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Computational fluid dynamics (CFD) based aerodynamic design has received increasing interest be-
cause simulated high-fidelity flow fields provide useful data to guide design optimization. Aerody-
namic design often requires evaluating the performance of a wide range of possible shapes. As the
complexity of a design increases, the size of the CFD mesh increases drastically, and running a large
number of CFD simulations can be time-consuming. To alleviate this issue, we develop an efficient
projection-based reduced-order modeling (ROM) approach to speed up the aerodynamic analysis.
The benefit of using a projection-based ROM approach is that we can obtain integral variables such
as lift and drag, as well as three-dimensional flow fields such as pressure and velocity, compared with
interpolation-based methods such as kriging or neural networks. In this paper, we elaborate on the
nonlinear ROM formulation we develop and its detailed implementation in OpenFOAM; a popular
open-source code for multiphysics analysis. We use the NACA0012 airfoil and the Cessna 172 wing
as the benchmarks and evaluate the performance of the proposed ROM method in terms of accuracy,
speed, and memory cost. We observe significant estimated speed ups from the ROM simulations,
and the velocity and pressure fields simulated by the ROM approach agree well with the CFD refer-
ences. The proposed ROM approach has the potential to become a useful tool for rapid aerodynamic
analysis.

I. Introduction
Advances in computing power have enabled computational fluid dynamics (CFD) to become an essential tool in

aerodynamic design. CFD-based aerodynamic design provides high-fidelity flow fields containing useful data to guide
the design optimization process. Therefore, CFD-based aerodynamic design can significantly reduce the design period
and cost, compared with traditional experiment-based design. Because of the above salient features, CFD-based design
has received increasing interest in recent years.

The application of CFD-based design ranges from simple geometries such as airfoils to complex configurations
like aircraft with full geometric details. As the details requiring resolution increase, the number of CFD mesh cells
increases drastically and can sometimes reach over 100 million. This poses a challenge for aerodynamic design
because designers often need to evaluate a wide range of designs in a short period of time. Running hundreds of CFD
simulations with large meshes is computationally expensive and is the bottleneck, especially for industrial applications
where large meshes are commonly needed.

To alleviate this issue, one can use the reduced-order modeling (ROM) technique to decrease the high computa-
tional cost. One commonly used approach is using an interpolation-based ROMs which builds a surrogate model (e.g.,
kriging, neural network) to approximate a desired response in the design space [1, 2, 3, 4, 5, 6]. An interpolation-based
ROM treats the numerical model as a black box and directly maps the inputs to the outputs; therefore, it effectively
reduces the computational cost when evaluating functions for a new design. However, one drawback of this approach
is that only limited data, typically integral values such as lift and drag, can be evaluated, and the flow physics are com-
pletely lost in the mapping process. The interpolation-based approach is generally sufficient for design optimization,
where designers mainly focus on reducing the value of an objective function. However, it is not ideal for aerody-
namic analysis because designers often need three-dimensional flow fields (e.g., velocity and pressure) to interpret the
behavior of a new design.

Alternatively, one can use a projection-based ROM approach [7, 8, 9, 10, 11, 12] to rapidly evaluate the aero-
dynamic performance. A projection-based ROM uses the proper orthogonal decomposition approach to project the
full-order model into a lower-dimensional space. This allows for solving reduced equations on a much lower dimen-
sion and projecting solutions back to full-order. The main flow physics are preserved during the projection, and thus a
projection-based ROM can approximate three-dimensional, full-order flow fields with a significantly reduced runtime,
compared with simulating the full-order model.
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The objective of this paper is to develop an efficient projection-based ROM approach to enable rapid aerodynamic
analysis. The focus of this work is to evaluate the performance of the proposed approach for practical engineering
design problems. To be more specific, we elaborate on our nonlinear ROM formulations and the implementation of the
ROM method in a popular open-source code for multiphysics analysis: OpenFOAM [13, 14]. We use the NACA0012
airfoil and the Cessna 172 wing case as the benchmarks. To demonstrate the power of the proposed ROM method, we
evaluate its performance in terms of accuracy, speed, and memory cost. We also compare the three-dimensional flow
fields generated by the high-fidelity CFD and ROM.

The rest of the paper is organized as follows. In Section II, we introduce the ROM framework and detail its
implementations. The CFD and ROM results are presented and discussed in Section III and we summarize our findings
in Section IV.

II. Method
As mentioned earlier, the nonlinear projection-based ROM we propose is implemented in OpenFOAM. In this

section, we elaborate on the detailed solutions of full-order models, followed by the implementation of our nonlinear
ROM approach.

1. Full-order flow solution
We use the standard OpenFOAM solver simpleFoam to simulate steady incompressible turbulent flow by solving the
Navier-Stokes equations: ∫

S

#»

U · d #»

S = 0, (1.1)∫
S

#»

U
#»

U · d #»

S +

∫
V

∇p dV −
∫
S

(ν + νt)(∇
#»

U +∇ #»

UT ) · d #»

S = 0, (1.2)

where
#»

U = [u, v, w] is the velocity vector; u, v, and w are the velocity components in the x, y, and z directions,
respectively;

#»

S is the face-area vector; V is the volume; ν and νt are the molecular and turbulent eddy viscosity
respectively, and p is the pressure. The finite volume method is used to discretize the continuity and momentum
equations on collocated meshes. These two equations are coupled by using the semi-implicit method for pressure-
linked equations (SIMPLE) algorithm [15] along with the Rhie–Chow interpolation [16].

The SIMPLE algorithm starts by discretizing the momentum equation and solving an intermediate velocity field
by using the pressure field obtained from the previous iteration or an initial guess (p0). The momentum equation is
then semi-discretized as

aP
#»

UP = −
∑
N

aN
#»

UN −∇p0 =
#»

H(
#»

U )−∇p0, (1.3)

where a is the coefficient resulting from the finite-volume discretization, subscripts P andN denote the control volume
cell and all of its neighboring cells, respectively, and

#»

H(
#»

U ) = −
∑

N aN
#»

UN represents the influence of the velocity
from all the neighboring cells. Note that to linearize the convective term, a new variable φ0 (the cell-face flux) is
introduced into the discretization to give∫

S

#»

U
#»

U · d #»

S =
∑
f

#»

U f
#»

U f ·
#»

S f =
∑
f

φ0
#»

U f , (1.4)

where the subscript f denotes the cell face. The cell-face flux φ0 can be obtained from the previous iteration or from
an initial guess. Solving Eq. (1.3), we obtain an intermediate velocity field that does not yet satisfy the continuity
equation.

Next, the continuity equation is coupled with the momentum equation to construct a pressure Poisson equation,
and a new pressure field is computed. The discretized form of the continuity equation is∫

S

#»

U · d #»

S =
∑
f

#»

U f ·
#»

S f = 0. (1.5)

Instead of using a simple linear interpolation,
#»

U f in this equation is computed by interpolating the cell-centered
velocity

#»

UP —obtained from the discretized momentum equation (1.3)—onto the cell face as follows:

#»

U f =

(
#»

H(
#»

U )

aP

)
f

−
(

1

aP

)
f

(∇p)f . (1.6)
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This idea of momentum interpolation was initially proposed by Rhie and Chow [16] and is effective in mitigating the
“checkerboard” issue resulting from the collocated mesh configuration. Substituting Eq. (1.6) into Eq. (1.5), we obtain
the pressure Poisson equation:

∇ ·
(

1

aP
∇p
)

= ∇ ·

(
#»

H(
#»

U )

aP

)
. (1.7)

Solving Eq. (1.7), we obtain an updated pressure field p1.
Finally, the new pressure field p1 is used to update the cell-face flux by using

φ1 =
#»

U f ·
#»

S f =

( #»

H(
#»

U )

aP

)
f

−
(

1

aP

)
f

(∇p1)f

 · #»

S f . (1.8)

Next, a new velocity field is computed by using Eq. (1.3) with the updated pressure and cell-face flux. The process
above is repeated until the specified flow-convergence criteria are met.

The Reynolds-averaged Navier–Stokes (RANS) approach is used to model the turbulence in the flow. To connect
the mean variables with the turbulence eddy viscosity νt, we use the Spalart–Allmaras (SA) one-equation turbulence
model:∫

V

∇ · ( #»

Uν̃) dV − 1

σ

∫
V

∇ · [(ν + ν̃)∇ν̃] + Cb2|∇ν̃|2 dV − Cb1

∫
V

S̃ν̃ dV + Cw1

∫
V

fw

(
ν̃

d

)2

dV = 0, (1.9)

where ν̃ is the modified viscosity, which can be related to the turbulent eddy viscosity via

νt = ν̃
χ3

χ3 + C3
v1

, χ =
ν̃

ν
. (1.10)

The four terms in Eq. (1.9) represent the convective, diffusion, production, and near-wall destruction for the turbulent
flow, respectively. The detailed definition of these terms and their parameters can be seen in Spalart and Allmaras [17].
Compared with the standard SA model [17], the ft2 term is ignored in the OpenFOAM SA model implementation.
Moreover, a stability enhancement function fv3 is added to ensure a non-negative S̃ term.

2. Reduced-order modeling
The discrete version of the partial differential equations (PDEs) in Eqs. 1.3, 1.7, 1.8, and 1.10 can be written in residual
form as:

#»

R( #»w, #»x v) = 0, (2.1)

where
#»

R is the residual vector, #»w is the vector of state variables, i.e., velocity, pressure, face flux, and turbulence
variables, and #»x v is the volume mesh coordinates. #»x v is typically a function of the design variable vector ( #»x ), i.e.,
#»x v = g( #»x ). To determine the mapping function g( #»x ), we use the free-form deformation method for geometry
parameterization and an inverse-distance weighted method for volume mesh deformation through the pyGeo [18] and
IDWarp [19] packages. In other words, for a new set of design variables #»x , we can compute the corresponding volume
mesh coordinate vector #»x v . Under this treatment, the residual equation can be written as a function of #»x and #»w:

#»

R( #»w, g( #»x )) = 0. (2.2)

Next, we elaborate on how to reduce the cost to solve the full-order residual equations. The ROM approach we
propose consists of two stages: offline and online [10, 11].

In the offline stage, we first run CFD samples with a range of design variable ( #»x ) values. Then, we assemble all
of these CFD samples’ state variables ( #»w) into a snapshot matrix S ∈ RN×m, where N is the number of full-order
states, and m is the number of CFD samples, and N � m.

SN×m =


w1,1 w1,2 · · · w1,m

w2,1 w2,2 · · · w2,m

...
...

. . .
...

wN,1 wN,2 · · · wN,m

 . (2.3)

3 of 17

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d 

by
 6

8.
56

.1
71

.2
1 

on
 J

an
ua

ry
 5

, 2
02

1 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/6
.2

02
1-

14
76

 



Based on the snapshot matrix S ∈ RN×m, we compute a set of basis vectors Φ ∈ RN×n = [Φ1,Φ2, · · · ,Φn]
by taking the singular value decomposition (SVD) of S, where Φi ∈ RN×1 is a basis vector and n is the number of
basis vectors to keep (n ≤ m). The SVD is computed using the scalable library for eigenvalue problem computations
(SLEPc) library [20]. Once the SVD is complete, we save the Φ matrix to the disk in the portable, extensible toolkit
for scientific computation (PETSc) [21] format so that it can be reused in the online stage later.

ΦN×n =


φ1,1 φ1,2 · · · φ1,n
φ2,1 φ2,2 · · · φ2,n

...
...

. . .
...

φN,1 φN,2 · · · φN,n

 . (2.4)

For small problems where the number of CFD samples is less than 10, we keep all the basis vectors by setting
n = m. For large problems (m > 10) and small design variable ranges, it is typically not necessary to keep all of
the basis vectors because this will significantly increase the computational cost while adding flow modes that are not
significant in producing accurate solutions. Particularly, we drop basis vectors whose corresponding singular values
are less than 0.1% of the largest singular values in the S matrix.

With this treatment, a full-order state-variable vector #»w in the design space can be approximated by a linear
combination of the basis vectors:

#»w ≈ Φ #»wr = [wr,1Φ1, wr,2Φ2, · · · , wr,nΦn]. (2.5)

where the reduced state variable vector #»wr contains the weights.
Substituting the equation above to the full-order residual equation (2.1), we obtain:

#»

R( #»w, g( #»x )) ≈ #»

R(Φ #»wr, g( #»x )), (2.6)

Therefore, for a new design, we need to find the reduced-order state variable vector #»wr that satisfies Eq. 2.6. Then
we can use it to quickly evaluate the corresponding full-order states #»w using Eq. 2.5.

Although this projected system operates on a much lower dimension than the original full-order system, evaluating
the full-order residual

#»

R still requiresO(N) numerical operations and is expensive. To mitigate this high cost, we can
make a further approximation to the residual vector, so that the number of required operations drops to O(k), where
n < k � N :

#»

R ≈ Ψ
#»

Rr = [Rr,1Ψ1, Rr,2Ψ2, · · · , Rr,kΨk]. (2.7)

This is similar to the approximation of the state in Eq. 2.5, where Ψ ∈ RN×k is a matrix containing basis vectors
that approximate the full-order residual

#»

R. We compute Ψ by first constructing a snapshot matrix P ∈ RN×l where
l = m · q with q being the number of evenly spaced out residual snapshots taken per CFD sample on the way to
convergence:

PN×l =


R1,1 R1,2 · · · R1,l

R2,1 R2,2 · · · R2,l

...
...

. . .
...

RN,1 RN,2 · · · RN,l

 . (2.8)

We are interested in k ≤ l interpolation points, and thus the partial SVD of P is computed to obtain Ψ:

ΨN×k =


ψ1,1 ψ1,2 · · · ψ1,k

ψ2,1 ψ2,2 · · · ψ2,k

...
...

. . .
...

ψN,1 ψN,2 · · · ψN,k

 . (2.9)

Using the approximation of the residual in Eq. 2.7, we can use hyper-reduction (sparse sampling) to reduce the
computational cost of evaluating

#»

R to O(k) numerical operations. Specifically, we define a sparse mask matrix
Z ∈ Rk×N , in which there is a single one in each row at a chosen interpolation point. These interpolation points
are found by applying the discrete empirical interpolation method (DEIM) [22], which provides an optimal set of
interpolation points to our residual basis Ψ. Let R̂ ∈ Rk be the residual evaluated at only the k interpolation points.
Using R̂, we want to interpolate to approximate the full residual. Multiplying both sides of Eq. 2.7 by Z gives us the
following:
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Z
#»

R = R̂ ≈ ZΨ
#»

Rr. (2.10)

Solving this equation for
#»

Rr and substituting back into Eq. 2.7, we obtain:

#»

R ≈ Ψ(ZΨ)−1︸ ︷︷ ︸
C

R̂. (2.11)

In the offline stage, we can compute C ∈ RN×k and save it to the disk. In the online stage, we can first compute
residuals at selected interpolation points for R̂, and then we use Eq. 2.11 to approximate the full-order residuals. The
hyper-reduction formulation is expected to significantly decrease the computational cost for the full-order residual
because we need to evaluate residuals only for k interpolation points instead of at all the cells in the mesh.

Evaluating the residual at only the k interpolation points in CFD can be done by creating submeshes that contain
the desired cell and its neighboring cells such that the residual can be computed correctly. However, our current
implementation does not have this capability, and the full-order residual

#»

R is still calculated explicitly. R̂ is computed
by applying Z to

#»

R, and thus Z is also saved to the disk during the offline stage. The full potential speed up from the
hyper-reduction ROM will be achieved in our future work. In this paper, we provide estimated speed up times in the
results section based on the values of N and k for the given problem. We also include results computed without using
hyper-reduction (brute-force ROM). In the brute-force ROM, we approximate only the state on a lower dimension
(Eq. 2.5) and not the residual.

In the online stage, we use the least-squares Petrov–Galerkin (LSPG) formulation to solve for #»wr. Specifically, for
a new design variable vector #»x ∗, we solve for the reduced vector #»wr that minimizes the L2 norm of the approximated
full-scale residuals (Eq. 2.6):

Minimize L2 = || #»R(Φ #»wr, g( #»x ∗))||2, with respect to #»wr. (2.12)

At the minimal point, we have ∂L2/∂
#»wr = 0, which gives the reduced residual equation: ∂ #»

R

∂ #»w︸︷︷︸
N×N

Φ︸︷︷︸
N×n


T

#»

R︸︷︷︸
N×1

= Ω︸︷︷︸
n×N

#»

R︸︷︷︸
N×1

=
#»

Rr︸︷︷︸
n×1

= 0. (2.13)

Algorithm 1 Newton-Krylov algorithm to solve the reduced residual equation
Input: #»x ∗, #»w ref . New design variables and initial full-order states
Output: #»w∗ . New full-order state variables for the new design

1: #»x ∗v = g( #»x ∗) . Compute volume mesh coordinates based on new design variables
2: #»w0

r = ΦT #»w ref . Compute the initial reduced state variable vector
3: for n ∈ {0, 1, . . . , nmax} do . Main loop to compute #»w∗r

4:
∂

#»

Rr

∂ #»wr
← #»wn

r ,
#»x ∗v . Compute the reduced Jacobian matrix

5:
#»

Rr ← #»wn
r ,

#»x ∗v . Compute the reduced residual

6: ∆ #»wn
r ←

∂
#»

Rr

∂ #»wr ( #»wn
r ,

#»x ∗
v)

∆ #»wn
r = − #»

Rr( #»wn
r ,

#»x ∗
v)

. Solve the linear equation to get ∆ #»wn
r

7: for m ∈ {0, 1, . . . ,mmax} do . Backtracking line search
8: α = 1.0
9: #»wn+1

r = #»wn
r + α∆ #»wn

r . Update #»wn
r with step α

10: if || #»Rr( #»wn+1
r )||2 < || #»Rr( #»wn

r )||2 then . Reduced residual decreases, line search done
11: break
12: else . Reduced residual not dropping, decrease α
13: α = 0.5α
14: #»w∗r = #»wn+1

r . Assign the latest solution to #»w∗r
15: if || #»Rr( #»wn+1

r )||2/|| #»Rr( #»w0
r)||2 < rtol then . Prescribed tolerance satisfied, exit the main loop

16: break
17: #»w∗ = Φ #»w∗r . Compute the new full-order state variable vector
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The reduced nonlinear residual vector
#»

Rr has size of n×1 and its input variables are #»wr ∈ Rn×1 and #»x ∗ ∈ Rnx×1.
To solve this reduced residual equation

#»

Rr(Φ #»wr, g( #»x ∗)) = 0, we use the Newton-Krylov approach and its details are
summarized in Algorithm 1.

To be more specific, we first compute the new volume mesh coordinates ( #»x ∗v) based on the new design variable
vector ( #»x ∗). Once #»x ∗v is computed, we need to update the CFD mesh metrics (e.g., cell center, surface area, and
volume) based on the new volume mesh coordinates. We also need to use a reference full-order state variable vector
#»w ref (its choice will be discussed later) to compute the initial reduced state variable vector ( #»w0

r), such that we can
use it as the initial condition for the Newton-Krylov solution. In the Newton-Krylov iteration loop, we first compute
the reduced residual vector

#»

Rr, as well as the reduced Jacobian matrix ∂
#»

Rr/∂
#»wr using the finite-difference method.

Next, we solve the linear equation to obtain ∆ #»wr. The linear equation is solved using the generalized minimal residual
(GMRES) method implemented in the PETSc library [21]. Then, we perform a backtracking line search to compute
the new reduced state variable vector #»wn+1

r . The line search requires the reduced residual vector
#»

Rr to decrease
for the new #»wn+1

r vector. If not, we reduce the step size by a factor of two. Typically, we perform maximal five
line-search attempts (i.e., mmax = 5). This process is repeated until the relative reduced-residual

#»

Rr is less than
the prescribed tolerance (rtol) or the Newton-Krylov reaches nmax iterations. Although we only drive the reduced
residual to zero during the Newton iterations, the full-order residual is expected to decrease too, according to the
LSPG formulation (2.13). The converged reduced state variable vector is output as #»w∗r . Finally, we compute the new,
full-order state variable using #»w∗ = Φ #»w∗r .

As mentioned before, for each Newton iteration, we explicitly compute and form the reduced state Jacobian ma-
trix ∂

#»

Rr/∂
#»wr using the finite-difference method. When evaluating the reduced residual

#»

Rr, we need to compute
[∂

#»

R/∂ #»w]Φ. We compute this matrix-matrix product in a matrix-free manner. To this end, we first extract one basis
vector

#»

Φi from the Φ matrix and use the matrix-free approach to compute the matrix-vector product:

∂
#»

R

∂ #»w

#»

Φi =

#»

R( #»w + ε
# »

Φi)−
#»

R( #»w)

ε
, (2.14)

where ε = 1 × 10−6 is a small step size. In the above equation, we need to evaluate the full-order residual once
for each column in the Φ matrix. The full-order residual computation is based on DAFoam [23, 24], an open-source
adjoint derivative computation framework with OpenFOAM. We repeat the above step for all the basis vectors in the
Φ matrix. This treatment prevents us from explicitly forming and storing the full-order state Jacobian matrix ∂

#»

R/∂ #»w,
which saves memory and improves speed.

The Newton-Krylov method needs a preconditioner (PC) matrix [∂
#»

R/∂ #»w]PC for each GMRES linear equation
solution. We use the additive Schwartz method (ASM) as the global preconditioner, while for the local preconditioner,
we use the incomplete lower and upper (ILU) factorization approach, as described in our previous work [25]. This
PC matrix is computed in the offline stage using the state variables from a reference sample point that is closest
to the baseline design. This PC matrix is used for all predictions and will not be updated in the online stage. This is
reasonable because the size of reduced nonlinear equation

#»

Rr is small, and we do not observe any difficulty converging
the linear equation; there is no need to update the PC matrix for every Newton iteration.

Once we obtain the converged reduced state variable vector #»w∗r for a new design #»x ∗, the corresponding full-order
state variable vector is computed as #»w∗ = Φ #»w∗r .

To summarize, the nonlinear ROM consists of the following steps:

• Offline:

– Generate CFD samples with a range of #»x values (different shapes)

– Perform a SVD of the state snapshots to compute Φ and save it to the disk

– If using hyper-reduction, perform a SVD of the residual snapshots to compute Ψ, execute the DEIM
algorithm, and save C and Z to the disk

– Compute the preconditioner matrix [∂
#»

Rr/∂
#»wr]PC and save it to the disk

• Online:

– Calculate
#»

R in all online calculations using either hyper-reduction or brute-force approach

– For a new design with ∆ #»x , deform the geometry to a new design point ( #»x ∗ = #»x + ∆ #»x ), compute the
new volume mesh coordinates, i.e., #»x ∗v = g( #»x ∗), using the pyGeo [18] and IDWarp [19] packages.

– Use the reference full-order state variable vector to compute the initial reduced state variable vector ( #»w0
r =

ΦT #»w ref), and use it as the initial condition for the Newton-Krylov solution.
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Figure 1. Mesh and FFD for the NACA0012 case.

– Use #»x ∗v and #»w0
r as the input, solve the reduced residual equation

#»

Rr(Φ #»wr,
#»x ∗v) = 0 using the Newton-

Krylov method, and get the converged reduced state variable vector #»w∗r (Algorithm 1).

– Compute the new, full-order state variables #»w∗ = Φ #»w∗r

– Compute the new objective functions (e.g., CD) using the new full-order state variable #»w∗

III. Results and Discussion
In this section, we evaluate the proposed ROM approach using two cases: the NACA0012 airfoil and the Cessna

172 wing.

1. NACA0012 airfoil
We use the NACA0012 airfoil as our first benchmark. The chord (c) is set to be 1 m, and the span is set to be 0.1 m
with one cell in the spanwise (z) direction. The flow condition is incompressible with Reynolds number 106 and Mach
number 0.03 (U∞=10 m s−1 and T=273 K). We generate a coarse structured mesh with 15,232 cells using the pyHyp
package [19], and the computational domain extends 30 chords from the surface, as shown in Fig. 1. The system has
N = 138,034 state variables, or degrees of freedom (DOF), in total. The averaged y+ is 32.1, so the wall function is
used. The functions of interest are CD and CL.

In this section, we conduct two tests: The first test uses the airfoil pitch as the design variable, and the second
one uses the airfoil shape as the design variable. As mentioned before, we use the FFD approach to parameterize the
surface geometry. The pitch change is achieved by rotating all the FFD points, while the shape change is done by
modifying the locations of individual FFD points. The FFD points are shown as red squares in Fig. 1.

In the first test, we run five simulations with a pitch angle ranging from −4 to 4 degrees and an interval of 2
degrees. The flow simulations are run for 1000 steps, for which the residuals drop eight orders of magnitudes. When
using hyper-reduction, the residual is written every four steps for each sample, resulting in a total of 1250 residual
snapshots. 1250 interpolation points are used, or k = 1250. Since there are N = 138,084 state variables in total, the
number of residual evaluations required for the reduced system drops considerably. We predict CD and CL at−3,−1,
1, and 3 degrees using the flow field at 4 degrees as the initial condition. We require the norm of the reduced-order

Table 1. Comparison of speed and memory cost between CFD and ROM (NACA0012 pitch). The superscript * denotes the
estimated runtime.

Runtime (s) Memory (GB)
CFD 148.0 0.1
ROM-BF offline 4 0.2
ROM-BF online 13.7 0.2
ROM-HR offline – 6.0
ROM-HR online 0.478∗ 2.1
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residual to drop two orders of magnitude (rtol = 1 × 10−2). This is sufficient because the model-reduction errors
dominate beyond rtol < 1 × 10−2, and there is no need to converge the reduced-order residual further. The CFD and
ROM simulations are conducted using the Intel Xeon E5-2640 CPU v2 (2.0 GHz) with one core (serial run).

Table 1 summarizes the speed and memory cost between the CFD and ROM computation. The offline brute-force
ROM (referred to as ROM-BF) runs only once, and its runtime is negligible. When using hyper-reduction (referred to
as ROM-HR), the offline costs are currently high and are not listed. The bottlenecks appear during the SVD calculation
of the residual snapshot matrix, P , as well as when solving the DEIM algorithm. To overcome the high offline costs,
we will improve the performance of large-scale SVD computations with more robust algorithms and direct linear
solvers in our future work.

We directly compute the runtime ratio between CFD and ROM-BF. However, for ROM-HR, we only provide
estimated runtime. As previously mentioned, the full residual is still being evaluted when using ROM-HR, although
we are only interested in the values at the k interpolation points. When evaluating the full residual, the number of
cells in which the residual is evaluated follows O(N). If we are only interested in the residual at the k interpolation
points, the number of residual evaluations follows O(k). We can then approximate the estimated runtime Thr as:
Thr = Tbf × k/N , where Tbf is the runtime of ROM-BF. The averaged runtime ratio between CFD and online ROM-
BF is 10.8, while the average estimated runtime ratio between CFD and online ROM-HR is 309.6, and the average
speedup between ROM-HR and ROM-BF is 28.7. The memory cost of both online and offline ROMs is about 50%
more than that of the CFD solution. This increases drastically when using ROM-HR. This is because the number of
residual snapshots and interpolation points is much higher than the number of state snapshots, which is reflected in the
size of various matrices in both the online and offline stages. In the future, we will improve the memory performance
by reducing the number of required interpolation points for ROM-HR. In summary, the nonlinear brute-force ROM
increases the simulation speed by a factor of ten, while requiring similar amounts of memory. The hyper-reduction
ROM is expected to achieve an additional twenty times speed up compared with the brute-force ROM.

Table 2 shows the comparison of CD and CL computed by the CFD and both ROMs. We observe excellent
agreement between CFD and ROM-BF with an averaged error of less than 1.0%. The agreement between CFD and
ROM-HR is also good, with the averaged error for CD under 3.0% and for CL under 2.0%.

Figure 2 compares the velocity magnitude contours between CFD and ROM-BF. As mentioned before, the main ad-
vantage of using a projection-based ROM is that it can approximate full-order flow fields, compared with interpolation-
based ROMs. This is clearly demonstrated here as we observe reasonably good agreement of velocity magnitude
distribution between CFD and ROM-BF. Reasonably good agreement is also observed for ROM-HR (not shown).
Similarly, we plot the pressure profiles from the CFD and both ROMs and observe an excellent agreement (the CFD
and ROM profiles are not distinguishable visually), as shown in Fig. 3.

In the second test, we use the displacements of the 10 FFD points as the design variables to change the airfoil
shape. We use the Latin hypercube sampling (LHS) approach (maximal min-distance) to generate 50 random designs
for these ten design variables. The bounds of the design variables are from −0.025 to 0.025 m. Examples of CFD
samples are shown in Fig. 4, along with their full-order solutions. We observe a wide range of shape variations, which
provides sufficient design freedom for rapid aerodynamic analysis. The angle of attack for these cases is 4 degrees.

The flow conditions and CFD configurations are the same as the previous test. The reduced system is also similar.
However, this time we use 15 state basis vectors, as using additional basis vectors does not improve the system much
and increases the computational cost. The residual is written every five steps for each sample, resulting in 10,000
residual snapshots. k = 2750 interpolation points are used. Again, this is much lower than the number of DOF in the
system. To evaluate the performance of the ROMs, we generate ten random shapes using the same LHS method. Note
that the prediction points do not overlap with our CFD samples.

A factor that impacts performance greatly when solving the reduced residual equation (2.6) using the Newton-

Table 2. Comparison of simulated CD and CL between CFD and ROMs (NACA0012 pitch).

CFD ROM-BF ROM-HR
CD (θ = −3 deg) 0.01423754 0.01412948 0.01363337
CL (θ = −3 deg) 0.10133706 0.10293115 0.10427677
CD (θ = −1 deg) 0.01520921 0.01504534 0.01533526
CL (θ = −1 deg) 0.30434491 0.30726999 0.29927512
CD (θ = 1 deg) 0.01722198 0.01710128 0.01632709
CL (θ = 1 deg) 0.50353991 0.50520139 0.51248370
CD (θ = 3 deg) 0.02040783 0.02042978 0.02066389
CL (θ = 3 deg) 0.69627769 0.69565701 0.69080539
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Figure 2. Comparison of velocity magnitude contours between CFD (left) and ROM (right) at θ = 3 degree (NACA0012 pitch).

Figure 3. Comparison of pressure profile between CFD and ROM at θ = 3 degree (NACA0012 pitch).

Table 3. Comparison of speed and memory cost between CFD and ROM (NACA0012 shape). The superscript ∗ denotes the
estimated runtime.

Runtime (s) Memory (GB)
CFD 148.0 0.1
ROM-BF offline 19 0.3
ROM-BF online 35.7 0.6
ROM-HR offline – 24.5
ROM-HR online 2.7∗ 4.6

Krylov method is the initial condition. It is known that the Newton method performs reasonably well when the
initial guess is relatively close to the solution, whereas a bad initial guess may cause the Newton method to diverge.
Therefore, we implement a method to dynamically choose the best initial state variables from the CFD samples and
use them to initialize the Newton solution. The criteria we use is based on the norm of the difference between the
design variable vectors, L = || #»x prediction − #»x sample||, and we will choose the CFD sample that has the minimal L.

Table 3 shows the runtime and memory cost for the NACA0012 shape case. Again, the offline costs when using
hyper-reduction are very large and not listed. A larger amount of memory is required for this case in both the online
and offline stages, as the number of residual snapshots and interpolation points is considerably higher. The offline costs
without hyper-reduction are again low, as well as the memory costs in both the online and offline stages, although they
are slightly higher than the previous case due to a higher number of state snapshots and basis vectors. The runtime
for the online stage increases and the average runtime ratio between CFD and ROM-BF is 4.1. The average estimated
runtime ratio between CFD and ROM-HR is 54.8, and the average speedup between ROM-HR and ROM-BF is 13.4.
This is lower than the estimated average speedup between the ROMs when the airfoil’s pitch was the only design
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Figure 4. Examples of random airfoil shapes for the CFD samples and their velocity magnitude distributions (NACA0012 shape).
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Figure 5. Comparison of CD and CL predicted by CFD and ROM-BF (NACA0012 shape).

variable because there are more interpolation points. The overall increase in runtime is primarily due to the increase
in basis vectors. As shown in Eqs. 2.13 and 2.14, we need to compute the matrix-vector product for each basis vector
in the Φ matrix. For each matrix-vector product computation, we need to evaluate the residual once. This has become
the bottleneck of brute-force ROM because evaluating the full-order residual is expensive. This limitation will be
mitigated by using the hyper-reduction ROM, as mentioned above.

Figure 5 shows the comparison of CD and CL computed through CFD and predicted by ROM-BF. The agreement
in CL and CD are similar, with the averaged errors both under 2.5%. The maximum error in CL is much higher than
in CD, at over 10%. Figure 6 shows the comparison of CD and CL, this time comparing ROM-HR against CFD. The
agreement in CL is better than CD this time, although both are below 2.5%. ROM-HR performs similarly to ROM-BF
in predicting CD and does better in predicting CL. Next, we extract the best prediction point and the worst prediction
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Figure 6. Comparison of CD and CL predicted by CFD and ROM-HR (NACA0012 shape).

Figure 7. Comparison of pressure profile between CFD and ROM (NACA0012 shape).
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Figure 8. Comparison of velocity magnitude contours predicted by CFD and ROM (NACA0012 shape; brute-force).

Figure 9. Comparison of velocity magnitude contours predicted by CFD and ROM (NACA0012 shape; hyper-reduction).

point and analyze their velocity and pressure distributions from CFD and ROM simulations, as shown in Figs. 7, 8,
and 9. As expected, the velocity and pressure agree well for the best prediction point for both ROMs and at the worst
prediction point for ROM-HR. At the worst prediction point for ROM-BR, we observe a noticeable difference in the
pressure profile compared to CFD; however, this difference is still acceptable for practical aerodynamic analysis.
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Figure 10. Mesh and FFD for the Cessna 172 case.

2. Cessna 172 wing
Next, we use the Cessna 172 wing as the test case. The root chord (c) is 1.67 m, and the semi-span aspect ratio is 3.2.
The flow condition is incompressible with Reynolds number 7× 106 and Mach number 0.187 (U∞=63.8 m s−1). We
generate a structured mesh with 609,280 cells using the pyHyp package [19], and the computational domain extends
30 chords from the surface, as shown in Fig. 10. The averaged y+ is 55.1, so the wall function is used. The functions
of interest are CD and CL. Since this case is computationally much larger, we encountered issues implementing
ROM-HR, primarily due to disk space and memory. Writing the residual to disk every few steps was not an issue in
the NACA0012 cases but required a large amount of storage for this case. Additionally, a larger than the available
amount of memory is required when using ROM-HR, and thus results are only presented for ROM-BF. In the future,
we will improve upon our method so significantly fewer interpolation points and residual snapshots are required for
accurate predictions.

The jobs are run on the Skylake nodes of the Stampede 2 supercomputer a. The Skylake nodes are equipped with
Intel Xeon Platinum 8160 CPUs running at 2.1 GHz, where each node has 48 CPU cores and 196 GB of memory. We
run the Cessna 172 case in parallel using 48 CPU cores and 2 Skylake nodes.

We use 100 FFD points to parameterize the wing surface at five spanwise locations. The design variables are the
five twists at these spanwise locations, as shown in Fig. 10. Twisting is achieved by rotating a set of FFD points at a
given spanwise section.

Similar to the previous case, we use the LHS approach (maximal min-distance) to generate 25 random designs for
these five twist design variables. The bounds of the twist variables are from−1 to 1 degree. The angle of attack is kept
at 2.5 degrees. We run the CFD simulations for 2000 steps, and the flow residuals drop eight order of magnitudes. The
reduced system’s configuration is similar to the previous case, except that we keep only ten basis vectors.

Table 4 shows the speed and memory cost for the offline and online ROM simulations. The memory cost and offline
ROM speed are similar to what we observed for the airfoil case. However, the online ROM speed further decreases,
and the averaged runtime ratio between the CFD and ROM is only 1.9. Again, the reduced speed is partially due
to the extension from two-dimensional to three-dimensional cases where the cost of evaluating the full-order residual
increases drastically. In addition, we observe an even more challenging convergence for the reduced Newton iterations.
More specifically, the line search requires more attempts, and the Newton method generally requires more iterations
than the two-dimensional airfoil case. We will improve the speed of the online ROM using hyper-reduction.

Figure 11 shows the comparison of CD and CL predicted by CFD and ROM. Here we observe excellent agreement
between the CFD and ROM solutions with an averaged error less than 1% and a maximal error less than 2.0%. To
further demonstrate this excellent agreement, we use the worst prediction point for detailed analysis. We plot the
pressure contours at the upper and lower surfaces of the wing and compare the results between CFD and ROM, as
shown in Fig. 12. As expected, the difference between the CFD and ROM simulations are not visually distinguishable.
We then plot the pressure profiles at the root and tip sections of the wing, shown in Fig. 13. We confirm the excellent
agreement of the pressure profiles at the root section. In the tip section, the difference between the CFD and ROM is

ahttps://www.tacc.utexas.edu/systems/stampede2
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Table 4. Comparison of speed and memory cost between CFD and ROM (Cessna 172 twist).

Runtime (s) Memory (GB)
CFD 108 5.9
ROM-offline 9 4.8
ROM-online 57 10.3

0.013 0.014 0.015 0.016 0.017
CD (CFD)

0.013

0.014

0.015

0.016

0.017

C D
 (R

O
M

)

Avg Error: 0.6%
Min Error: 0.2%
Max Error: 1.1%

Prediction Points
Best Point
Worst Point

0.28 0.30 0.32 0.34 0.36 0.38 0.40
CL (CFD)

0.28

0.30

0.32

0.34

0.36

0.38

0.40

C L
 (R

O
M

)

Avg Error: 0.8%
Min Error: 0.1%
Max Error: 1.6%

Figure 11. Comparison of CD and CL predicted by CFD and ROM.

Figure 12. Comparison of pressure contours between the CFD and ROM simulations.

noticeable, but it is still well acceptable in the practical aerodynamic analysis. Finally, we plot the velocity magnitude
contour at the root and tip sections in Fig. 14. As expected, the ROM simulation provides approximated three-
dimensional flow fields, and the agreement between the CFD and ROM results is excellent.

IV. Conclusion
In this paper, we elaborate on the nonlinear reduced-order modeling (ROM) formulations we recently developed.

To be more specific, we first use the state variables from a CFD dataset with various designs to generate snapshot
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Figure 13. Comparison of pressure profiles between the CFD and ROM simulations at the root, mid, and tip sections.

matrices of the state as well as the residual values if using hyper-reduction. Then, we compute the singular value
decomposition (SVD) to find the basis vectors from the snapshot matrices and project the full-order state variables to
a lower-dimensional space. Hyper-reduction, although not fully implemented, eliminates the need to evaluate the full-
order residual and rather evaluates it at a set of interpolation points that are used to approximate the full order-residual.
Next, we use the least-square Petrov-Galerkin method to formulate the reduced-order residual equation and use the
Newton-Krylov method to solve it.

We then implement the formulation into an incompressible flow solver in OpenFOAM, a popular open-source
code for multiphysics analysis. We use two cases to demonstrate the performance of our ROM implementation: the
NACA0012 airfoil and the Cessna 172 wing. We observe that the ROM simulations increase the speed of the flow
simulations with runtime ratios for ROM-BF ranging from 1.9 to 10.8. When using ROM-HR, the estimated runtime
ratios for the NACA0012 cases range from 55 to 310. In addition, the memory ratio between ROM-BF and CFD
simulations is no more than two. In terms of accuracy, the averaged error in CD and CL ranges from 1.6% to 2.4%.
The ROMs provide approximated three-dimensional flow fields (pressure and velocity), and the agreements between
the CFD and both ROMs are very reasonable for aerodynamic design optimization. Future work will include the
implementation of submeshes to lower the number of residual evaluations when using hyper-reduction to fully realize
the gain in speed. Overall, the proposed ROM approach has the potential to become a useful tool for rapid aerodynamic
analysis.
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Figure 14. Comparison of velocity magnitude contours predicted by CFD and ROM at the root, mid, and tip sections.
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