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Abstract

The inclusion of transition to turbulence effects in computational fluid dynamics (CFD)
simulations makes it possible to design laminar flow airframes. It also increases the
level of physical representations for simulations of standard airframes because laminar
flow regions may be present in parts of the aircraft in multiple flight conditions. Mod-
ified Reynolds-averaged Navier–Stokes (RANS) models that consider transition effects
became popular in the last decade and indicated favorable agreement with experimen-
tal data. However, these models present more difficult convergence behavior when
compared to fully turbulent RANS approaches. To address this issue, we leverage
an approximate Newton–Krylov solver to solve the transitional flow over aeronauti-
cal configurations using a flow stability-based, smooth RANS transition model. The
amplification factor transport (AFT) model is modified to create a smooth variant, re-
ferred to as AFT-S. We developed strategies to obtain representative physical solutions
that exhibit good agreement with experimental data. We also address the convergence
behavior for the transition RANS model and assess its impact on the numerical results.
These results constitute the first in-depth investigation on the numerical behavior of
an AFT-type transition model.

Nomenclature

cf = Skin friction coefficient
d = Distance from the wall
δ1 = Boundary layer displacement thickness
γ = Intermittency
γ̃ = ln(γ), modified intermittency
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H12 = Boundary layer shape factor
HL = Local shape factor
I = Identity matrix
M = Preconditioner matrix
N = ln(A/A0), amplification factor
Ncrit = Critical N -factor
ñ = Approximate N -factor
Q = State vector
R = Residual equations
Reθ = Momentum thickness Reynolds number
RT = µt/µ, turbulent Reynolds number
S = Strain rate magnitude
Tu = Freestream turbulence intensity
xj = Spatial coordinates
µ = Molecular dynamic viscosity
µt = Eddy viscosity
ν̃ = Spalart–Allmaras turbulence model working variable
Ω = Vorticity magnitude
θ = Boundary layer momentum thickness
ρ = Density

Subscripts

∞ = Freestream

1 Introduction
In computational fluid dynamics (CFD), cost-effective transitional flow simulations can
be achieved using flow stability analysis or modified Reynolds-averaged Navier–Stokes
(RANS) turbulence models. In flow stability analysis, the stability wave modes su-
perimposed to a laminar baseflow are tracked in space or time. In previous work,
we proposed a robust flow stability framework for aeronautical applications [1]. This
framework was coupled to a high-order CFD solver equipped with goal-oriented mesh
adaptation [2]. Although flow stability analysis enables a physical interpretation of
the flow modes that trigger transition, its combination with CFD solvers results in
complex computational frameworks, which may render its application in industrial
environments unlikely. RANS turbulence models, commonly used in engineering appli-
cations, result from a Favre time-averaging of the original Navier–Stokes equations. As
a result, crucial spectral information is missing [3], and no knowledge of the transition
to turbulence process is retained. The natural approach to address this shortcoming is
to develop an additional model for the transitional region and integrate it into the orig-
inal turbulence closure. Modeling of transition to turbulence is performed by including
additional transport equations, generally supported by empirical correlations. The use
of these correlations was first proposed by Abu–Ghannam and Shaw [4], Mayle [5],
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and Suzen et al. [6]. These correlations compare the computed momentum thickness
Reynolds number, Reθ, to a threshold value to specify the transition onset. Because
the calculation of Reθ demands non-local operations, such as the integration of the
velocity and density profiles along the wall-normal direction inside the boundary layer,
it is challenging to implement in parallel CFD codes.

Langtry and Menter [7–10] proposed a transition model where two additional trans-
port equations are used to estimate transition onset and region extent. Transition onset
is triggered by the momentum thickness Reynolds number (Reθ) transport equation,
and the intermittency (γ) transport equation is used to estimate the extent of the tran-
sition region. The γ-Reθ model uses empirical correlations to compute the momentum
thickness Reynolds number through local variables, making the model practical for
parallel CFD codes. The shear stress transport (SST) turbulence model [11] is mod-
ified such that the source terms in the turbulent kinetic energy equation are affected
by the intermittency field.

A RANS transition model based on linear stability theory was first proposed by
Coder and Maughmer [12]. They proposed a transport equation for the approximate
N -factor envelope, ñ, based on the work of Drela and Giles [13], with the Spalart–
Allmaras (SA) turbulence model [14] as the base for the new two-equation transition
model, named amplification factor transport (AFT). The AFT model was then aug-
mented with an additional transport equation for the modified intermittency, γ̃, to
improve its robustness when complex flows are considered [15].

The correlations for the approximate N -factor originally proposed by Drela and
Giles depend on integral boundary layer quantities, such as the shape factor, H12,
which is defined as

H12 =
δ1

θ
, (1)

where δ1 and θ are, the boundary layer displacement and momentum thicknesses, re-
spectively. The AFT model circumvents this issue by adopting a surrogate, local shape
factor, HL. We highlight that, in the context of RANS transition models, the term
non-local refers to the presence of integral boundary layer quantities in the formulation.
In contrast, in flow stability analysis, the same term relates to boundary layer history
effects in the governing equations. In this paper, the term local indicates that physical
quantities represented by integral forms are replaced by surrogates that reproduce the
original quantity without performing wall-normal integrations.

Compared with the original Langtry–Menter transition model, the AFT model
has three transport equations against four transport equations for the former. This
model was proposed as a tool to study external aerodynamic flows, as opposed to the
Langtry–Menter model that was originally developed to investigate transitional flows
in turbomachinery, where the turbulence levels are higher than those typically found
in wind tunnels or free flight.

When transition RANS models are used, it is vital to consider the effect of freestream
turbulence variables on the predicted results. In the Langtry–Menter model, additional
measures must be taken to avoid the effects of the inflow turbulence variables decay
inherent to the SST turbulence model. Spalart and Rumsey [16] proposed model
corrections and best practices to address this issue. Halila et al. used turbulence con-
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servations boxes, regions of the numerical domain where the turbulence source terms
are turned off, to avoid the freestream turbulence properties decay [3, 17]. The crit-
ical N -factor is directly correlated to the freestream turbulence intensity in the AFT
transition model. Therefore, no additional corrections are needed to correctly correlate
wind tunnel or flight turbulence intensities with the transition front location.

While more research groups implement and test the AFT model, some available
investigations indicate that it deserves attention as a transition prediction tool. Apart
from the results from Coder and Maughmer, Denison and Pulliam [18] showed that
transitional flow results obtained by the AFT model are in good agreement with ex-
perimental data. Details on the AFT model formulation are provided in Section 2.

The numerical behavior and convergence characteristics are crucial aspects when
using modified RANS models that can capture transition to turbulence effects. The
correlations that feed source terms in these models are highly nonlinear, introduc-
ing obstacles in achieving engineering or machine-zero convergence levels. Piotrowski
and Zingg [19] propose a coupled solution procedure for the Langtry–Menter tran-
sition model combined with the SA turbulence model. They use a Newton–Krylov
(NK) solver to this end and indicate good convergence behavior. Mosahebi and Lau-
rendau [20, 21] used a modified decoupled approach to solve turbulence models that
include transport equations for transition prediction. This approach also leads to fa-
vorable numerical behavior.

In this paper, we propose a smooth variation of the AFT model, referred to as
AFT-S. The AFT-S model replaces discontinuous functions that feed the original AFT
model’s source terms by continuous surrogates. This makes the AFT-S model compat-
ible with gradient-based aerodynamic shape optimization. We show that the smooth
AFT-S model is able to recover the original AFT model’s ability to predict transitional
flows for which transition is triggered by the amplification of Tollmien–Schlichting (TS)
waves. We modify and use an approximate Newton–Krylov (ANK) [22] solver to solve
airfoil transitional flow problems and investigate the AFT and AFT-S numerical be-
haviors in terms of convergence and computational cost. We focus on airfoil cases
for which the amplification of Tollmien–Schlichting (TS) waves triggers transition and
present a three-dimensional test case that illustrates the AFT-S model applicability to
realistic configurations. We assess the impact of distinct flow convergence levels on the
transition front location and aerodynamic coefficients. We have used the AFT-S model
to perform adjoint-based aerodynamic shape optimization, allowing the optimizer to
explore the role of laminar-turbulent transition in an optimization process. The results
can be found in our previous work [23].

The remaining sections of this paper are organized as follows. Section 2 introduces
the AFT model, while Sec. 2.1 presents the AFT-S model variant. We provide in-
formation on our flow solver, ADFlow, in Sec. 3. The ANK solver is introduced in
Sec. 3.1, which also contains information on modifications needed in the original solver
to compute transitional flows using the AFT-S and AFT models. We present transi-
tional flow results in Sec. 4 and highlight the AFT-S and AFT numerical behaviors
and convergence characteristics in Sec. 5. We conclude with final remarks in Sec. 6.

4



2 Transport Equations for TS Wave Amplification
The AFT model was first proposed by Coder and Maughmer [12]. The original model
was modified so that no isentropic flow assumption was needed and that Galilean
invariance was achieved [24]. In a second version [25], the transport equation for the
modified intermittency, γ̃ = ln(γ), was introduced to improve robustness when complex
flows are considered. A modified intermittency function is used so that the model
can be implemented with different solver strategies, including finite element methods.
Finally, after modifying some of the correlations that feed the transport equations, a
new version was released [15]. The AFT model is briefly summarized in this section.
For more information, please refer to Ref. [15].

The transport equations for the approximate N -factor, ñ, and modified intermit-
tency, γ̃, are,

∂(ρñ)

∂t
+
∂(ρujñ)

∂xj
= ρΩFgrowthFcrit

dñ

dReθ
+

∂

∂xj

[
σn (µ+ µt)

∂ñ

∂xj

]
, (2)

∂(ργ̃)

∂t
+
∂(ρuj γ̃)

∂xj
= c1ρSFonset [1− exp(γ̃)]− c2ρΩFturb [c3 exp(γ̃)− 1]

+
∂

∂xj

[(
µ+

µt
σγ

)
∂γ̃

∂xj

]
,

(3)

where ρ is the density, Ω is the vorticity magnitude, µ is the molecular dynamic vis-
cosity, µt represents the eddy viscosity, and σn = 1 is a model constant. The modified
intermittency, γ̃, relates to the intermittency through the mapping γ̃ = ln(γ). For the
modified intermittency transport equation, the model constants are c1 = 100, c2 = 0.06,
c3 = 50, and σγ = 1.0. The boundary conditions for both AFT working variables are
homogeneous Dirichlet in the freestream and homogeneous Neumann on solid walls.

A complete description of source and diffusion terms in Eq. (2) and Eq. (3) is
available in Ref. [15]. Below, we reproduce functions that are replaced by continuous
surrogates in the AFT-S model variant, for which more details are provided in Sec. 2.1.
Coder [15] proposes the use of a local shape factor, HL, that is only based on variables
available in each cell,

HL =
d2

µ

[
~∇(ρ~u · ~∇d) · ~∇d

]
, (4)

where d is the distance from the wall. The mapping between HL and H12, the boundary
layer shape factor, is given by

H12 = min [max(0.26HL + 2.4, 2.2), 20.0] . (5)

The switching function in Eq. (2) reads

Fcrit =

{
0, if Rev < Rev,0,
1, if Rev ≥ Rev,0.

(6)

More details on the definitions behind Eq. (6) are available in Ref. [15]. The transition
onset function is given by,

Fonset = max[(Fonset,2 − Fonset,3), 0], (7)
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Fonset,1 =
ñ

Ncrit

, (8)

Fonset,2 = min (Fonset,1, 2) , (9)

Fonset,3 = max

[
1−

(
RT

3.5

)3

, 0

]
, (10)

The the turbulent Reynolds number, RT , is defined in Ref. [15]. In Eq. (8), Ncrit is
the critical N -factor, the threshold amplification that, when reached, indicates the
beginning of the transition process. More details on the critical N -factor can be found
in Refs. [15, 26].

The underlying SA turbulence model [14] reads,

Dν̃

Dt
= cb1Sν̃ (1− ft2)−

(
cw1fw −

cb1
κ2
ft2

)( ν̃
d

)2

+
1

σ

{
∂

∂xj

[
(ν + ν̃)

∂ν̃

∂xj

]
+ cb2

∂ν̃

∂xj

∂ν̃

∂xj

}
,

(11)

and the coupling between the transition and turbulence transport equations takes place
through a modification in the original ft2 function, which becomes

ft2 = ct3 [1− exp(γ̃)] . (12)

Spalart and Allmaras [14] describe the other variables in Eqs. (11) in more detail.

2.1 AFT-S

To be compatible with adjoint-based design optimization, a RANS model should prefer-
ably not include functions with discontinuous values or derivatives. The original AFT
model contains min /max functions, which have discontinuous first derivatives, and
switching step functions, which have discontinuous values. We propose a modified
AFT model that uses smooth surrogates for discontinuous functions. The resulting
smooth AFT model, called AFT-S, is used to obtain all of the flow results in this work
that include transition to turbulence effects. The AFT-S model is based on the 2019b
version of the original AFT model, for which additional details can be found in the
literature [15].

The step function is used in the Fcrit function in Eq. (6). We smooth this step
function by using a modified hyperbolic tangent. The resulting function reads,

Fcrit =
1

2

[
1 + tanh

(
Rev −Rev,0
fsmooth

)]
, (13)

where fsmooth is a constant set to 300 in the current implementation. This value was
selected based on numerical experimentation and represents a good compromise be-
tween the desired function smoothing and the original AFT model’s ability to recover
the transition physics. Increasing values of fsmooth lead to a smoother function. To
illustrate the smooth Fcrit function, a Rev,0 value of 3500 is used in Fig. 1.
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The min and max functions are made smooth by using the Kreisselmeier–Steinhauser
(KS) function [27], which has been used for constraint aggregation in structural op-
timization [28–30]. The KS function-based smoothing modification affects the H12,
Fonset, Fonset,1, Fonset,2, and Fonset,3 computations. The maximum of generic functions
F1 and F2 in a given computational cell is computed using a KS function as follows,

max (F1, F2) =
ln [exp (pmaxF1) + exp (pmaxF2)]

pmax

, (14)

where ln is the natural logarithm and pmax is a positive constant set to 100 in the current
implementation. Equivalently, the minimum of functions F1 and F2 is computed by,

min (F1, F2) =
ln [exp (pminF1) + exp (pminF2)]

pmin

, (15)

where pmin is a negative constant, chosen to be equal to -100 in our current implemen-
tation. The current pmax and pmin values were chosen based on numerical experimen-
tation with the goals of attenuating high-frequency oscillations in the residuals during
the early convergence stages and of minimizing the number of nonlinear iterations
needed to obtain accurate transition front location and drag coefficient estimates. As
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Figure 1: Original and smooth Fcrit and Fonset,2 functions.

an example, the smooth version of Fonset,2, originally defined in Eq. (9), is calculated
as,

Fonset,2,smooth =
ln [exp (pminFonset,1) + exp (2pmin)]

pmin

. (16)

The smooth version of Fonset,2 is shown in Fig. 1 for Ncrit = 7 and pmin = −100. The
image depicts the smooth version behavior in the neighborhood of the discontinuity
region. The relevance of using the smooth version of the AFT model in gradient-based
optimization is explained by the fact that step or min/max functions have undefined
derivatives at their breakpoints.
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3 CFD solver
We use ADflow to perform the simulations that generate the results in this paper.
ADflow is an open-source CFD solver that can solve Euler, laminar Navier–Stokes,
and RANS equations in steady, unsteady, and time-spectral modes, with multiblock
structured and overset meshes [31]. The inviscid fluxes are discretized by using three
different numerical schemes: the scalar Jameson–Schmidt–Turkel (JST) [32] artificial
dissipation scheme, a matrix dissipation scheme based on the work of Turkel and
Vatsa [33], and a monotone upstream-centered scheme for conservation laws (MUSCL)
based on the work of van Leer [34] and Roe [35]. The viscous flux gradients are cal-
culated by using the Green–Gauss approach. The residual equations can be converged
with four distinct algorithms. Runge–Kutta and diagonalized-diagonally-dominant al-
ternating direction implicit (D3ADI) [36] algorithms are available. An approximate
Newton–Krylov (ANK) [22] solver is also implemented and can be used as a globaliza-
tion scheme for the full Newton–Krylov (NK) solver [37]. Due to its robustness and
numerical behavior, we adopt the ANK solver in this work.

3.1 Approximate Newton–Krylov Solver

We use an ANK algorithm to advance the flow state vector. The term approximate
in the ANK algorithm refers to how simplified stencils are used in the Jacobian con-
struction for the Newton step. When using the JST and Green-Gauss approaches to
compute the inviscid and viscous fluxes on a structured grid, respectively, a 33-point
stencil is needed for a second-order accurate finite volume formulation. We call this
residual computation level R0. In a first approximation level, referred to as R1, we
omit the fourth-order dissipation fluxes that are part of the JST scheme. This results
in a 27-point stencil. In the higher approximation level, R2, we assume that the com-
putational grid is perfectly orthogonal. The ANK solver was successfully applied to
three-dimensional configurations using overset meshes, and the perfectly orthogonal
grid assumption did not cause issues. Some examples can be found in Refs. [22, 38].
The stencils used for the turbulence equations are always compatible with the R2 ap-
proximation level [22]. The approximation introduced in R1 is also used in R2. This
highest approximation level uses a 7-point stencil. These approximate routines are
only used in the Jacobian computation and do not affect the actual set of equations
solved. As a result, these approximations do not introduce any numerical errors in the
final solution because they only affect the converged state’s path and not the converged
state itself. Further details on the approximations involved in our ANK algorithm are
provided by Yildirim et al. [22].

In CFD simulations, the initial solution is generally based on the constant, freestream
state, and therefore, continuation strategies are necessary [39]. In a pseudo-transient
continuation (PTC) approach, artificial time dependence is added to the steady-state
problem to make the state follow a physically valid trajectory from the initial condition
to the final state [39]. The ANK algorithm advances the state vector, Q, by using a
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PTC strategy, according to(
I

∆t(n)
+

(
∂Rm

∂Q

)(n)
)

∆Q(n) = −R0

(
Q(n)

)
, (17)

where I is the identity matrix, R represents the residual equations, the subscript m in-
dicates the residual approximation level, and superscripts denote the values evaluated
at the nth iteration. The iteration process aims at defining a state vector that respects
R0 = 0. The turbulence system, which can be solved in coupled or decoupled manner,
uses a first-order accurate upwind scheme for the advection terms. In the approximate
levels, the production term for the SA model, as defined in Eq. (11), is omitted for
fully turbulent simulations using the original SA model. When the AFT or AFT-S
models are used, the production term in the underlying SA model is retained since the
coupling between turbulence and transition transport equations takes place through
the ft2 term, as defined in Eq. (12). The omission of the SA model production term
favors the numerical convergence during the stages in which the approximate resid-
ual levels are used [22]. In the AFT and AFT-S models, production and destruction
terms are combined under a single term for the approximate N -factor transport equa-
tion, as seen in Eq. (2). For the modified intermittency transport equation, defined
in Eq. (3), production and destruction are represented by two separate terms. There-
fore, omitting the production term was not possible in the modified N -factor equation.
Numerical experimentation did not indicate benefits in omitting the production term
in the modified intermittency transport equation combined with the residual level ap-
proximations. Yildirim et al. [22] provide a complete description of the stencils used
in our implementation.

For each nonlinear iteration, the state vector is updated following,

Q(n+1) = Q(n) + ω(n)∆Q(n), (18)

where ω(n) is a relaxation factor with a value between 0 and 1. To determine ω(n),
we first compute ωphys, which is used to limit the updates so that the states respect
predetermined physical bounds,

ωphys =

[
max

({∣∣∣∣ ∆Qi,l
λphys,lQi,l

∣∣∣∣ ;∀ (i ∈ ncell) , (l ∈ lphys)

}
, 1

)]−1

, (19)

where the subscripts i and l refer to the cell index and the variable index respectively,
ncell is the global cell count, and lphys represents the variable indices subject to the
physicality check. For the meanflow equations, we use λphys,ρ = λphys,E = 0.2, where
the subscripts ρ and E indicate density and energy, respectively. For the SA working
variable, ν̃, we use λphys,ν̃ = 0.99. This allows the solver to increase ν̃ rapidly if needed.

Modifications to the original physicality check are required to simulate transitional
flows. When solving for the AFT and AFT-S additional states, ñ and γ̃, we proceed
as follows. Numerical experimentation indicated that control over the approximate N -
factor, ñ, is unnecessary. The modified intermittency, γ̃, is not allowed to assume values
larger than 2. For this variable, we use λphys,γ̃ = 1.0. The steps used to determine ωphys
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Algorithm 1 Physicality check

1: ωlocal ← 1 . Initialize the local step to 1
2: for i in ncells,local do . Loop over every cell owned by this process
3: for l in [lρ, lE] do . Loop over density and energy variables

4: ωlocal ←
[
max

(∣∣∣ ∆Qi,l

λphys,lQi,l

∣∣∣ , 1
ωlocal

)]−1

. Limit the step such that

|∆Qi,l < λphys,lQi,l|
5: for l = lν̃ do . Check the SA model working variable
6: if ∆Qi,l < 0 then . Only check negative updates

7: ωlocal ←
[
max

(∣∣∣ ∆Qi,l

λphys,lQi,l

∣∣∣ , 1
ωlocal

)]−1

. Limit the step so that

|∆Qi,l < λphys,lQi,l|
8: for l = lγ̃ do . Check the modified intermittency
9: if Qi,l 6= 0 then . Check for nonzero states

10: ωlocal ← 1
11: if Qi,l + ∆Qi,l > 2 then . Check if update violates γ̃ bound

12: ωlocal ←
∣∣∣∣(∆Qi,l−2)

∆Qi,l

∣∣∣∣ . Limit the step so that |∆Qi,l < λphys,lQi,l|

13: else . Check for zero states
14: if ∆Qi,l > 2 then

15: ωlocal ←
∣∣∣ −2

∆Qi,l

∣∣∣ . Limit the step so that |∆Qi,l < λphys,lQi,l|
16: else
17: ωlocal ← 1 . Take a full step

18: if ω < ωmin,γ̃ then . Check if step is too restrictive
19: ωlocal ← 1 . Take a full step
20: if Qi,l + ∆Qi,l > 2 then
21: ∆Qi,l = Qi,l − 2 . If full step violates upper bound, clip the update

22: ωphys ← MPI Allreduce(ωlocal,min) . Communicate to determine the global
minimum ωlocal
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are listed in Algorithm 1. Unlike the SA working variable, the modified intermittency is
allowed to assume negative and positive values. This makes necessary the modification
of the physicality check. If, in a given cell, the modified intermittency is nonzero, we
set ωlocal = 1, allowing a full step. If the full step leads to γ̃ > 2, we limit the step
to avoid the modified intermittency growing beyond the upper limit. If the modified
intermittency is zero for a given cell, we check the update and, if it is larger than the
upper bound for this state, we limit the local step accordingly. If this violation does
not occur, a full step is used. In the physicality check for the modified intermittency,
we set a lower limit of ωmin,γ̃ = 0.05. If ωphys assumes this lower bound value at a given
cell, we allow a full unit step and check if this violates the upper bound for the modified
intermittency. If an upper bound violation occurs, the state update is clipped. After
the physicality check, we employ a backtracking line search to determine the maximum
step size that leads to a decrease in the unsteady residual norm [22].

4 Numerical Results
This section presents numerical results obtained with the AFT-S transition model for
two subsonic airfoil test cases for which experimental data with transition information
are available. For the NLF(1)-0416 airfoil, which is a standard transition prediction test
case for which a complete set of experimental data is available, we compare the results
obtained with the AFT-S model with those corresponding to the original AFT model.
We highlight the AFT-S capability to predict the correct transition onset location and
illustrate its positive impact on the drag polar computation. A three-dimensional case
based on the prolate spheroid geometry is also presented. For all test cases used here,
a freestream eddy viscosity ratio of 2.79×10−7 was used, following Ref.[15]. This value
directly maps to ν̃/ν = 0.1.

4.1 NACA 0012

Gregory and O’Reilly [40] obtained experimental transition locations for a NACA 0012
airfoil. The wind tunnel runs had a Reynolds number of 2.88 × 106 and a Mach
number of 0.16. No information on the turbulence level on the wind tunnel test section
is available. Using an eN method and varying the turbulence intensity to produce the
best transition point match at a zero angle of attack, Mosahebi and Laurendeau [21]
suggested a freestream turbulence intensity, Tu, of 0.5% for a Mach number of 0.1.
We select freestream turbulence intensities of 0.2%, 0.4%, and 0.5% for the present
computations with angles of attack of 0, 3, 5, and 8 degrees. The computational mesh
has 116,760 cells with a y+ value no larger than 0.28. The mesh is composed of 805 grid
points in the streamwise direction, with around 50 points inside the boundary layer
region. The mesh growth ratio in the wall-normal direction is 1.05. The meshes used
in this study follow the guidelines suggested by Coder [41]. Grid convergence studies
indicate that the present mesh leads to the expected numerical behavior. The mesh is
similar to the fine airfoil mesh described by Coder [41].

Transition locations for all angles of attack and turbulence intensities used are
shown in Fig. 2. These results indicate that a turbulence intensity of 0.5% leads to
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the best agreement with experimental data. Therefore, despite the slight differences
in Mach number between the experimental setup [40] and the eN results [21], the
estimated wind tunnel test section is a good value to be used with the AFT-S transition
model. Figure 2 also shows the transition front evolution for a zero angle of attack
for varying turbulence intensity levels. As expected, increasing turbulence values move
the transition front upstream. Previous investigations assessed the Langtry–Menter
(LM) model’s ability to capture the effects of varying turbulence intensities on the
transition front [42]. These investigations recommended good practices for specifying
freestream turbulence variables when using the LM model with typical aeronautical
configurations [3, 17]. Future investigations will further explore these aspects when
considering the AFT-S model. In this work, the transition location is defined as the
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Figure 2: Transition location variations with angle of attack and turbulence intensity
for the NACA 0012 airfoil.

chordwise position where the skin friction coefficient first rises following the laminar
flow region. As pointed out by Arnal [43], the maxima of quantities such as skin friction
coefficient, RMS voltage, and wall heat flux are often used as an indication of transition
location. However, these peak values correspond to the middle of the transition region,
with an intermittency factor of around 0.5. The skin friction and pressure coefficients
for a zero angle of attack and Tu = 0.5% are shown in Fig. 3. This corresponds to
a critical amplification factor of Ncrit = 4.29. The skin friction coefficient moves up
at x/c = 0.425, defining the transition onset point. We observe a small perturbation
in the pressure coefficient distribution at this same location, indicating the transition
region. In aerodynamic flows that do not present shock waves, the effect of transition
on the pressure coefficient distribution is only of second order.

Approximate amplification factor, ñ, and modified intermittency, γ̃, are shown in
Fig. 4. We zoom in around the transition location indicated by the cf distribution,
seen in Fig. 3. In the transitional region, the approximate N -factor overcomes the
critical value, Ncrit = 4.29, which triggers the activation of the turbulence terms in
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Figure 3: Skin friction and pressure coefficients for a zero angle of attack and Tu = 0.5%
for the NACA 0012 airfoil.

the SA model transport equation. Modified intermittency contours in yellow indicate
turbulent flow, while purple denotes laminar. In the AFT-S model, both approximate
amplification factor, ñ, and modified intermittency assume a zero value at the farfield.
Since the modified intermittency is the natural logarithm of the true intermittency, zero
values of γ̃ indicate turbulent flow, and decreasing negative values indicate laminar
flow. Therefore, the modified intermittency field represents a turbulent state that
turns laminar close to the wall ahead of the transition zone. In Fig. 4, velocity profiles
are superimposed on the transition transport equations states contours. One can see
that the velocity profiles initially represent laminar flow and subsequently become full,
indicating a turbulent flow state.

4.2 NLF(1)-0416

The general aviation NLF(1)-0416 airfoil is a relevant test case for transitional flow
analysis due to the availability of experimental data with free transition. For the
simulations presented here, the Reynolds number is 4× 106, and the Mach number is
fixed at 0.1. Following the suggestions by Coder [41], we use a freestream turbulence
intensity of Tu = 0.15%, corresponding to Ncrit = 7.17. The computational mesh has
304,000 cells and respects the leading and trailing edges spacings and off-wall spacing
suggested by Coder [41]. The mesh is composed of 1000 grid points in the streamwise
direction, with approximately 304 points in the wall-normal direction. This leads to a
y+ no greater than 0.65. The mesh growth rate in the wall-normal direction is lower
than 1.1. The farfield boundaries are placed at 1000 chords away from the airfoil
surface following Ref. [41].

We perform simulations considering angles of attack from -4 to 8 degrees, with
increments of 2 degrees, and compare the numerical results to experimental data from
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(a) Approximate N -factor (b) Modified intermittency

Figure 4: ñ and γ̃ contours for zero angle of attack and Tu = 0.5% for the NACA 0012
airfoil. Velocity profiles are superimposed.

Somers [44]. Transition front locations and drag polar results for both transitional
(AFT and AFT-S) and fully turbulent (SA) cases are shown in Fig. 5. The experi-
mental transition locations reported by Somers [44] are obtained through the use of
acoustic devices that do not precisely detect transition. Instead, this method suggests
bounds inside which transition takes place. In Fig. 5, the triangular symbols connected
by horizontal bars indicate the likely transition locus for each lift coefficient. With in-
creasing angles of attack, the suction peak becomes more pronounced, and the resulting
increasingly strong adverse pressure gradients amplify TS waves, moving the transition
front upstream in the airfoil suction side. On the pressure side, the accelerating flow
caused by the increasing angles of attack has a damping effect on the TS waves, moving
the transition front downstream. The AFT-S model correctly reproduces this behav-
ior. Inspection of Fig. 5 also indicates that the transition locations predicted by the
AFT-S model are similar to the ones obtained using the original AFT model. The drag
polar results on the right of Fig. 5 demonstrate that including transition to turbulence
effects improves agreement with experimental data. We observe that the drag polar
results for the NLF(1)-0416 airfoil obtained with the AFT-S model compare well to
those obtained with the original AFT model. Additional results for the NLF(1)-0416
airfoil using the original AFT model can be found in Refs. [15, 18, 45].

Pressure coefficient distributions for experimental, transitional, and fully turbulent
simulations are shown in Fig. 6. Since this is a subsonic test case, the inclusion of
transition does not significantly affect the pressure distribution, with good agreement
with experimental data for both transitional and fully turbulent cases. However, one
can observe that the pressure coefficient region corresponding to the transition location
on the suction side of the airfoil presents a slope variation that is only captured when
the numerical results include transition to turbulence effects. The results shown in
Fig. 6 also indicate that the AFT-S model computation leads to a pressure coefficient
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Figure 5: Transition locations and drag polar for the NLF(1)-0416 airfoil.

distribution that is indistinguishable from the one obtained with the original AFT
model. All AFT simulations presented here are based on the 2019b version, for which
details are presented in Ref. [15]. We recall that the AFT-S model is constructed on
top of this same AFT model version.
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Figure 6: Pressure coefficient distributions for a zero angle of attack case for the
NLF(1)-0416 airfoil.

Skin friction coefficient results for both transitional (AFT and AFT-S) and fully
turbulent (SA) cases are shown in Fig. 7. The transitional case presents the typical
skin friction coefficient behavior observed in transitional flow, where a rapid increase
of cf indicates the transition onset point, as was mentioned in Sec. 4.1. The fully
turbulent case presents higher skin friction coefficients for both suction and pressure
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sides of the airfoil. This is a result of the boundary layer starting turbulent when
the SA model is used. Skin friction coefficient evolutions also indicate that the AFT-
S model correctly retains the behavior of the original AFT model. The transition
locations are the same for the AFT-S model and the original AFT model, as shown by
the skin friction coefficient rises seen in Fig. 7. Details on the lift and drag coefficient
comparisons between AFT-S and AFT results are presented in Sec. 5.

In the transitional case, the fully turbulent boundary layer is affected by the previ-
ous laminar and transitional states throughout history effects caused by the boundary
layer’s convective nature. This explains the distinct cf distributions for the post-
transitional, turbulent boundary layer in the simulations using the AFT-S model and
the turbulent boundary layer obtained with the SA model. Similar results were ob-
served when using a flow stability module based on the parabolized stability equations
coupled to a high-order CFD code [2]. For subsonic flow at low angles of attack, only
small, if any, flow separation regions appear, and the drag is dominated by skin fric-
tion. This is the main reason why the fully turbulent cases produce a drag polar that
is visibly different from the experimental one, as observed in Fig. 5.
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Figure 7: Skin friction coefficient distributions for a zero angle of attack case for the
NLF(1)-0416 airfoil.

Approximate N -factor, ñ, and modified intermittency, γ̃, contours are shown in
Fig. 8 for the AFT-S model. The zoomed-in images correspond to the transition
location in the suction side of the airfoil for a zero angle of attack, seen in Fig. 7.
Velocity profiles indicating laminar and transitional boundary layers are also shown.
For a freestream turbulence intensity of Tu = 0.15%, the corresponding Ncrit = 7.17 is
exceeded in the transitional boundary layer. The modified intermittency contours also
indicate the presence of a transition zone around x/c = 0.385, which agrees with the
skin friction distribution shown in Fig. 7.
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(a) Approximate N -factor (b) Modified intermittency

Figure 8: ñ and γ̃ contours for a zero angle of attack for the NLF(1)-0416 airfoil.
Velocity profiles are superimposed.

4.3 Inclined 6:1 Prolate Spheroid

The inclined prolate spheroid is a test case that embeds flow phenomena typical of a
fuselage. This test case represents a challenge for correlation-based transition models
because fuselage-like configurations are not present in the experimental data that were
used to derive the correlations. Kreplin et al. [46] performed experimental measure-
ments in the DFVLR 3x3 low-speed wind tunnel facility in Göttingen, Germany. The
experimental data was obtained for Mach numbers of M = 0.03 and M = 0.136, with
Reynolds numbers of Re = 1.5× 106 and Re = 6.5× 106. The angle of attack was set
to 5, 10, and 15 degrees. For Re = 1.5 × 106 and M = 0.03, transition to turbulence
was triggered by amplification of TS waves. For Re = 6.5 × 106 and M = 0.136 with
angles of attack of 5 and 10 degrees, transition is caused by both TS and crossflow
modes being amplified in the boundary layer. When the higher Reynolds and Mach
numbers are combined to an angle of attack of 15 degrees, transition to turbulence is
dominated by crossflow instability modes. The current AFT-S implementation does
not include empirical correlations for crossflow instabilities, and we choose M = 0.03
and Re = 1.5 × 106 with an angle of attack of 10 degrees as the flow condition for
the numerical simulations. As mentioned earlier, transition is dominated by TS-wave
amplification for these flow conditions. In the wind tunnel, the freestream turbulence
intensity is reported to be around 0.10% for this case. Numerical results considering
the Langtry-Menter transition model, for this same test case, are available in the work
from Grabe and Krumbein [47].

For the simulations, we use a mesh with 4, 194, 304 elements with corresponding y+

values no larger than 0.3. Our computational mesh follows the guidelines suggested in
Ref. [41]. Because ADflow is based on a compressible flow formulation, we perform our
simulations considering M = 0.1 instead of M = 0.03. ADflow does not employ low
Mach number preconditioning [48], and we have observed convergence issues at Mach
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numbers lower than 0.1.
The AFT-S model successfully captures the transition front when TS-waves domi-

nate the process. Skin-friction coefficient contours are seen in Fig. 9. The thick black
line represents the transition front obtained experimentally. As one can see by inspect-
ing the results shown in Fig. 9, the transition front predicted by the AFT-S model
closely recovers the experimental behavior.

To investigate the freestream turbulence intensity, Tui, effect on the transition front,
we also perform a simulation considering Tui = 0.15%. The skin friction coefficient
contours for this freestream condition are also shown in Fig. 9. When compared to
the results corresponding to Tui = 0.1%, the higher freestream turbulence intensity
simulation only reveals minor differences in flow topology.

(a) Tui = 0.10% (b) Tui = 0.15%

Figure 9: Skin friction coefficient contours for the prolate spheroid at a 10-degree angle
of attack.

For this flow condition, a complex flow topology is observed. A flow separation
regions extends throughout the prolate spheroid. Skin friction contours combined with
shear lines are seen in Fig. 10. In this figure, the separation region is evidenced by the
shear line convergence zone. This fuselage-like flow topology represents, as mentioned
earlier, a challenge for correlation-based transition models.

Figure 10: Skin friction coefficient contours with shear lines superimposed for the
prolate spheroid at a 10-degree angle of attack.

The numerical results presented in this section indicate that the AFT-S model is
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able to recover the original AFT model behavior. Our results also show that the AFT-S
model is able to reproduce experimental transitional flow results for airfoil flow cases.
Finally, the prolate spheroid results illustrate the ability of the AFT-S model to recover
experimental results when transition is observed in complex, three-dimensional flow
configurations for which TS-wave amplification is the leading transition mechanism.

5 Numerical Behavior and Convergence
The inclusion of turbulence equations in the set of meanflow equations dramatically
increases the complexity of the nonlinear system since the turbulence variables present
large fluctuations in the early convergence phases. The SA working variable is also 3
to 4 orders of magnitude smaller than the meanflow variables, requiring some type of
scaling. Introducing the transport equations for transition variables further enhances
the system complexity, directly impacting the numerical convergence behavior. The
large number of discontinuous functions that feed the source terms present in the
transition transport equation hinder the transition model convergence characteristics.

Based on the work of Lian et al. [49], Piotrowski and Zingg [19] propose a coupled
solution procedure for the Langtry–Menter transition model combined with the SA
turbulence model. Their approach combines a smooth version of the LM model with a
source term time-stepping approach proposed by Lian et al. [49] and is based on an NK
solver with approximate and inexact phases. The source term time-stepping approach
uses the eigenvalues of the Jacobian formed by the turbulence and transition equations
production terms. If the larger positive eigenvalue overcomes 0.9/∆t in a given cell,
the local pseudo time step is reduced.

Mosahebi and Laurendau [20, 21] proposed a modified decoupled approach to solve
turbulence models that include transport equations for transition prediction. Their
solver uses a modified explicit five-step Runge–Kutta time scheme. They used this
approach to converge the LM transition model robustly. In this modified decoupled
approach, each transport equation is solved separately, leading to a scalar Jacobian.
Furthermore, the coupling between the transition and turbulence equations, performed
through an effective intermittency, γeff, is under-relaxed. This gradually introduces the
effects of transition into the k and ω equations that form the SST model’s turbulence
system.

In ADflow, we use a decoupled approach to solve the flow problem with the ANK
solver. The turbulence variables are updated following the meanflow variables updates
in each nonlinear iteration in a nonlinear block Gauss–Seidel fashion [22]. By using this
decoupled approach, we recover the favorable convergence characteristics observed in
the meanflow variables. This also alleviates the difficulties associated with the scaling of
variables that arises when a fully coupled approach is used. The decoupled approach
improves the linear system conditioning and allows us to monitor the linear solver
performance for the turbulence system alone. This allows us to only update the PC
for the turbulence system while retaining a lagged PC for the meanflow variables [22].
In the NK solver, a fully-coupled approach is used. Previous studies [22] using the
SA turbulence model have shown that decoupled simulations behaved better in terms
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of wall time, and approximation levels R2 and R1 performed better than R0 in the
decoupled approach. As mentioned in Sec. 3.1, the approximate routines lead to more
nonlinear iterations and increase the diagonal dominance in the Jacobian, making each
nonlinear iteration computationally less expensive. These investigations also indicated
that a more robust method to choose the switching point between the ANK and NK
phases is required. Coupled simulations stalled after a relative convergence of 5 orders
of magnitude since the backtracking line search returned ω = ωmin. To avoid this issue,
we use the ANK solver only for the transitional flow analyses presented here.

To investigate the convergence behaviors for the original AFT model and for the
smooth AFT-S model, we simulate the transitional flow over the NLF(1)-0416 airfoil at
a zero angle of attack, M = 0.2 and Re = 4× 106. We use the NLF(1)-0416 mesh con-
sidered in the validation study presented in Sec. 4.2 since that mesh was able to provide
good agreement with experimental data and, therefore, the discussions below apply to
simulations that recover the correct transitional flow physics. We choose M = 0.2 for
the simulations that follow to reduce run-time because a converged state is reached
faster for the higher Mach number. Since a validation against experimental data using
M = 0.1 was performed in Sec. 4.2, we believe that the current choice for the Mach
number is justifiable. Our ANK solver has many setup options, and we use two distinct
flow strategies in this study. In the engineering convergence strategy, we solve the tran-
sitional flow problem by refreshing the turbulent PC every 10 iterations. We also allow
one nonlinear iteration of the turbulence model variables during the decoupled solver
and set the linear system tolerance to 0.05. Numerical experimentation also suggested
a 104 scaling factor for the SA working variable residuals. For both the transitional
variables, we use a residual scaling factor of 100. The CFL limit is set to 100. This is
required to allow the initial laminar flow solution to develop before the transition to
turbulence can start. In this simulation, we use the default residual formulation of the
ANK solver. The solver details for the engineering convergence strategy are present in
Table 1.

Table 1: Details for solver options - engineering and deep convergence strategies.

Variable Engineering convergence Deep convergence
Turbulence PC refreshing interval 10 iterations 1 iteration
Turbulence system sub-iterations 1 25
Linear system tolerance 0.05 10−4

Residual scalings (ν̃,ñ,γ̃) (104,102,102) (1.0,1.0,1.0)
CFL limit 100 1000
R0 switch not used 10−4

In the early nonlinear iterations, we observe a decay in the residuals for both AFT
and AFT-S models. Residuals for the modified amplification factor, ñ, start at low
values and then undergo a rise when wave amplification starts, even if the overall flow
state is laminar. During this early stage, the laminar flow that precedes turbulence
is developing. Suppose a convergence criterion is set to exit the simulation during
this first deep residuals decay. In that case, the resulting flow field will be laminar
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because the source terms in the SA turbulence model are not yet fully activated.
The residuals rise following this initial decay. At this point, wave amplification in
the trailing edge region becomes apparent. During the solution process, transition
occurs at a location downstream of its final location and then moves upstream until it
settles. For the engineering convergence strategy, this happens around 7000 nonlinear
iterations for the AFT-S model, while in the original model, the transition front settles
after 6000 nonlinear iterations. At this point, the flow solver is no longer able to
reduce the residuals, and some high-frequency oscillations are observed for the AFT-S
variant, but no bulk reduction takes place. When the original AFT model is used, the
oscillations disappear after 6000 nonlinear iterations. In both cases, the aerodynamic
coefficients are converged when the transition front settles. We use freestream residuals
as a reference. A relative convergence is then defined as,

η
(n)
rel =

||R(n)
0 ||2

||R(fs)
0 ||2

, (20)

where the superscript fs refers to the freestream properties. The relative convergence
for the governing equations is shown in Fig. 11. The convergence levels observed in
this strategy are compatible with industry standards.

After the solution stalls and the transition front is settled, the engineering conver-
gence strategy applied to the AFT-S model leads to a lift coefficient of cl = 0.5 and a
drag coefficient of cd = 0.005462, which is in agreement with experimental data [44].
When the original AFT model is used, the engineering convergence strategy leads to a
lift coefficient of cl = 0.4999 and a drag coefficient of cd = 0.005474. These values also
represent good agreement with the experimental data and indicate that the AFT-S
model can recover the original AFT model behavior. The drag coefficient is different
by only 0.22% when comparing results from the AFT-S model with the original AFT.
The lift and drag coefficient evolutions for the engineering convergence strategy are
shown in Fig. 12 for the AFT-S model. In Fig. 12, we only display 6000 out of the
10000 nonlinear iterations used in the engineering convergence strategy since no visible
variations in the force coefficients can be graphically seen past this point. As mentioned
by Mavriplis et al. [50], the lift coefficient presents a slow convergence during the early
iterations in Newton solvers, which is in agreement with the behavior seen in Fig. 12.
During the final 5000 nonlinear iterations, during which high-frequency oscillations are
observed in the residuals, the drag coefficient variations are within 0.1 drag count, or
around 0.18%.

Results available in the literature trace the convergence stalling seen in 2-equation
transition models to localized intermittency jumps in the viscous sublayer region [51].
This indicates that the modified intermittency equation is at least partially responsible
for the convergence stalling. Mavriplis et al. [51] also suggest that these harmful low to
high modified intermittency variations occur downstream of the transition region and
that the modified intermittency can be frozen after the transition location is settled
to remedy this issue. In our current implementation, the use of a frozen modified
intermittency field did not help address the convergence stalling mentioned above. To
further investigate the AFT and AFT-S convergence behaviors, we propose a second
flow solver strategy, referred to as deep convergence strategy.
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In the deep convergence strategy, we allow the turbulence subsystem to perform
more iterations for each meanflow iteration. In this case, we perform 25 turbulence
iterations for each meanflow iteration. We also enforce the preconditionner (PC) to be
refreshed every iteration instead of every 10 iterations in the engineering convergence
strategy. We tighten the linear system tolerance, which is reduced to 10−4, and do not
scale the turbulence variables. A CFL ramp with a maximum value of 1000 is used.
The R0 approximation level, in which a 33-point stencil is needed for a second-order
accurate finite volume formulation, is activated after total residuals present a relative
convergence of 4 orders of magnitude. The setup used in the deep convergence strategy
is shown in Table 1.

By using the deep convergence strategy, which promotes a better convergence for
the turbulence subsystem, we obtain machine zero convergence after 2660 and 2515
nonlinear iterations when using AFT-S and AFT models, respectively. The convergence
history is shown in Fig. 11. Using the deep convergence strategy, we obtain a lift
coefficient of cl = 0.5 and a drag coefficient of cd = 0.005459 with the AFT-S model.
As for the engineering convergence strategy, lift and drag coefficients initially present
oscillations. After 600 nonlinear iterations, lift and drag coefficients present minor
variations only, with drag coefficient variations within 0.1 drag count, for both AFT-S
and AFT. When applied to the original AFT model, the deep convergence strategy
leads to a lift coefficient of cl = 0.4999 and a drag coefficient of cd = 0.005475. These
results also show the AFT-S model’s ability to recover the original AFT behavior,
with a drag coefficient variation of 0.29% between the two model variants. Lift and
drag coefficient evolutions for the deep convergence strategy for the AFT-S variant are
shown in Fig. 12.

Even though the ANK solver can converge both AFT and AFT-S models, we ob-
serve some key differences in the residuals convergence for both versions. When using
the engineering convergence strategy, the flat residuals for the original AFT model after
6000 nonlinear iterations are likely caused by the solution stalling. The discontinuous
functions, part of the AFT model, switch back and forth, causing the Newton solver to
stop making progress. In this case, the solution updates assume a zero value, and the
solver cannot make further progress. In the AFT-S simulations, the smooth functions
help the solver to progress further without stalling. The high-frequency residual oscil-
lations observed for the AFT-S model when using the engineering convergence strategy
represent variations around a converged state and, therefore, they do not significantly
impact the aerodynamic coefficients. Oscillations in residuals are often caused by error
modes reflecting in the domain, and smooth physics models do not necessarily prevent
these oscillations. We also observe that, with both convergence strategies, the oscilla-
tions in the early stages of convergence are less pronounced with the smooth version.
This is usually better for Newton-based solvers. When using the deep convergence
strategy, we can converge both models to machine-zero residual levels. For other flow
cases, we observed similar behavior when using the AFT-S model: when high-frequency
oscillations appear in the residuals, they do not substantially affect the lift and drag
coefficients. Another relevant aspect is that the smooth functions embedded in the
AFT-S solver will likely improve the residuals convergence when a solver other than a
Newton-based one is used. When performing gradient-based optimization, discontinu-
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(a) Engineering convergence strategy - AFT-S
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(b) Deep convergence strategy - AFT-S
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(c) Engineering convergence strategy - AFT
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(d) Deep convergence strategy - AFT

Figure 11: Residual convergence histories for the engineering convergence and the deep
convergence strategies.

ous functions can introduce discontinuities in the objectives and gradients. A smooth
version is preferred for that application regardless of solver performance. In our investi-
gations applying the AFT-S model to gradient-based aerodynamic shape optimization,
we observed a good behavior in the adjoint convergence, leading to acceptable gradi-
ents. This resulted in the optimizer being able to perform natural laminar flow airfoil
optimization [23].

The increased number of sub-iterations for the turbulence subsystem in the deep
convergence strategy, combined with a frequent turbulent PC update, increases the
computational cost for each nonlinear iteration for both AFT-S and AFT models.
The use of larger stencils, contained in the R0 residual level, also increases the cost.
Therefore, the total computational cost of performing the 2660 nonlinear iterations
in the deep convergence strategy is 4.4 times larger than the one corresponding to
the 10000 nonlinear iterations used in the engineering convergence strategy for the
AFT-S model, with a similar factor for the AFT model. For a given convergence
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Figure 12: Lift and drag coefficients convergence histories for both flow solver strategies
for the AFT-S model.

strategy, the wall times are comparable when using the AFT or the AFT-S models.
The results shown here indicate only a 0.055% difference in drag coefficient between the
two strategies proposed here for the AFT-S variant. For the original AFT model, this
difference was of 0.018%. This suggests that a trade-off between convergence level and
computational time should be exercised when preparing a simulation with transition
to turbulence in an ANK solver. Skin friction and pressure coefficients for both flow
strategies are indistinguishable, and their distributions are shown in Fig. 13 for the
AFT-S model. The close resemblance between skin friction and pressure coefficient
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Figure 13: Skin friction and pressure coefficient distributions for both flow solver strate-
gies for the AFT-S model.
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distributions observed in Fig. 13 explains the closely similar drag and identical lift
coefficients when comparing numerical results from strategies 1 and 2. This holds for
both AFT-S and AFT models. For CFD analysis, this observation leads to an initial
conclusion that the additional convergence level provided by the deep convergence
strategy does not play a fundamental role in the correct transitional flow prediction.

The numerical methods behind the ANK solver can converge AFT-type models,
which are highly nonlinear and contain discontinuous functions that feed the production
terms and may present convergence robustness issues. In this section, we illustrated
how the ANK solver can be used to converge the AFT-S and AFT transition models.
We provide two flow solver settings that lead to distinct residual convergence levels and
explore how convergence level impacts the aerodynamic coefficients prediction. While
Yang and Mavriplis [52] present interesting results on the machine zero convergence of
the AFT model for an airfoil case, they do not explore the model’s numerical behavior
in depth. To the best of the authors’ knowledge, the results presented in this paper
constitute the first in-depth investigation of the numerical behavior of an AFT-type
transition model. The AFT-S model, which uses smooth surrogate functions to replace
original discontinuous relations, retains the physical and numerical behavior of the
original AFT model. Additionally, the AFT-S model is compatible with gradient-
based optimization and is amenable to algorithmic differentiation, which can be used
to compute derivatives. The reverse mode of algorithmic differentiation is equivalent
to the adjoint method applied to computer programs [53]. We successfully used the
AFT-S model to perform adjoint-based natural laminar flow airfoil optimization in
previous work [23]. Even though the ANK solver can converge both the smooth and
original versions of the AFT model, we point out that the smooth functions may be
helpful to achieve better convergence using distinct solvers, an example being the study
of Piotrowski and Zingg [19], who used smooth functions to improve the convergence
of a Langtry–Menter-type transition model.

6 Conclusions
The inclusion of transition to turbulence effects in CFD simulations is a required step
toward designing natural laminar flow airframes. Because transitional flow also appears
in airframes not designed to sustain extended laminar flow regions, CFD tools that
include these effects also present better agreement with experimental data than those
that use fully turbulent approaches. One example is the study of high-lift elements,
where transition is commonly observed.

Modified RANS models that consider transition effects gained momentum in the
last decade. The interest in these models lies in the possibility of computing laminar
and turbulent flow regions using the same CFD tool without the need to resort to
external modules based on flow stability theory or simplified methods. The AFT model
uses transport equations for the approximate N -factor and the modified intermittency.
These equations are added to the SA turbulence model. The resulting model can
predict transition to turbulence caused by the amplification of TS waves.

These modified RANS models usually present challenges related to convergence:
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The flow solver cannot decrease the residuals, which generally present high-frequency
noise in the residual norm convergence history. In this paper, we modified an ANK
solver to converge the meanflow and transition-turbulence systems in a segregated man-
ner. We replaced discontinuous functions in the original AFT model and introduced the
AFT-S variant. This is important for making the original model fully compatible with
gradient-based aerodynamic shape optimization. We used the AFT-S transition model
to investigate transitional flows over airfoils in the subsonic regime and compared the
results with those obtained with the original AFT model. Our results indicated that
the model can reproduce the transition front dependence on the freestream turbulence
intensity observed in experiments. We also showed that transition to turbulence effects
increase the agreement with experimental data for cases where transition was detected
in the wind tunnel runs. We presented results for a three-dimensional case based on
the prolate spheroid configuration and compared our results with experimental data
for a flow condition representing TS-dominated transition to turbulence. The AFT-S
model proved to be able to capture the transition front in this complex flow scenario
correctly.

We proposed two distinct flow solver strategies to converge the AFT-S and AFT
transition models transport equations. To the best of the authors’ knowledge, only one
conference paper has previously provided information on the machine zero convergence
characteristics of the original AFT model. Still, no further explorations on this vital
topic are available in the literature. The engineering convergence strategy presents an
initial decay in the residuals, followed by a plateau. In contrast, the deep convergence
strategy can converge the meanflow and turbulence systems down to machine-zero lev-
els. The computational cost for the deep convergence strategy is 4.4 times higher than
the one corresponding to the engineering convergence strategy when using AFT-S, with
a similar factor for the AFT model. However, both cases reproduce the experimental
data well, with drag coefficients that are only different by 0.055% when the AFT-S vari-
ant is used and by 0.018% for the original AFT model. This suggests that the partially
converged case can be used to perform CFD analysis for flows that present transition
to turbulence. Future research will address techniques to increase the efficiency ob-
served in the convergence process. Both strategies proposed herein are considerably
more expensive than the fully-turbulent simulations using the SA turbulence model.
Future studies will also expand the results presented in this paper to CF-dominated
cases.
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