave modes used in the PSE
initialization, we start by solving the FSC equations and generate numerous similarity
velocity profiles corresponding to different H12 values in the external streamline direc-
tion. We then run the LST code at specified Me, H12, and F and compute the exact,
local, parallel amplification rate σ = −αi. The reduced frequency in the temporal
framework, F , is defined as,

F =
ωr
Reδ1

. (14)

The boundary layer shape factor, H12, is

H12 =
δ1
δ2
, (15)

where δ1 and δ2 are, respectively, the boundary layer displacement and momentum
thicknesses. We then compute σDB based on the database method for each specified
Me and H12 at different reduced frequencies. A least squares fitting process is used to
obtain all the database method parameters, which are defined in the literature [17, 28],
with different F at specified Me and H12. The least squares fitting also considers the
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relation between σDB, from the database method estimate, and −αi, from the exact
LST computations, for a range of base flows.

Finally, a two-entry lookup table for different Me and H12 based on the database
method parameters is established. The lookup table is constructed once, and therefore
we only need to access it to obtain the required stability modes for a given base flow
with Mach number Me and boundary layer shape factor H12. For a given base flow
characterized by Me and H12, the results from the two-entry lookup table suggest a
set of 20 TS waves and 20 CF vortices. The use of 20 modes for each mechanism
results from numerical experimentation, which indicated that this quantity of modes
was sufficient to accurately detect the transition onset point. The two-entry lookup
table is valid for 2.22 < H12 < 4.023 and 0 < Me < 1.3.

3.3 Linear Stability Theory

The linear stability theory (LST) approach considers a parallel, local base flow as-
sumption and represents the solution of the Orr–Sommerfeld equation. As the nonlocal
effects are not present, the streamwise base flow derivatives are not accounted for and
the stability problem becomes an eigenvalue problem. Curvature effects are also not
included since their effects are of the order of the terms neglected in the LST formu-
lation [12]. The LST equation in compact form for compressible flows is expressed
as,

d2q̂

dy2
+ AL

dq̂

dy
+ BLq̂ = ωCLq̂, (16)

where AL, BL, and CL are the LST operators related to the base flow parameters and
the wave numbers α and β [32]. This linear system of ordinary differential equations is
described in detail by Cebeci [27]. Since different powers of α appear in the expressions
that represent the spatial eigenvalue problem, it is advantageous to solve a temporal
problem instead [14]. We use a fast algorithm of the Rayleigh quotient method [33]
to solve the generalized eigenvalue problem in the temporal framework and apply the
Gaster transformation [34] to obtain the spatial stability results needed to initialize
the PSE method. In the spatial theory, the streamwise wavenumber, α, is a complex
number, α = αr+iαi, where the subscripts r and i denote the real and imaginary parts,
respectively. The angular frequency, ω, is a real number. In the temporal framework,
the streamwise wavenumber is real and the angular frequency is a complex number,
ω = ωr + iωi. The Gaster transformation associates wave numbers as obtained in the
temporal (subscript T ) and spatial (subscript S) theories as follows

αr,S ≈ αr,T , (17)

ωr,S ≈ ωr,T , (18)

ωi,T
αi,S
≈ −∂ωr

∂αr
. (19)

In the spatial framework, the parallel, local wave mode growth rate, σ, is equivalent
to the imaginary part of the streamwise wavenumber with a switch in sign: σ = −αi.
The neutral point corresponds to the position where the stability mode has zero growth
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rate. It is possible to determine the neutral point location by starting a computation
inside the unstable region, where αi < 0, and move upstream until αi = 0, defining the
neutral point.

For each of the stability modes suggested by the database method, upstream march-
ing is used to define the neutral point. The neutral point determination is illustrated
in Algorithm 1. In Algorithm 1, the left arrow indicates an assignment. For instance,
x← xj, indicates that the discrete streamwise position xj is assigned to variable x.

Algorithm 1 Neutral point determination

1: for i in nmodes do
2: for j in nstations do
3: if αi < 0 then
4: x← xj . Initialize neutral point location when inside the unstable region

5: end if
6: while αi < 0 do
7: d2q̂

dy2
+ AL

dq̂
dy + BLq̂ = ωCLq̂ . Solve the LST problem in the current flow

station
8: x← xj−1 . Move to the previous flow station

9: end while
10: xNP ← x . Record the neutral point location

11: end for
12: end for

After computing the neutral point (NP ) location for all of the wave modes, we as-
semble the information the PSE requires for each mode: angular frequency, ω, stream-
wise wave number, α, spanwise wavenumber, β, and neutral point location, xNP . The
neutral point location may differ for each of the stability modes. If the base flow sus-
tains both CF and TS modes, independent simulations are performed for these two
mechanisms and the transition location is taken as the closest to the leading edge. We
present further details on the relation between the lookup table, the LST, and the PSE
codes in Sec. 3.6.

3.4 PSE Computation and Implementation Details

A fully-discrete version of Eq. (5) is obtained by applying Chebyshev differentia-
tion matrices to the spatial derivatives in the wall-normal direction and replacing the
streamwise coordinate derivative with a first or second-order backwards Euler march-
ing scheme, in a way that x can be interpreted as a pseudo time. We map the Cheby-
shev matrices from the spectral space to a physical one, and the first and second
order mapped Chebyshev matrices are named D1,phys and D2,phys, respectively. Our
boundary layer and PSE codes use distinct discretization schemes in the wall-normal
direction, but share the same discretization in the streamwise direction. While the
boundary layer code uses second-order finite differences in the wall-normal direction,
the PSE module uses a high-order, spectral method based on Chebyshev collocation
points. Therefore, a one-dimensional interpolation of the base flow states, q̄, is per-
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formed between the two codes. We use cubic spline interpolation for this. The base flow
information appears in the matrix operators for the PSE-based local, parallel problem
and in the full nonparallel, nonlocal PSE as well.

Initial and boundary conditions are needed to close the marching procedure, as
detailed in Sec. 2. The initial condition consists of an initial wave mode amplitude
vector, q̂0, and the streamwise wave number, α0, and corresponds to the flow stability
problem solution at the first marching station. As we focus on airfoil cases and on TS
waves aligned with the inviscid streamline direction, β = 0. The angular frequency is
not changed in the initial station iterative solution process, and the α value suggested
by the database and LST codes is used as an initial guess for the first station solution,
as detailed in Sec. 3.4. In the PSE module the user specifies the number of stations
upstream of the neutral point where the initial station is to be located, with 2 to 4
stations being used in production runs to avoid the undesirable effects over the N -
envelope computation reported by Langlois et al. [16], who showed that the N -factor
curves can be incorrectly modified if a starting point is selected too far from the neutral
point, potentially leading to a wrong transition onset location.

To determine the initial solution, we modify the original PSE equations to yield
a local, parallel problem that is solved in the initial marching station. Therefore, we
do not need to access a flow stability solution obtained from an external LST code.
We modify the PSE operators defined in Eq. (5) to reflect the nature of a parallel
problem. To do this, derivatives in the streamwise direction are excluded and the base
flow velocity in this direction is set to zero. To obtain a local problem, meaning that
the flow stability problem in each station is independent of the previous ones, we set
the D matrix to zero, and Eq. (5) becomes:

Ap,lq̂ + Bp,l
1

hy

∂q̂

∂y
+ Cp,l

1

h2y

∂2q̂

∂y2
= 0, (20)

where the subscript p, l indicates the local, parallel solution obtained through the
modified PSE equation. The discrete counterpart of Eq. (20) is,

Ap,lq̂1 +
1

hy
Bp,lD1,physq̂1 +

1

h2y
Cp,lD2,physq̂1 = 0. (21)

We solve Eq. (21) iteratively in an inexpensive way to avoid the computation of the
entire eigenmode space that results from the solution of the local, parallel problem
through a standard eigenvalue solver. We initialize q̂0 as a zero vector and select both
real and imaginary parts of α0 as suggested by the database method. We modify the
wall boundary conditions defined in Eqns. (6) and (7), leading to

û = v̂ = T̂ = 0, ρ̂ = 1 at y = 0, (22)

û = v̂ = ŵ = T̂ = 0 as y →∞, (23)

and the wall condition for the wall normal component of the wave amplitude vector,
ŵ = 0, is sought in the iterative process. Convergence is attained when ŵ is close to
zero up to a numerical tolerance of 2× 10−8. If M < 0.5, then the density fluctuations
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are small and the boundary conditions specified in Eqns. (22) and (23) are modified to
impose

û = v̂ = T̂ = 0,
∂û

∂y
= 1 at y = 0, (24)

û = v̂ = ŵ = T̂ = 0 as y →∞, (25)

where we specify a value for the wall-normal derivative of the streamwise velocity
amplitude, û. For both incompressible and compressible regimes, the choice of an
inhomogeneous wall boundary condition to replace ŵ = 0 at the wall is required to
respect the iterative process used in the local, parallel solution for the first marching
station. In this sense, any small, non-zero number could be used in the wall inho-
mogeneous boundary condition. While solving the PSE-based local, parallel problem
defined in Eq. (20), we update the streamwise wave number, α, using a secant method
with the objective of driving ŵ to zero at the wall,

αn = αn−1 − ζ (αn−1)
αn−1 − αn−2

ζ (αn−1)− ζ (αn−2)
, (26)

where ζ = ŵ at the wall and n is the iteration index. In the local, parallel problem,
the growth rate defined in Eq. (10) is modified to account for the fact that the growth
content is only present in the imaginary part of the streamwise wavenumber,

σ = −αi, (27)

indicating that a negative imaginary part of α represents wave amplification.
With a converged solution for the first marching station, we have an initial con-

dition to start the nonlocal, nonparallel PSE marching governed by Eq. (5). The
marching is started following a first-order, implicit Euler scheme. We extend the first-
order calculation up to the first ten marching stations to damp out transients arising
from the local, parallel solution used in the first station. After that, a second-order,
implicit marching scheme can be used. The key aspect of the PSE calculation is re-
specting the normalization condition defined in Eq. (8). As mentioned previously, the
normalization condition is designed to remove fast streamwise variations present in
the amplitude function, transferring them to the phase function. To enforce the nor-
malization condition, we resort once more to the secant method defined in Eq. (27),
using ζ as the integral defined in Eq. (8). In other words, we update the streamwise
wavenumber, α, with the objective of driving the integral normalization condition to
zero, with a convergence tolerance of 1 × 10−8. This process highlights the fact that,
in the PSE approach, the flow stability problem solution is obtained throughout an
iterative computation at each marching station. Once convergence is attained for the
present marching station, we move to the next one.

Capturing the decay of wall-normal wave amplitude components of typical TS waves
requires the computational domain to extend beyond the boundary layer edge. A good
practice to ensure that ŵ = 0 when y →∞ consists of checking how close ŵ is to zero
at the domain edge. For TS waves, we recommend a maximum wall-normal coordinate
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in a given marching station to be as large as 100 to 150 times the boundary layer
length scale, δ, in that flow section. For CF modes, the domain can be smaller than
this. These numbers are valid as an initial guess for the domain size, and therefore
we recommend the verification on the ŵ decay towards zero as a systematic domain
size check. In this sense, numerical experimentation has indicated that ŵ = 1 × 10−6

as y → ∞ is a good compromise between accuracy and domain extension. To obtain
the required base flow states beyond the boundary layer edge, we extrapolate the wall-
normal velocity component, w̄, using the value of its derivative at the boundary layer
edge,

w̄ext = w̄e +
dw̄e

dy

∣∣∣∣
e

(y − ye) , (28)

where the subscript e refers to the boundary layer edge and y is the wall-normal
coordinate at the point of interest. For the base flow states other than the wall-normal
velocity, the boundary layer edge quantities are directly used in the domain extending
beyond the boundary layer itself.

In the marching process, we compute the disturbance growth rate as defined in
Eq. (10). After the flow stability solution is obtained for all marching stations, the N -
envelope for that specific wave mode is calculated. Details on the N -factor computation
and the transition onset determination are presented in Sec. 3.5. The steps followed in
the PSE calculation are summarized in Algorithm 2.

Algorithm 2 PSE computation

1: q̂1 ← 0 . Initialize local solution
2: α1 ← αDB . Initialize local wave number with database guess
3: while ŵwall > 2× 10−8 do
4: Ap,lq̂1 + 1

hy
Bp,lD1,physq̂1 + 1

h2y
Cp,lD2,physq̂1 = 0 . Solve the local, parallel

PSE-based problem
5: ζ ← ŵwall

6: αn ← αn−1 − ζ (αn−1)
αn−1−αn−2

ζ(αn−1)−ζ(αn−2)
. Use secant method to update the wave

number
7: end while
8: Γ← 1× 106 . Initialize normalization condition to a large number
9: for i in nstations do

10: while Γ > 1× 10−8 do
11: Aq̂ + 1

hy
BD1,physq̂ + 1

h2y
CD2,physq̂ + D 1

hx
∂q̂
∂x = 0 . Solve the nonlocal,

nonparallel PSE problem
12: Γ←

∫∞
0 û† ∂û∂xdy . Compute the normalization condition

13: ζ ← Γ
14: αn ← αn−1 − ζ (αn−1)

αn−1−αn−2

ζ(αn−1)−ζ(αn−2)
. Use secant method to update the wave

number
15: end while
16: σ ← 1

hx

(
−αi + d

dx ln
√
E(x)

)
. Compute the disturbance growth rate

17: end for
18: N ←

∫ x
x0
σ (x′) dx′ . Compute the N -factor for the wave mode under analysis
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In this work, we refer to a disturbance growth rate through the generic variable
σ. We use −αi as a measure of disturbance growth in the local, parallel stability case
represented by the LST formulation. In the spatial framework, α = αr + iαi. In the
LST method, the disturbance growth rate is −αi due to the fact that there are no flow
and disturbance variations in the streamwise direction, x. In the nonlocal, nonparallel
case (PSE), the disturbance growth rate has also contributions from the streamwise
variations. The disturbance kinetic energy based growth rate in the PSE approach,
σE, is given by Eq. (10). It considers contributions from −αi and from the disturbance
kinetic energy variation in the streamwise direction. In Algorithm 2, the growth rate
σ has the expression corresponding to σE (from PSE) assigned to it.

Our compressible PSE tool considers 2-D and quasi 3-D base flows with uniform
or nonuniform meshes. Quasi 3-D base flows are characterized by the presence of
a spanwise direction along which the flow states are nonzero and do not vary. The
nomenclature 2.5-D is also used for this same flow topology. For instance, the flow far
from the wing tip and root over a high aspect ratio swept wing can be seen as being
2.5-D. The stabilization procedure suggested by Andersson et al. [23] is included in the
implementation. A growing mesh that emulates the boundary layer growth is included
as an option. The number of elements inside the boundary layer is kept constant for all
the flow stations. As a result, the spacing between elements increases in the wall-normal
direction when moving downstream. Curvature metrics are included in the current
implementation. Curvature effects are also introduced in the base flow quantities inside
the PSE operators. Our PSE simulations based on the TS wave modes obtained by
using the database method did not present unbounded amplification, indicating that
spurious modes are not present in the process. A validation study is available in the
literature [24].

3.5 N-factor and Transition Region Onset

The beginning of the transition region is determined based on an eN method. The
amplification factor, or N -factor, is defined as

N = ln

(
A

A0

)
=

∫ x

x0

σE (x′) dx′, (29)

where A0 is the disturbance amplitude at the first neutral-stability point. The N -factor
envelope is obtained by running the PSE code using different frequencies and spanwise
wave numbers, and superimposing the resulting N -factor curves at each station during
the PSE solution. The transition to turbulence process starts as the N -factor reaches
a critical threshold, Ncrit.

The critical value for the N -factor, Ncrit, is obtained from experimental data.
For some transition mechanisms, empirical correlations are available. For TS waves,
Mack [35] suggested correlating the critical N -factor to the turbulence level, Tu, using

Ncrit,TS = −8.43− 2.4 ln (Tu) . (30)

This correlation is valid for 0.001 < Tu < 0.01. Critical N -factors for CF modes can
also be obtained through a calibration process where experimental transition locations
are known and flow stability analysis tools are used to determine Ncrit,CF.
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Mack’s correlation was derived in conjunction with the LST theory and, currently,
an equivalent relation developed based on a PSE approach is not available. However,
this correlation has been used in conjunction with PSE analysis, in cases involving
nonparallel effects and crossflow-driven transition [15]. In the airfoil flow problem we
consider in this work, nonparallel effects retained in the PSE formulation do not play a
major effect, making the use of Mack’s correlation as a first approximation acceptable.
Such effects are relevant when CF modes are considered [16].

3.6 Transition Prediction Framework

To compute the laminar boundary layer field, the boundary-layer solver uses the pres-
sure coefficient (Cp) distribution as a boundary layer edge boundary condition. The
pressure coefficient distribution at the laminar boundary layer edge can be obtained
from different sources. A RANS solver can provide the required pressure distribution
information. Inviscid formulation tools can also be used for this step if significant
separation regions are not present in the flow field. For flows where no shock waves
are present, such that the Cp distribution is not significantly affected by the transition
location, no iterations in the transition location calculated are needed [24]. If shock
waves are present, the impact of the transition location on the pressure distribution
becomes non-negligible. In this case, it is necessary to feed back the pressure coefficient
variations into the boundary layer solver, which uses it as a boundary condition. This
impacts the base flow computation, which in turn has effects on the transition front
computation. Therefore, flows that present a shock wave require an iterative procedure
to determine the transition onset location.

The two-entry lookup table, that is embedded in the boundary layer solver, sug-
gests a set of stability modes, comprising of wave numbers and angular frequencies, that
are likely to drive the laminar base flow under consideration unstable. Our database
method, described in Sec. 3.2, provides 20 TS wave modes to be used at the flow stabil-
ity analysis level. The computation of the stability modes that should be processed in
the PSE computation is, in general, a delicate step. Depending on the method used to
obtain the stability modes, it is possible that spurious modes are obtained among the
wave mode set. The spurious modes may lead to unbounded amplification, introducing
errors in the N -envelope calculation used to detect the transition onset location. The
presence of spurious modes requires the implementation of filters that are supposed to
select only meaningful modes, increasing the computational cost. In our framework,
we restrict ourselves to TS waves aligned with the external streamline direction. As
suggested by Krumbein et. al. [19], the TS waves of interest for typical flight conditions
are not off the inviscid streamline by large deflections. Our wave mode generation tool,
based on the database method, completely avoids spurious modes while retaining the
stability modes of physical relevance.

We choose to start the marching process some cells ahead of the neutral point, the
user being able to choose the initial marching location, which may differ for each of
the stability modes. To determine the neutral point for each wave mode, we use the
LST solver, as described in Sec. 3.3. For a given mode, the computation starts at the
unstable region, and an upstream marching detects the point of zero amplification,
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corresponding to the neutral point. As highlighted in Algorithm 1, the unstable region
is detected by inspecting the imaginary part of the streamwise wave number, αi. We
start in the first marching station and, when αi < 0, the unstable region is determined.
For the TS-triggered transition case shown in this work, numerical experimentation
indicated that all the wave modes involved in the N -envelope calculation present the
same neutral point. This allows us to start the PSE computations at the same stream-
wise position for all the TS wave modes, making the process of automation easier. A
further discussion on the effects of the starting point over the transition prediction
results is available in Sec. 4.

The PSE computation, as detailed in Sec. 3.4, is carried out for all the stability
modes suggested by the database method. The neutral point location is used to choose
the starting marching location. As an initial step, the PSE operators, represented
by the matrices A, B, C, and D in Sec. 2, are assembled. In this step, we also
build the Chebyshev differentiation matrices used to compute derivatives in the wall-
normal direction. The marching process starts for each of the wave modes. The PSE
solution involves the modes amplitudes, q̂, and the streamwise wave number, α. We
advance to the next flow station after a convergence criterion is met. After respecting
the normalization condition indicated in Eq. (8) at all streamwise positions, we use
Eq. (10) to compute the growth rate at each streamwise location. Based on the wave
growth rate, the N -factor is then computed for each of the wave modes using Eq. (29).
The N -envelope is obtained for the set of waves used, and the transition location is
determined from the critical N -factor, as illustrated in Sec. 3.5. The transition location
as obtained by the PSE-eN computation indicates the transition onset location. To
enforce a transition region in the flow solver, a smooth intermittency function should
be used. The detailed coupling between the CFD and transition solvers is available in
the literature [24].

In summary, we use the numerical procedure highlighted in Sec. 3.4 to compute
the disturbance growth rate, σ, for a collection of stability modes suggested by the
database method. The amplification factor, N , is computed for each of the stability
modes following the mathematical relations introduced in Sec. 3.5. The procedure
is repeated for all stability modes and an N -envelope is built. The transition onset
location is then determined according to the procedure described in Sec. 3.5. Our
strategy to determine the transition onset location is robust, avoiding the presence of
spurious stability modes. The framework we propose is suitable for automation and,
therefore, compatible with industry practices.

4 Numerical Results
The Natural Laminar Flow NLF(1)-0416 airfoil is a general aviation airfoil tested at
the NASA Langley Low-Turbulence Pressure Tunnel [36]. For the selected flight con-
dition, the chord-based Reynolds number is 4 × 106 and the Mach number is 0.1, at
a zero degree angle of attack. Experimental data [36] suggest that transition is trig-
gered by amplification of TS waves on the airfoil suction in this flight condition. The
turbulence intensity was not measured during this test, but separate measurements in
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the same facility indicated that it is a quiet wind tunnel [37]. Using the Approximate
Amplification Factor Transport (AFT) transition model, Coder [38] observed that the
value of Tu = 0.045%, corresponding to Ncrit,TS = 10.07 as reported in Ref. [37], leads
to transition fronts upstream of the measured [36] locations for an angle of attack
sweep at a chord-based Reynolds number of 4× 106. Coder found improved agreement
between the AFT simulations and measurements for Tu = 0.15%, corresponding to
Ncrit = 7.18 [38]. For the PSE-based transition prediction presented here, we chose
Tu = 0.1% as a best guess, with a corresponding critical Ncrit,TS = 8.14 per Eq. (30).
This choice is based on the spread observed in the turbulence intensity for this test
case. Based on the knowledge that the wind tunnel is quiet, we believe that Tu = 0.1%
represents a good compromise between the freestream turbulence intensity levels men-
tioned above. We also investigate the freesteam turbulence intensity level that leads
to an exact transition location match. A discussion of this is presented further in this
section.

The boundary conditions used in this test case are those indicated in Eqns. (6),
(7), (22), and (23). The boundary layer solver uses the pressure coefficient distribution
from a RANS, Euler, or potential flow solver as the freestream boundary condition.

The NLF(1)-0416 computational mesh has 100 Chebyshev nodes in the wall-normal
direction for both suction and pressure sides of the airfoil. The mesh has point clus-
tering close to the wall to capture the wave mode activity in the near-wall region and
the computational domain grows in the marching direction to capture boundary layer
growth effects. Suitable mappings between the Chebyshev and physical spaces for in-
compressible and compressible flows are available in the literature [39, 40]. In some
situations, it may be useful to coarsen the boundary layer mesh in the streamwise di-
rection to perform the PSE analysis to avoid numerical instability effects, as mentioned
in Sec. 2. For the NLF(1)-0416 simulations, we use the same streamwise discretization
in the boundary layer and PSE modules, the number of elements in the streamwise
direction for the PSE analysis being dependent on the neutral point location.

Following the PSE-based transition prediction framework detailed in Secs. [3.4]-
[3.5], we start by inspecting the flow stability modes suggested by the database method
for the selected flight condition. The flow stability analysis is performed for the suction
and pressure sides of the airfoil separately, and the stagnation point is used as the
geometric location where the splitting is performed.

We use three distinct meshes to investigate the PSE solution corresponding to the
flow on the airfoil suction side. The coarse mesh presents 27 stations in the flow di-
rection and 50 Chebyshev nodes in the wall normal direction, representing a total of
Nelements = 1350 elements. The baseline mesh consists of 54 stations in the stream-
wise direction and 100 Chebyshev points in the wall-normal direction, for a total of
Nelements = 5400. Finally, the fine mesh shares the streamwise discretization with the
baseline one, but doubles the number of Chebyshev points to 200, with a total number
of elements of Nelements = 10800. A further increase in the number of points in the
streamline direction would make the PSE marching procedure unstable, as mentioned
in Sec. 2. The normalized absolute value of the wall-normal wave velocity compo-
nent, ŵ, at the mid-station position corresponding to (x/c) = 0.58 is plotted against
the wall-normal coordinate for the three meshes in Fig. 2, which also includes the

18



predicted transition location, (x/c)tr, for the three computational meshes.
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Figure 2: Mesh refinement impact over wall-normal normalized wave velocity (left,
complex number magnitude) and (x/c)tr (right) for the suction side.

The coarse mesh leads to an eigenfunction solution for ŵ that presents an unphys-
ical, oscillatory behavior close to the wall. The coarse mesh also does not attain the
ŵ → 0 boundary condition as y →∞ with the required accuracy. The predicted tran-
sition location is upstream of the experimental location by 9.67%. The flow solutions
for the baseline and the fine mesh are numerically equivalent to machine precision,
and therefore the results corresponding to the baseline mesh are considered mesh-
independent. This mesh serves as the standard for all numerical results presented in
this paper. We also observe that the baseline and fine meshes allow ŵ → 0 as y →∞,
respecting the fact that the flow disturbance may vanish away from the wall. The tran-
sition location for the baseline and fine meshes is (x/c)tr = 0.375, which is within 2.56%
of the experimental value, (x/c)tr,exp = 0.385. As mentioned in Sec. 3, we recommend
a maximum wall-normal coordinate in a given marching station to be as large as 100
to 150 times the boundary layer length scale, δ, in that section. In the results shown
in Fig. 2, we use y = 100δ, assuring that the computational domain is large enough
to allow a smooth eigenfunction decay outside of the boundary layer. If the domain
does not extend sufficiently beyond the boundary layer edge, then the eigenfunctions
present a sharp profile as y →∞, therefore not obeying the expected physical behavior
in that region.

The initial wave modes suggested by the database method are depicted in Fig. 3 for
the suction (left) and pressure (right) sides of the airfoil. The real and imaginary parts
of the streamwise wavenumber, α, are normalized by the boundary layer characteristic
length scale, δ, evaluated at the neutral point location. The dimensional frequencies
for each of the wave modes are also indicated in Fig. 3.

The non-dimensional angular frequency, ω, is related to the dimensional frequency,
f (in Hertz), as follows,

ω = 2πRe0f
(
ν0/U

2
e,0

)
, (31)

where Re follows the definition presented in Sec. 2, and subscripts 0 and e indicate the
neutral point and the boundary layer edge, respectively. The wave modes triggering
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Figure 3: Database, initial wave modes for the NLF(1)-0416 airfoil.

transition for both suction and pressure sides are marked with a red symbol. As we
consider TS waves aligned with the external streamline direction, β = 0. Our LST
code suggests that the neutral point is located at x/c = 0.16 for the airfoil suction side
in this work. For the airfoil pressure side, the neutral point is located at x/c = 0.14
for all TS wave modes. We start our PSE computation by solving a PSE-based local,
parallel problem, as detailed in Sec. 3.4. Numerical experimentation indicated that
the local problem used to start the PSE marching should be solved two flow stations
upstream of the neutral point location. This is in agreement with results available in the
literature [16]. Since the starting point is only two cells away from the neutral point, the
PSE-based local, parallel problem computes a converged streamwise wave number, α,
whose real part is close to the one suggested by the database method as the initial guess.
For instance, for the airfoil suction side, the initial guess is α = 0.1242−2.7250×10−4i
and the converged value from the local, parallel problem is α = 0.1233+2.4835×10−3i.
The imaginary part of α indicates amplification or damping, with a small absolute
value representing the neutral point. In the values for α exemplified above, a negative
imaginary part represents wave growth, as indicated in Sec. 3.4. For the database
guess and the converged local, parallel problem result we observe that the absolute
value of αi is close to zero, indicating a neutral point location.

The normalized velocity eigenfunctions in the mid-station for the NLF(1)-0416 air-
foil are illustrated in Fig. 4. Since the NLF(1)-0416 airfoil is a subsonic design, the
density and temperature eigenmodes are not plotted in Fig. 4, even though they are
part of the solution because our PSE implementation follows a compressible formula-
tion. Inspection of the eigenmodes as y → ∞ indicates that the boundary conditions
in Eqns. (6) and (7) are attained without unphysical variations close to the domain
boundaries. If the computational domain does not extend in the wall-normal direction
as suggested in Sec. 3.4, the eigenmodes decay abruptly to zero as y →∞ to respect the
imposed boundary conditions, not representing the physics observed in the decaying
solution modes.

Disturbance growth rates for the suction and pressure sides of the NLF(1)-0416
airfoil are depicted in Fig. 5. The x/c location corresponding to σ = 0 corresponds to
the neutral point, beyond which amplification starts to occur. TS waves are amplified
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Figure 4: Normalized absolute values of eigenfunctions in the mid-station for the
NLF(1)-0416 airfoil.

by adverse pressure gradients. The presence of adverse pressure gradients in the suction
side of the NLF(1)-0416 airfoil results in growth rates that are larger than those seen
in the pressure side, leading to transition to turbulence earlier in the former.
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Figure 5: Disturbance growth rates for the NLF(1)-0416 airfoil.

The N -envelopes corresponding to the selected flight condition are represented in
Fig. 6, adapted from Ref. [24]. The transition onset locations are determined according
to the procedure outlined in Sec. 3.5. Table 1 lists the numerical and experimental
transition locations for this test case. The numerical results indicate a good agreement
with experimental data and highlight that using Tu = 0.1% is a good choice for this
specific test case when using PSE to predict transition. It was found that a critical

Table 1: Transition onset locations for the NLF(1)-0416 airfoil. PSE.

Side PSE, (x/c)tr Experiment, (x/c)tr [36] Difference (%)
Upper 0.375 0.385 2.56
Lower 0.497 0.525 5.33

N -factor of Ncrit,TS = 9.3 needs to be used in the computations to match the transition
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Figure 6: N -factor envelopes for the selected condition [24].

location measured in the experiments. This corresponds to Tu = 0.062%. This result
suggests that a calibration of Mack’s correlation for use with nonlocal, nonparallel flow
stability tools may be an interesting research line. If Tu = 0.15% is used as in Ref. [38],
the suction side transition front is located at (x/c)tr,up = 0.365, while the pressure side
transition front is predicted to be at (x/c)tr,up = 0.461. This represents errors of 5.2%
and 12.2% for the suction and pressure sides, respectively. To compare the PSE and
LST approaches, we use the LST code to predict the transition front for this test case.
The local, parallel results also present good agreement with experimental data, but the
errors are larger than those corresponding to the PSE simulations. Results based on
the LST computations are shown in Table 2.

Table 2: Transition onset locations for the NLF(1)-0416 airfoil. LST.

Side LST, (x/c)tr Experiment, (x/c)tr [36] Difference (%)
Upper 0.404 0.385 4.93
Lower 0.565 0.525 7.62

We investigate the effects of the starting marching position over the energy-based
growth rates σE, and N -factor envelopes for the upper airfoil side. We select the TS
wave mode that triggers transition for this test case, corresponding to the mode marked
with a red cross in the left plot of Fig. 3. For this case, the neutral point is located
at x/c = 0.16. Results shown in Fig. 7 (left) illustrate the energy-based growth rate
behavior for starting points located 5 and 2 stations upstream of the neutral point,
at the neutral point itself, and 5 stations downstream of the neutral point. Small
differences among the growth rate curves are observed. The initial database method
guess for the streamwise wave number, α, corresponds to the neutral point location. If
the marching location is chosen close to the neutral point, in our case within 5 stations
upstream or downstream of it, the parallel, local problem converges to an α value close
enough to the original guess so that the computational results are not greatly impacted
by the starting location. This is further verified by observing the impact of the starting
marching station over the resulting N -factors, with results illustrated in Fig. 7 (right).
The N -factors shown here correspond to the amplification factor for the TS wave mode

22



that triggers transition, different from the N -envelopes shown in Fig. 6. We observe
that the impact of the starting point on the N -factor curves is even less noticeable than
what is observed for the growth rates. When the N -factor is computed, integration per
Eq. (29) filters out the effects of the starting point that would be noticed in previous
stages of the computational process. The transition locations corresponding to the
distinct starting points are given in Table 3. The PSE-based transition onset point are
compared to the experimental result, (x/c)tr,exp = 0.385. For all the starting points,
the error is within 2.6% of the experimental data, indicating that the starting point
selection has no impact on the predicted transition front as long as it lies close to the
neutral point.
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Figure 7: Energy-based growth rate and N -factor for distinct starting positions for the
suction side.

Table 3: NLF(1)-0416 airfoil transition points.

Starting position (x/c)tr Difference from experimental results (%)
NP-5 0.3753 2.5317
NP-2 0.3751 2.5654
NP 0.3752 2.5388
NP+5 0.3756 2.4335

5 Conclusions
Airplane manufacturers are currently directing efforts towards greener, more fuel-
efficient aircraft. Aerodynamic design plays a vital role in reducing fuel consumption
through drag reduction. Laminar boundary layers introduce less viscous drag when
compared to turbulent ones. This is especially true at cruise conditions, where flow
separation is likely limited to small regions of the airframe.

Fully-turbulent computational fluid dynamics (CFD) solvers must be augmented
with transition to turbulence prediction for benefit from laminar flow technologies to
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be realized. The parabolized stability equations (PSE) retain nonparallel and nonlocal
effects that are typical of boundary layers. Therefore, the PSE approach has a higher
fidelity than the widely used linear stability theory (LST) approach. The computational
cost of a PSE solution is similar to the one associated with an LST computation.
However, since it first appeared in the late nineties, the PSE method has not been
adopted as a tool in industrial environments, in part due to difficulties in the method
set up and implementation.

To address the initialization issues and to make the PSE approach more compat-
ible with industry requirements, we propose a robust initialization process. We use
a database method to select the flow stability modes that are used with the PSE
computations leading to the transition onset location. TS waves aligned with the ex-
ternal streamline direction are used in our computations. Our transition prediction
framework is also able to address stationary CF vortices. In three-dimensional con-
figurations, the marching procedure can be performed along a direction normal to the
leading edge or over the external streamline direction. Future studies will investigate
this transition mechanism in detail. Our database method approach generates a set
of TS waves that do not include spurious modes. It is computationally inexpensive,
and is shown to be robust. The neutral point is computed by using a linear stability
theory (LST) solver that performs an upstream marching to select the neutral point
for each of the stability modes. To make this possible, we eliminate the nonparallel
terms of a standard PSE computation. We also turn off nonlocal effects. With flow
stability modes and corresponding neutral points determined, the PSE computation
is performed. Our framework facilitates the use of the PSE technique in industry
environments and therefore represents an important initial step on the way to a full
industrialization of the approach in the future. For the PSE computation, nonlocal and
nonparallel terms are included. The simulation is processed through marching, using
the local, parallel problem mentioned above as the starting point. In our production
runs, we choose to start the marching 2 cells ahead of the neutral point, even though
results presented in this paper indicate that a starting point placed anywhere between
5 cells upstream and 5 cells downstream of the neutral point results in transition front
locations that are within 2.56% of the reported experimental data for the subsonic air-
foil tested here. The nonlocal, nonparallel marching can be performed using both first
and second-order accurate implicit Euler schemes. The domain size must be such that
the wave amplitude vanishes away from the wall, and the mesh refinement must assure
the correct computation of the wave amplitude profiles while respecting the stability
bounds that are inherent to the PSE calculation.

Numerical results for the NLF(1)-0416 airfoil illustrate the transition prediction
framework proposed in this paper. We present the TS wave modes suggested by the
database method as candidates for triggering transition for the NLF(1)-0416 airfoil.
The resulting eigenfunctions are also illustrated. Growth-rates and N -factor results
are reported. The predicted transition onset points show agreement with experimental
data. The numerical results presented in this paper are based on a freesteam turbulence
intensity level of Tu = 0.1%, which corresponds to Ncrit,TS = 8.14, for which the
predicted transition locations are within 5.5% of the experimental data. The turbulence
intensity for the wind tunnel test section is reported to be Tu = 0.045%, which leads
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to Ncrit,TS = 10.07. Numerical experimentation also indicated that, when using PSE,
the best match with experimental data corresponds to Tu = 0.062%, or Ncrit,TS = 9.3.
This suggests that additional Ncrit,TS empirical correlations would be welcomed. It is
also relevant to further investigate how distinct flow stability tools, when used with an
eN method, will require specific empirical correlations. For flow topologies for which
nonparallel effects and crossflow modes are relevant, as in the vicinity of a leading
edge, further validation using adapted empirical transition threshold correlations will
be needed.

When compared to modified RANS models that consider transition to turbulence,
as the amplification factor transport (AFT) and the Langtry–Menter (LM) models, the
PSE approach presents a smaller level of modeling dependence. This is because the
stability modes are directly computed, and the modeling limitations are only related
to the hypotheses that underly the method. On the other hand, in modified RANS
models that encapsulate transition effects, transport equations that mimic the transi-
tion phenomena are added to an underlying turbulence model, and tracking the direct
stability mode evolution is therefore not an objective. This makes this type of transi-
tion module more versatile and suitable for applications in a broader range of studies.
For instance, flow stability tools will detect the evolution of both TS and CF modes
without the need to modify the governing equations, as is the case for RANS models.
Additionally, the stronger dependence on the empirical data that are used to build the
source terms in the RANS models makes their effectiveness for situations where the
flow topology deviates from the ones used to build the empirical correlations uncer-
tain. Modified RANS models, on the other hand, have shown good agreement with
experimental data for the flow conditions that are part of the data used to derive the
correlations that are part of their formulations. These models have the benefit of being
completely nested in the CFD solver, not requiring an external module. Therefore,
we believe that PSE-based transition tools and modified RANS models that consider
transition have both a place in both academic and industry environments and can be
said to complement each other.

Future work should address a closer comparison between LST and PSE approaches
when used along with an eN method to predict transition over typical aircraft config-
urations. Available results in the literature indicate that the inclusion of nonparallel
effects, which are considered in the PSE approach, may provide better agreement
with experimental data in some situations. One example is CF-triggered transition
to turbulence, which typically happens over swept wings at high Mach and Reynolds
numbers conditions. Geometries that present high curvatures may also benefit from a
PSE-based transition prediction because curvature effects are not compatible with the
LST approach. Future investigations should also address the CF-triggered transition
mechanism. The transition framework presented here presents the first step towards
a fully-automatic, PSE-based transition prediction tool. Further work will investigate
flow conditions that consider TS, CF, and mixed TS-CF stability modes. This fur-
ther work will expand the transition prediction framework presented here and make it
compatible with industry requirements.
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