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Obtaining accuracy along domain boundaries is often the primary goal of a numerical 
simulation. In this work, we show how the test space of discontinuous Galerkin (DG) 
methods can be optimized to achieve enhanced boundary accuracy for linear problems. 
Given some norm in which accuracy is desired, the optimal test functions render the 
numerical solution the best approximation to the true solution in that norm. For most 
norms, these test functions would be global in nature. However, for norms emphasizing 
boundary accuracy, they can be computed in an element-local manner and represent 
adjoint solutions for the interface fluxes. The resulting accuracy in these interface fluxes 
propagates globally, leading to convergence rates on the domain boundaries greater than 
2p + 1. Indeed, if the test functions and interface fluxes are well-resolved, exact boundary 
fluxes are obtained. Here, we demonstrate these ideas for several Computational Fluid 
Dynamics (CFD) simulations, including advection–diffusion and linearized Euler problems 
in both one and two dimensions. An extension of the theory to nonlinear problems will be 
presented in a future work.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Over the years, finite element methods have become the primary computational tool in many branches of engineering. 
Within the field of structural mechanics, the principal components of these methods – the test and trial functions – were 
originally chosen to be identical, resulting in a so-called Galerkin formulation. Based on this choice, the continuous Galerkin 
(CG) method has since seen wide application, owing both to its simplicity and provable optimality for many structural 
problems of interest.

When CG was applied to fluid dynamics problems, however, the results were poor. For convection–diffusion equations, 
spurious oscillations arose in the presence of gradients and boundary layers, corrupting the numerical solution. It soon be-
came apparent that this lack of stability could be blamed on a suboptimal test space, and many so-called Petrov–Galerkin (or 
“stabilized”) schemes have since arisen to address this issue [1–4]. These schemes, the most popular of which is the Stream-
line Upwind Petrov–Galerkin (SUPG) method [1], improve the stability of CG by modifying its test space in an upwind-biased 
manner.

With the emergence of discontinuous finite element methods, however, the impetus for optimizing the test space largely 
disappeared, since the use of a Riemann flux provides an inherent measure of stability [5]. Thus, methods of a discontinuous 
Galerkin (DG) type, which take the simplest possible test space, have come to dominate the literature [6–13]. But the 
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question naturally arises: is this the best option? Or, for discontinuous methods, is there a better – optimal – choice of test 
space?

This is the question we address here. Before doing so, however, we must say what we mean by “optimal.” For discon-
tinuous methods, this requires a slight shift in perspective. Rather than viewing the test space as a means to “fix” stability 
issues, we can instead view it as a means to obtain a specific, goal-oriented approximation of the true solution – one that 
provides accuracy in the regions we care about. This is, after all, the role of the test space in any finite element method: to 
define its goal. The appearance of oscillations or “instabilities” is just evidence that, in some sense, that goal has not been 
well defined.

Typically, the goal of a simulation is to achieve accuracy in a certain norm of interest. The “optimal” test functions can 
then be defined as those that render the numerical solution the best approximation to the true solution in the desired 
norm. This idea has been pursued by several authors in a continuous context [14–19], dating back to the work of Barrett 
and Morton in 1984 [14]. In addition, the test functions of stabilized schemes such as SUPG (which achieves H1 optimality 
for certain problems [20]) can be viewed as “optimal” in a similar sense. More recently, Demkowicz and Gopalakrishnan 
have introduced discontinuous Petrov–Galerkin (DPG) methods, which employ optimal test functions within a more general, 
discontinuous framework [21–24]. These methods, developed initially within an “ultra-weak” [22] context and adapted to 
hybrid methods in [25], have L2 optimality as their primary goal.

In the present work, we pursue a different goal. We note that while domain-interior accuracy is important, from an 
engineering standpoint the regions of greatest interest are often the domain boundaries. Indeed, obtaining the forces, fluxes, 
and distributions of quantities along the boundaries is often the principal goal of a simulation. This is the aim of the present 
work. Furthermore, for purposes of both familiarity and computational efficiency, we pursue this aim within the context of 
standard DG and hybrid DG (HDG) methods.

To that end, we present a simple framework for deriving and computing optimal test functions. These test functions 
render the solution optimal in a desired error norm, which in this case we choose to emphasize boundary accuracy. While 
in general the optimal test functions would satisfy global differential equations, when boundary accuracy is desired they 
can be computed in a purely element-local manner. When used within a standard DG or HDG framework, they result in a 
scheme we call the “Boundary Discontinuous Petrov–Galerkin” (BDPG) method.

Here, we list some relevant properties of the optimal test functions and the corresponding BDPG method:

1. The optimal test functions are elementwise adjoint solutions (i.e. generalized Greens functions [26]), similar to the 
fine-scale Greens functions used in several multiscale methods [3,27,20]

2. As adjoints, they ensure that information is properly “upwinded” within each element
3. They lead to accuracy in the element-interface fluxes, which propagates globally to the domain boundaries
4. They have close ties to a posteriori error estimation [28,29], which explains their ability to eliminate the flux errors
5. For 1D linear problems, if the test functions are well-represented, exact boundary fluxes are obtained
6. In higher dimensions, if the test functions and interface fluxes are well-represented, exact boundary fluxes are ob-

tained

While the theory applies to general linear PDEs, here we focus on fluid applications, showing results for steady 
advection–diffusion and linearized Euler in both one and two dimensions. We begin with a simple approximation problem 
and a one-dimensional example that emphasizes the main ideas of the method. We then move on to multiple dimensions 
and systems of equations. The benefits and limitations of optimal test functions are discussed, and remaining challenges are 
identified. Application of the theory to nonlinear problems will be presented in a future work.

2. An approximation problem

In this section, we introduce some ideas that will be relevant to the derivation of optimal test functions later on.

Imagine we have some one-dimensional function, u(x), the shape of which is known to us. Now assume that we would 
like to approximate this u(x) with a polynomial.1 If we call our polynomial approximation uh(x), then we can expand this 
uh(x) as

uh(x) =
N∑

i=1

Ui φi(x) , (1)

where the φi are basis functions for our chosen polynomial space, and the Ui are discrete coefficients. If our polynomial 
space is of order p, then the dimension N is N = p + 1.

1 In other words, we would like to perform a type of continuous “curve fit.”
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Fig. 1. Two p = 1 approximations of a one-dimensional function u(x). The blue curve provides interior accuracy, while the red curve provides right-boundary 
accuracy. The amount of boundary accuracy provided depends solely on the type of error norm minimized. (For interpretation of the references to color in 
this figure caption, the reader is referred to the web version of this article.)

Now, we would like to find the coefficients Ui that make uh the “best” approximation to the original curve u. However, 
before we can do this, we must specify which norm we would like the best approximation in. For example, if we desire a 
least-squares approximation of u, then we need uh to minimize the following norm:

‖e‖2 =
∫
�

(uh − u)2 dx . (2)

Here, e ≡ uh − u is the approximation error, while � = [xL, xR ] is the extent of the domain over which u is defined.
While the above norm would ensure that uh provides an accurate approximation on the domain interior, we may also 

wish to obtain accuracy on the domain boundaries. If we are interested in accuracy near the right boundary, for example, 
then we could modify our error norm to read:

‖e‖2 =
∫
�

(uh − u)2 dx + w R (uh − u)2
∣∣∣∣
xR

. (3)

Here, w R is a weight that determines how much emphasis is placed on the boundary; if it is taken large, more accuracy is 
obtained there.

Assume that Eq. (3) is our error norm of interest. Then in order to find the coefficients Ui that minimize this norm, we 
take the partial derivative of ‖e‖2 with respect to each Ui , and set this equal to zero. By basic calculus, the derivative of a 
function is zero at a critical point, and in the case of ‖e‖2 this critical point is in fact a minimum.

Since uh =∑N
i=1 Ui φi , differentiating Eq. (3) with respect to Ui gives:

∂‖e‖2

∂Ui
= 0 =

∫
�

2 (uh − u)φi dx + 2 w R (uh − u)φi

∣∣∣∣
xR

. (4)

Thus, if uh is to provide the minimum error in ‖e‖2, it must satisfy the following N equations:

∫
�

φi (uh − u)dx + w R φi (uh − u)

∣∣∣∣
xR

= 0 i = 1..N (5)

Fig. 1 shows two potential uh curves that satisfy the above equations – one that emphasizes boundary accuracy (corre-
sponding to large w R ) and another that emphasizes interior accuracy (corresponding to small w R ). From the figure, a few 
relevant conclusions can be drawn.

First, we see that the amount of boundary accuracy obtained depends solely on the choice of error norm minimized. 
Thus, if the goal is to achieve boundary accuracy, the type of polynomial used in the approximation (i.e. the “trial” space) is 
irrelevant. This idea holds in general: the lower the dimension of a given region of interest (in this case a zero-dimensional 
boundary), the more important the choice of error norm becomes, and the less important the choice of trial space becomes.

As we will show, in the context of a finite element method, the function u plays the role of the exact solution to a 
PDE, uh is the numerical solution, and the norm is controlled by the test space. It is clear then that if boundary accuracy is 
desired, it is the test space rather than the trial space that should be optimized. This idea, along with Eq. (5), will be critical 
in deriving an optimal finite element scheme.
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3. Optimal test functions (one-dimensional example)

Let us shift focus now and discuss our actual goal: solving PDEs. For the sake of clarity, consider a PDE of the following 
form:

a
∂u

∂x
+ cu︸ ︷︷ ︸

Lu

= f x ∈ �

u = uL x = xL (6)

This is a linear advection–reaction problem with a source term f (x), where we assume a > 0 so the Dirichlet condition uL

is well-posed. The differential operator L is given by L ≡ a ∂()
∂x + c(), and the residual is defined as r(u) ≡ Lu − f . The domain 

� = [xL, xR ] is the same as in Section 2 and will be assumed here to consist of a single element.2

To obtain the weak form of the above problem, we multiply the residual by a test function and integrate, giving∫
�

v (Lu − f )dx = 0 ∀v ∈ V , (7)

where v is any test function in some continuous space V . For sufficiently smooth3 u and v , integrating the vLu term by 
parts then gives∫

�

[
−a

∂v

∂x
+ cv

]
︸ ︷︷ ︸

L∗v

u dx + vau

∣∣∣∣xR

xL

−
∫
�

v f dx = 0 ∀v ∈ V . (8)

Here, we have defined the operator that emerges after integration by parts as L∗ ≡ −a ∂()
∂x + c(). Finally, after inserting the 

boundary condition and moving the “known” terms to the right-hand side, we obtain∫
�

L∗v u dx + vau

∣∣∣∣
xR︸ ︷︷ ︸

b(u,v)

=
∫
�

v f dx + vauL

∣∣∣∣
xL︸ ︷︷ ︸

l(v)

∀v ∈ V . (9)

This equation, which relates the bilinear form b(u, v) to the load l(v), is satisfied by the exact solution u for any smooth 
test function v .

Now, to compute an approximate solution to the PDE in Eq. (6), a standard upwind DG method attempts to mimic 
Eq. (9). In other words, it seeks an approximate solution uh ∈ Uh that satisfies∫

�

L∗vh uh dx + vhauh

∣∣∣∣
xR︸ ︷︷ ︸

b(uh,vh)

=
∫
�

vh f dx + vhauL

∣∣∣∣
xL︸ ︷︷ ︸

l(vh)

∀vh ∈ Vh (10)

where vh is any test function in some discrete space Vh . Once a basis {φi} is chosen for the approximation space Uh
(typically assumed to be a polynomial space of order p), the discrete uh can be represented as

uh =
N∑

i=1

Ui φi(x) , (11)

where the Ui are the unknown solution coefficients. Then the remaining question is: what should our test space Vh be? 
A standard Galerkin method would choose Vh = Uh , so that the test space is identical to the trial space. But is this the best 
choice?

We have arrived at the critical point: we have used the word “best.” Best in what way? Recall that in Section 2 we 
encountered the same issue. To get a “best” approximation, we had to first define the norm we wanted the best approxi-
mation in. In the same way, when solving a PDE, we must say how we would like the numerical solution uh to approximate 
the exact u.

2 The single-element setting allows us to assume a smooth numerical solution. While in the end we are interested in discontinuous finite element 
methods, the ideas in this section will ultimately be applied only within each element, where the smoothness assumption is justified.

3 We assume that it is valid to evaluate u and v on the domain boundaries.
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Typically, we would like uh to obtain some amount of interior and (particularly in this work) boundary accuracy. For the 
current problem, the relevant boundary to request accuracy in is the right boundary, since the solution on the left is already 
known from the Dirichlet condition. Thus, the norm we desire the best approximation in may look something like:

‖e‖2 =
∫
�

(uh − u)2 dx + w R (uh − u)2
∣∣∣∣
xR

.

This is the same norm used in Section 2. Recall from that section that if uh is to minimize this norm, it must satisfy the 
zero-derivative condition given by Eq. (5).

Now, we claim that with a certain (“optimal”) choice of test functions, we can ensure that Eq. (5) is satisfied by our finite 
element solution. First, note that since Vh ⊂ V , we can choose a common test function vh ∈ Vh ⊂ V for Eqs. (9) and (10). 
Doing so and subtracting the two equations then results in:∫

�

L∗vh (uh − u)dx + vha (uh − u)

∣∣∣∣
xR︸ ︷︷ ︸

b(e,vh)

= 0 ∀vh ∈ Vh . (12)

This equation is satisfied by the finite element error regardless of how the test space is chosen. However, to see how an 
optimal scheme can be created, note that the above expression involves some quantity that is equal to zero. Next, note that 
the error minimization statement (Eq. (5)) also involves some quantity that is equal to zero. Then the idea is this: if we 
can make the above bilinear form look like the error minimization statement, our finite element solution uh will necessarily 
minimize that error.

To make this clearer, we first make a simple notational change. Regardless of how the test space is chosen, it must 
have the same dimension (N) as the trial space, in order for the number of equations to equal the number of unknowns. 
Therefore, we can replace the general test function vh above with a specific test function vi , where i ranges from 1 to N . 
Doing so gives:∫

�

L∗vi (uh − u)dx + a vi (uh − u)

∣∣∣∣
xR

= 0 i = 1..N (13)

Now, our goal is to make this equation look like Eq. (5), which is:∫
�

φi (uh − u)dx + w R φi (uh − u)

∣∣∣∣
xR

= 0 i = 1..N

By simply comparing these equations, we see that the way to make them identical is to set

L∗vi = φi x ∈ �

a vi = w R φi x = xR

}
i = 1..N (14)

Thus, if the discrete solution uh is to minimize the error given by Eq. (3), the test functions vi must satisfy the above dif-
ferential equation(s) and boundary condition(s). The test functions that satisfy these equations are the optimal test functions, 
in the sense that they make uh the best approximation to u in the desired error norm.

At this point, it is worth making a few remarks.

Remark 1. While for simple problems the optimal test functions can be found analytically, in general we must compute them 
numerically. This can be done by (e.g.) approximating them in a high-order space. A similar strategy has been pursued in 
much of the DPG literature [22].

Remark 2. The idea of making b(e, vh) reduce to the derivative of a desired error norm has arisen previously in the context 
of continuous finite element methods [14,19,16,15]. More recently, the DPG methods of Demkowicz, Gopalakrishnan, et al.
have employed similar ideas, primarily within the context of a discontinuous “ultra-weak” formulation [21–24]. In contrast, 
here we consider standard DG and HDG formulations,4 with the specific goal of achieving boundary accuracy.

4 Note that for certain problems (such as pure advection), the ultra-weak DPG formulation may be preferable to DG or HDG formulations, since its 
independent treatment of interior and flux unknowns enables an independent optimization of each [21]. However, for problems such as advection–diffusion, 
the HDG formulation is preferred since its number of globally coupled unknowns is just half that of the corresponding ultra-weak formulation.
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Fig. 2. One-dimensional advection–reaction: (a) Normalized optimal test functions corresponding to a p = 1 trial space and large w R . The black test 
function (v2) provides right-boundary accuracy, while the remaining test function (v1) provides interior L2 accuracy. Note the upwind/leftward bias of both 
functions. (b) The solution obtained using the optimal test functions. Right-boundary accuracy is achieved.

Remark 3. Recall that to achieve boundary accuracy we simply choose w R to be large. This emphasizes the boundary term 
in the error norm (Eq. (3)), which in the limit of large w R ensures that uh provides the best approximation to u on the 
boundary. When the corresponding optimal test functions are used within a DG or HDG framework, we refer to the resulting 
scheme as a “Boundary Discontinuous Petrov–Galerkin” (BDPG) method.

Remark 4. Note that since information propagates to the right in this problem, requesting accuracy in the right-boundary 
state uh|xR may also be viewed as requesting accuracy in the outgoing flux. This is the view we adopt when generalizing to 
multidimensional systems.

Remark 5. We have posed the above derivations in a single-element setting, which means the equations satisfied by the 
optimal test functions are in fact global differential equations. In practice, solving these would be prohibitive, so we will 
need to localize them in some way.

Remark 6. Finally, use of the optimal test functions will not, in general, result in a conservative scheme. This is because 
the solutions to the test function equations (Eq. (14)) will not always contain the constant mode. However, from a purely 
geometrical standpoint, when boundary accuracy is desired we do not necessarily want the scheme to be conservative. For 
example, for a situation like the one depicted in Fig. 1, requesting that uh interpolate u on both boundaries would preclude 
it from satisfying a relation such as 

∫
�

uh dx = ∫
�

u dx.

We will elaborate on these remarks later on. For now, let us return to our one-dimensional advection–reaction problem. 
For this problem, we can solve Eq. (14) analytically to find the optimal test functions. If we assume a p = 1 trial space with 
Lagrange basis functions φ1 = 1 − x and φ2 = x, we can compute two corresponding test functions. For a parameter choice 
of a = 1, c = −2, and f (x) = 0, these test functions are

v1 = 1

4
e2(1−x) + x

2
− 3

4
and v2 =

(
w R − 1

4

)
e2(1−x) − x

2
+ 1

4
. (15)

These functions are plotted in Fig. 2, where w R has been taken large and the maximum values have been normalized to 
unity. The solution obtained by using these test functions in Eq. (10) is also shown. Note that the solution achieves accuracy 
on the right boundary, as desired.

From the figure, we see that in contrast to the symmetric nature of the standard Galerkin test functions, the optimal 
test functions display a clear upwind bias. Thus, from a physical perspective, we can think of the optimal test functions as 
performing a proper upwinding of information within the domain. This idea is related to another important property of the 
optimal test functions – namely, that they are adjoint solutions.
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4. Optimal test functions as adjoints

To see that the optimal test functions satisfy adjoint equations, recall that for a given differential operator L, the defini-
tion of its adjoint operator L∗ is:

(Lu, v) = (u, L∗v) ∀u ∈ U, ∀v ∈ V, (16)

where U and V are function spaces over which the above inner product is defined. In practical cases, L∗ is simply the 
operator that emerges after integrating by parts, and hence is exactly the operator in the test function equations (Eq. (14)).

From optimization [30] and a posteriori error estimation [28,29], it is known that adjoint equations provide the sensitivity 
of a certain output to perturbations in the residual of a PDE. Therefore, if the optimal test functions themselves satisfy an 
adjoint equation, this begs the question: for what output? By examining the right-hand side of Eq. (14) (which contains the 
output linearization), we find that the associated output is given by:

J i =
∫
�

φiu dx + w Rφiu

∣∣∣∣
xR

. (17)

This output represents the projection of the exact solution u against the i-th trial basis function.
Now, from a posteriori error estimation, it is known that the adjoint-weighted residual represents the error in a given 

output. Thus, since the optimal test functions vi are adjoints for the outputs J i , when we use them in the finite element 
weighted residual,∫

�

vi (Luh − f )︸ ︷︷ ︸
r(uh)

dx = 0 = δ J i i = 1..N, (18)

we are directly enforcing that the error in each projection output J i , i.e. δ J i ≡ J i(uh) − J i(u), is zero. This implies that the 
discrete solution uh is the direct projection of the exact solution u into the trial space, with respect to the desired error 
norm. This is the same conclusion arrived at in the previous section, but viewed from a different perspective.

Finally, to further clarify the relationship between the outputs J i and the minimization of the error ‖e‖2, consider the 
following. We have said that using the optimal vi gives zero error in the J i . But from the above definition of J i , zero error 
in J i implies

δ J i = J i(uh) − J i(u) =
∫
�

φi(uh − u)dx + w Rφi(uh − u)

∣∣∣∣
xR

= 0. (19)

This is identical to the statement that ∂‖e‖2

∂Ui
= 0, i.e. it is identical to Eq. (5), and thus implies that ‖e‖2 is minimized.

Remark 7. Note that if the test functions are approximated numerically (e.g. at some order ptest), the error in the J i will not 
be identically zero. However, from Eq. (18), the convergence rate of this error will at a minimum correspond to the sum of 
the test function and residual convergence rates (i.e. ptest + p +1), and at a maximum to a value of 2ptest +1 (via a Galerkin 
orthogonality argument). Thus, taking ptest > p will yield higher output convergence rates than the standard 2p + 1 rates of 
DG.

Remark 8. Since adjoint solutions are a type of “generalized” Green’s function [26], the optimal test functions are closely 
related to the fine-scale Green’s functions used in many multiscale methods, such as the Variational Multiscale Method [27]. 
Approximating the optimal test functions with ptest > p brings in the “fine-scale” information that ultimately leads to 
improved solution accuracy.

5. Localization of test functions

With the nature of the optimal test functions discussed, we now turn to the issue of localization. In the above sections, 
we derived the optimal test functions while assuming a single-element mesh. This means that the adjoint equations satisfied 
by the test functions are in fact global differential equations. Since in practice these would be prohibitive to solve, we need 
to find a way to localize the test functions without giving up their accuracy.

Fortunately, for norms emphasizing boundary accuracy, localization is straightforward. We simply loop over each element 
in the mesh and apply the theory from Section 3 inside each element. We thus solve purely local adjoint problems (with 
support over a single element) to compute the test functions, with the local outputs defined by

J i =
∫

φiu dx + w Rφiu

∣∣∣∣
∂ K R

. (20)
K
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Here, K represents the domain of a given element, while ∂ K R represents its right (downwind) boundary. Note that this 
output has the same form as in Eq. (17), but is defined over element K rather than the entire domain.

In this localized context, the optimal test functions then minimize the desired error norm within each element. Thus, 
taking w R large in Eq. (20) will provide accuracy in the outgoing flux on each element boundary, rather than on the domain 
boundary. However, the critical idea is that, if flux accuracy is obtained on each element boundary, then this accuracy 
will propagate downstream, ultimately yielding accuracy on the domain boundary. A similar idea holds for more general 
problems, including those with diffusion terms. Since the fluxes represent the only means by which elements in the mesh 
communicate, if these local fluxes can be made accurate, global accuracy follows naturally.

This idea is supported analytically as well. Appendix A shows that for the current problem, as w R is taken large, the test 
space formed by the local adjoints “contains” the global adjoints corresponding to the domain-boundary fluxes. This implies 
that (if well-represented) the local test functions are in fact globally optimal, in the sense that they deliver zero error in the 
boundary fluxes.

6. Implementation (one-dimensional example)

With the localization defined, we are ready to use the optimal test functions in a practical setting. First, we note that 
the above ideas can be applied to several discontinuous formulations. For the current problem, we will apply them to a 
standard DG formulation, while later on we will use a hybrid method. Regardless of the method used, there are two main 
steps to be performed: first, the computation of optimal test functions on each element; and second, the use of these test 
functions in the bilinear form.

6.1. Computation of test functions

If the mesh is uniform or the topology self-similar, the localized test functions can be computed just once on a reference 
element and can then be “copied” onto each element in turn. Otherwise, independent test functions are computed on each 
element. The simplest way to compute the test functions is to solve the local adjoint problems using a DG method. For the 
current advection–reaction problem, we thus solve the following equation for each vi on a given element:

Find vi ∈ Utest s.t.
∫
K

L∗vi δu dx + avi δu

∣∣∣∣
∂ K R︸ ︷︷ ︸

bK (δu,vi)

=
∫
K

φi δu dx + w Rφiδu

∣∣∣∣
∂ K R︸ ︷︷ ︸

J i(δu)

∀δu ∈ Utest . (21)

Note that this is just the weak form of the original adjoint equations derived in Eq. (14). These equations are solved in an 
enriched space Utest with corresponding order ptest, which must be higher than the original order p of the space Uh . The 
higher the ptest, the more accurate the test functions, and the more accurate the final solution on the boundaries. Indeed, 
in one dimension, if the local test functions are represented exactly, exact element and boundary fluxes are obtained.

For DG codes that construct a primal Jacobian matrix, the above adjoint equations do not need to be explicitly discretized. 
Instead, a discrete adjoint approach [29] can be taken in which the equations

∂R

∂U

T

Vi = ∂ J i

∂U

T

i = 1..N , (22)

are solved for the test function coefficients Vi on each element, where ∂R/∂U and ∂ J i/∂U are the elementwise order-ptest
Jacobian and output linearization, respectively. Finally, since taking w R large leads to large test function magnitudes, the test 
functions can be orthonormalized after computation with respect to a discrete or continuous norm of choice. This ensures 
that the primal system (discussed below) remains well-conditioned.

6.2. Construction of primal system

Once computed, the optimal test functions can be used in place of the standard DG test functions, and the primal 
problem can be solved as usual. Upon doing so, our first inclination would be to use high-order quadrature rules to perform 
all integrations, due to the high-order nature of the test functions. However, it turns out that high-order quadrature is, for 
the most part, unnecessary.

For example, for our current problem, the primal equation on a given element K is (from Eq. (10)):∫
K

L∗vi uh dx + viauh

∣∣∣∣
∂ K R︸ ︷︷ ︸

=
∫
K

vi f dx + viauK−1

∣∣∣∣
∂ K L

∀vi ∈ Vtest (23)
bK (uh,vi)
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where we assume the vi have been computed from Eq. (21), and uK−1 is the neighbor-element state. But note that, since 
uh is contained in the space Utest, Eq. (21) implies that the left-hand side of Eq. (23) can be rewritten as:∫

K

φi uh dx + w Rφiuh

∣∣∣∣
∂ K R︸ ︷︷ ︸

J i(uh)

=
∫
K

vi f dx + viauK−1

∣∣∣∣
∂ K L

∀vi ∈ Vtest (24)

Thus, for implementation purposes, we can use the above formulation of the primal problem rather than Eq. (23).56

Note that all terms involving the optimal test functions have vanished from the left-hand side, and have been replaced 
with low-order integrals. Furthermore, in practical cases the source term f on the right-hand side is often zero, so that all
high-order interior integrals disappear. If this is the case, the optimal test functions appear only in the right-most term of 
Eq. (24) – i.e. on the upwind boundary. An interesting conclusion is that, for most problems, the accuracy of BDPG rests 
solely on obtaining accurate test function values on the element boundaries.

6.3. Summary of method

The BDPG method can be summarized as follows:

1. Loop over each element.

2. Compute the local optimal test functions (adjoints) vi by solving Eq. (22) at order ptest, where ptest ≥ p.

3. Normalize the vi with respect to (e.g.) a discrete or continuous L2 norm.

4. Use the vi in place of the standard DG test functions. To avoid high-order quadrature, the alternate form of the 
primal problem (Eq. (24)) can be used.

5. Obtain accelerated convergence of the boundary fluxes. In 1D, a minimum rate of ptest + p + 1 will be obtained, 
with rates of up to 2ptest + 1 possible. By choosing ptest > p, these rates are necessarily higher than the maximum 
DG rate of 2p + 1.

7. Results (one-dimensional example)

With the above procedures established, we are ready to solve a multi-element problem. As an example, we solve the 
advection–reaction equations with a = 1, c = −8.5, and f = 0. To see if BDPG obtains boundary accuracy, we choose the 
boundary weight in the error norm to be high – in this case, taking it to be w R = 1012 – and choose the test space order 
to be ptest = 10.

From Fig. 3, we see that BDPG achieves boundary errors approximately 10 orders of magnitude lower than standard DG. 
This is encouraging, and confirms that our purely local test space (shown in Fig. 4) is capable of achieving global optimality. 
Note that the initial convergence rate of the BDPG fluxes (which is observed to be 2ptest + 1) is due solely to the inexact 
representation of the test functions, and that if analytical test functions were used, exact boundary fluxes would be obtained. 
Finally, while the primary goal of BDPG is to achieve boundary accuracy, from Fig. 4 we see that it also performs well in an 
L2 sense, exhibiting none of the preasymptotic behavior seen with standard DG.

8. General theory for multi-dimensional systems

So far, we have derived the optimal test functions in the setting of a one-dimensional advection–reaction problem. 
However, the relevant concepts extend naturally to systems of equations, as well as to multiple dimensions. We will briefly 
describe those extensions here. To simplify the presentation, we will again assume that the domain � consists of a single 
element.

A general steady-state conservation law in multiple dimensions can be written as

∇ · 
F(u, 
q) = 0, (25)


q − ∇u = 
0 , (26)

5 A similar idea was proposed in the context of continuous finite elements by Givoli in 1988 [16].
6 Note that the left-hand side of this equation (i.e. the element self-block of the Jacobian) is symmetric and positive definite. However, the coupling to 

uK−1 via the upwind flux means that (unlike other DPG methods [22]) the global Jacobian is nonsymmetric.
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Fig. 3. One-dimensional advection–reaction: (a) p = 1 solutions for DG and BDPG on a 5-element mesh. (b) The error in the right-boundary flux for p = 0
and p = 1 runs. The BDPG fluxes converge at a rate of 2ptest + 1 and quickly attain machine precision accuracy.

Fig. 4. One-dimensional advection–reaction: (a) Localized optimal test functions for the 5-element BDPG solution shown in Fig. 3(a). The two test functions 
on each element correspond to the two p = 1 trial bases. (b) L2 error convergence for p = 0 and p = 1 DG and BDPG solutions. The L2 performance of the 
methods is similar, with BDPG showing greater stability on coarse meshes.

where u is the state vector and 
q represents the gradient of the state. 
F is a flux vector, which may contain both advective 
and diffusive components, and consists of r state components in dim dimensions. (Note that boldface indicates a state vector, 
while an arrow indicates a spatial vector.) In general, a source term S(u) could be added to Eq. (25), though we omit it for 
brevity here. Furthermore, we assume that 
q is an independent unknown, since this is the case for the hybridized method 
presented later. However, this is not critical to the theory.

To obtain the weak form of the above problem, we weight Eqs. (25) and (26) by test functions v and 
τ , respectively, 
giving a total weighted residual (upon summation) of

R ≡
∫
�


τ T · (
q − ∇u
)

d� +
∫
�

vT (∇ · 
F)d� = 0 . (27)

Note that this residual is just a scalar value. We next integrate both terms in Eq. (27) by parts, giving

R =
∫


τ T · 
q d� +
∫

∇ · 
τ T u d� −
∫

(∇v)T · 
F d� +
∫

vT (
F · 
n)ds −
∫ (
τ · 
n)T u ds = 0. (28)
� � � ∂� ∂�
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If we now assume Dirichlet boundary conditions (denoted by uB ), the right-most term above becomes a “known” value and 
can be moved to the right-hand side. After making this change and for convenience defining F̂ = 
F · 
n, we obtain:∫

�


τ T · 
q d� +
∫
�

∇ · 
τ T u d� −
∫
�

(∇v)T · 
F d� +
∫
∂�

vT F̂ ds

︸ ︷︷ ︸
b
(
u,
q,v,
τ )

=
∫
∂�

(
τ · 
n)T uB ds

︸ ︷︷ ︸
l
(
v,
τ )

. (29)

From this equation, we are able to define the bilinear form b 
(
u, 
q,v, 
τ ).

Next, as in one dimension (i.e. Eq. (9)), we would like to write this bilinear form as a product of the state variables and 
the adjoint operator applied to the test functions. In order to do this, we must first write all domain integrals explicitly in 
terms of u and 
q. To start, we rewrite the flux 
F, assumed linear, as


F = ∂
F
∂u

u + ∂
F
∂q j

q j , (30)

where summation over the spatial dimension j is implied.7 We now substitute this expression (Eq. (30)) into Eq. (29) and 
transpose the first three terms, giving

b =
∫
�


qT · 
τ d� +
∫
�

uT ∇ · 
τ d� −
∫
�

⎛
⎝uT

[
∂
F
∂u

]T

+ qT
j

[
∂
F
∂q j

]T
⎞
⎠ · (∇v) d� +

∫
∂�

vT F̂ ds . (31)

Grouping the u and 
q terms then results in

b =
∫
�

qT
j

⎛
⎝τ j −

[
∂
F
∂q j

]T

· ∇v

⎞
⎠

︸ ︷︷ ︸
L∗

q, j(
τ ,v)

d� +
∫
�

uT

⎛
⎝∇ · 
τ −

[
∂
F
∂u

]T

· ∇v

⎞
⎠

︸ ︷︷ ︸
L∗

u(
τ ,v)

d� +
∫
∂�

vT F̂ ds . (32)

Next, if we define group variables (denoted by a tilde) for the states and test functions as

ũ ≡
[

q j
u

]
and ṽ ≡

[
τ j
v

]
, (33)

and we define the adjoint operator L∗ (based on the operators L∗
q, j and L∗

u in Eq. (32)) as

L∗ ≡
⎡
⎣ L∗

q, j

L∗
u

⎤
⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎣

I( ) −
[

∂
F
∂q j

]T

· ∇( )

∂ j( ) −
[

∂
F
∂u

]T

· ∇( )

⎤
⎥⎥⎥⎥⎥⎥⎦ , (34)

then Eq. (32) can be rewritten in the following form:

b(ũ, ṽ) =
∫
�

ũT ( L∗ṽ
)

d� +
∫
∂�

vT F̂(ũ) ds = l
(
ṽ
) ∀ṽ ∈ Ṽ , (35)

where the operator L∗ acts as a matrix on the group variable ṽ. Note that the above b(ũ, ̃v) is essentially the same as the 
one-dimensional bilinear form (i.e. Eq. (9)), except that the states and test functions are now vectors, and we have a general 
flux F̂ on the boundary rather than the one-dimensional flux au. Thus, from this point on, the development will parallel the 
one-dimensional theory.

To approximate the above equation, a DG method chooses a set of discrete states and test functions, ũh and ṽh , as well 
as a numerical flux F̂(ũh), resulting in the discrete bilinear form:

b(ũh, ṽh) =
∫
�

ũT
h

(
L∗ṽh

)
d� +

∫
∂�

vT
h F̂(ũh) ds = l

(
ṽh
) ∀ṽh ∈ Ṽh . (36)

7 Note that for nonlinear problems, a similar expression would hold for the Fréchet linearization of the flux.
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Once a basis is chosen for the trial space representations of uh and 
qh , these states can be expanded as

us,h =
nU∑

m=1

Us,m φs,m(
x) and qs,d,h =
nQ∑

m=1

Q s,d,m φs,d,m(
x) . (37)

Here, s indexes the state component (ranging from 1 to the state rank, r), m indexes the basis function (ranging from 1 to 
the number of nodes, nU or nQ ), and d indexes the dimension (ranging from 1 to dim). Finally, Us,m and Q s,d,m represent 
the unknown solution coefficients, the total number of which is given by N ≡ NU + N Q = r nU + r nQ · dim.

The remaining task is to define the test space. In order to derive the optimal test space, we follow a similar strategy 
as before: we first define an error norm we wish to minimize, then choose the test functions such that the bilinear form 
reduces to the derivative of that norm. To help determine an appropriate error norm to minimize, we first choose a common 
test function ṽh for Eqs. (35) and (36). This allows us to equate (and subtract) the exact and discrete bilinear forms, resulting 
in the equation

b(ẽ, ṽh) = 0 , (38)

where ẽ is a group variable representing the errors in the states. If we now set ṽh = ṽi , where i ranges from 1 to N , then 
writing out Eq. (38) in a form similar to Eq. (32) gives:

b(ẽ, ṽi) = 0 =
∫
�

(
q j,h − q j

)T
L∗

q, j (ṽi)d� +
∫
�

(uh − u)T L∗
u (ṽi)d� +

∫
∂�

vT
i

[
F̂(uh, 
qh) − F̂(u, 
q)

]
ds . (39)

This equation is satisfied regardless of how the test space is chosen. However, when using optimal test functions, we 
would like this expression to represent the minimization of a certain error norm. It is important to note that, due to the 
form of b(ẽ, ̃vi), only certain types of error norm are valid to minimize. In other words, we must be careful to select an 
error norm whose derivative it is possible to represent by b(ẽ, ̃vi). To that end, we propose minimizing the following norm:

‖ ẽ ‖2 =
r∑

s=1

dim∑
d=1

∫
�

(qs,d,h − qs,d)
2 d�

︸ ︷︷ ︸
interior q accuracy

+
r∑

s=1

∫
�

(us,h − us)
2 d�

︸ ︷︷ ︸
interior u accuracy

+
r∑

s=1

ws

∫
∂�

[
F̂ s(uh, 
qh) − F̂ s(u, 
q)

]2
ds

︸ ︷︷ ︸
flux accuracy

(40)

This norm contains errors in the state, its gradients, and the boundary flux – all of which are present in the above b(ẽ, ̃vi). 
Furthermore, with this norm, we see that choosing the weights ws to be large emphasizes accuracy in the boundary fluxes, 
which, as in one dimension, is our ultimate goal.

If we are to minimize this norm, we need its derivatives with respect to both the Uk,m and Q k,d,m coefficients to be zero. 
Thus, we need

1

2

∂‖ ẽ ‖2

∂Uk,m
= 0 =

∫
�

(uk,h − uk)φk,m d� +
r∑

s=1

ws

∫
∂�

[
F̂ s(uh, 
qh) − F̂ s(u, 
q)

] ∂ F̂ s

∂uk,h
φk,m ds (41)

and

1

2

∂‖ ẽ ‖2

∂ Q k,d,m
= 0 =

∫
�

(qk,d,h − qk,d)φk,d,m d� +
r∑

s=1

ws

∫
∂�

[
F̂ s(uh, 
qh) − F̂ s(u, 
q)

] ∂ F̂ s

∂qk,d,h
φk,d,m ds . (42)

For these equations to be satisfied by our finite element method, we must choose the test functions ṽi such that the bilinear 
form b(ẽ, ̃vi) reduces to them. A given ṽi will then ensure that one of the above equations is satisfied. Since Eqs. (41)
and (42) represent N derivative equations altogether, with N test functions (i.e. a square system) we can ensure that each 
of them is satisfied in turn.

By comparing b(ẽ, ̃vi) (Eq. (39)) to Eq. (41), we see that to make these expressions identical the test functions must 
satisfy:

i = 1 . . . NU

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

L∗
q, j(ṽi) = 0 j = 1 . . . dim x ∈ �

L∗
u,s(ṽi) = φk,m δs,k s = 1 . . . r x ∈ �

vi,s = ws
∂ F̂ s

∂uk,h
φk,m s = 1 . . . r x ∈ ∂�

(43)

Here, δs,k denotes the Kronecker delta function, L∗
u,s denotes the sth component (i.e. equation) associated with the operator 

L∗
u , and repeated indices do not imply summation. As before, we see that the optimal test functions satisfy adjoint equations 
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in which the trial bases appear as source terms on the right-hand side. The above equations are solved for each u basis 
function φk,m , with the test function index i enumerating all combinations of (k, m). Since 1 ≤ k ≤ r and 1 ≤ m ≤ nU , there 
are a total of NU = r nU basis functions altogether, which provides, in the end, a corresponding NU test functions.

Next, to make b(ẽ, ̃vi) reduce to Eq. (42), we see that the remaining test functions should satisfy:

i = 1 . . . N Q

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

L∗
q, j,s(ṽi) = φk,d,m δ j,d δs,k j, s = 1 . . . dim, r x ∈ �

L∗
u(ṽi) = 0 x ∈ �

vi,s = ws
∂ F̂ s

∂qk,d,h
φk,d,m s = 1 . . . r x ∈ ∂�

(44)

This set of equations is solved for each q trial basis φk,d,m , with the test function index i enumerating all combinations of 
(k, d, m), where 1 ≤ k ≤ r, 1 ≤ d ≤ dim, 1 ≤ m ≤ nQ . The result is an additional N Q = r nQ · dim test functions, for a total of 
NU + N Q = N . When used in place of the standard Galerkin test functions, these optimal test functions ensure that Eqs. (41)
and (42) are satisfied, and hence that the error in Eq. (40) is minimized.

Finally, as in one dimension, the optimal test functions can be interpreted as adjoint solutions for certain “projection” 
outputs. These outputs are closely related to the error norm derivatives. By inspection of Eqs. (41) and (42), we can write 
the effective outputs as

J u
k,m =

∫
�

uk φk,m d� +
r∑

s=1

ws

∫
∂�

F̂ s(u, 
q)
∂ F̂ s

∂uk,h
φk,m ds (45)

and

J q
k,d,m =

∫
�

qk,d φk,d,m d� +
r∑

s=1

ws

∫
∂�

F̂ s(u, 
q)
∂ F̂ s

∂qk,d,h
φk,d,m ds . (46)

It is easy to verify that enforcing zero error in these outputs is equivalent to enforcing zero derivative of ‖ ̃e‖2 – which of 
course is the actual goal.

8.1. Localization and adjoint consistency

As in 1D, the above test functions satisfy global adjoint equations. However, if we choose the flux weights ws to be large, 
we can again localize the adjoint problems to individual elements, since accuracy in the local fluxes will propagate globally. 
Thus, for multi-element meshes, the outputs J u and J q are defined over each element in turn, and the F̂ s terms are chosen 
to reflect the fluxes on a given element’s boundaries.

Specifically, to define the adjoint problems for a domain-interior element, the neighbor-element states are treated as 
local Dirichlet conditions, and the fluxes F̂ s are defined as if a single-element DG or HDG problem were being solved. Since 
there is no physical boundary condition on interior faces, the convective part of F̂ s is just taken to be a Roe flux [31]
between the element and the neighbor states. This Roe flux ensures that information is properly upwinded and that the 
local adjoint problems remain well-posed.8

Likewise, for an element with a domain-boundary face, the flux F̂ s is defined as usual for a DG or HDG method – for 
example, the convective flux is just the analytical flux function evaluated with a corresponding boundary state. Furthermore, 
if the boundary condition specifies a certain flux component directly (e.g. if it is a wall boundary, where zero mass flux is 
specified), then there is no need to request accuracy in this flux component, and it should be removed from the outputs J u

and J q . This removal occurs automatically when using a discrete adjoint approach, since the discrete ∂ F̂ s/∂uh and ∂ F̂ s/∂qh
will be zero and will hence vanish from both the output definitions and the residual Jacobian.

Fig. 5 shows a set of localized optimal test functions corresponding to a low Reynolds number advection–diffusion 
problem. The “upwinding” nature of the optimal test functions is apparent, and we see that their role is to ensure that the 
fluxes on a given element face have the proper domain of dependence within that element.

8.2. Boundary enrichment of trial space

Localization of the test functions has obvious advantages: it makes their computation relatively inexpensive and their 
application within an existing method straightforward. However, in multiple dimensions, localization is – in some ways – 
a double-edged sword. By using localized test functions, we are giving up certain global properties of the test space, and 
focusing all of our attention on achieving accuracy in the interface fluxes. And while it is true that if these local fluxes can 
be made accurate, then this accuracy will propagate globally, it is also true that if these fluxes cannot be made accurate, 
then this inaccuracy will propagate globally.

8 For these local problems, use of a non-upwinding flux such as Lax–Friedrichs would result in an adjoint inconsistency [32,33], and would lead to 
oscillations in (and suboptimal performance of) the test functions.
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Fig. 5. Optimal test functions corresponding to the qy (gradient in the vertical direction) trial basis in the upper-right corner of each element. Blue 
corresponds to a large value, while red is near zero. These test functions ensure that accuracy in the top flux of each element is obtained. Similar test 
functions ensure accuracy in the remaining fluxes. Note the upwinding nature of the test functions. (For interpretation of the references to color in this 
figure caption, the reader is referred to the web version of this article.)

Fig. 6. An eighth-order Lobatto function defined along an edge of a quadrilateral reference element. These functions are added to the trial space to improve 
flux resolution.

In one dimension, the fluxes are just scalar values, since the boundaries of a given element are zero-dimensional. Thus, if 
the optimal test functions are well-represented, the flux errors can be driven to zero regardless of the trial space. However, 
in two dimensions, the fluxes themselves are one-dimensional profiles along the element boundaries. In this case, the 
pointwise errors in the fluxes cannot in general be driven to zero: their magnitude depends inevitably on the trial space 
resolution near element boundaries. For example, if the exact fluxes happen to be quadratic along a given face, but the trial 
space is linear, then O (h2) errors in the fluxes will necessarily remain. These flux errors will then propagate globally, and, 
in many cases, would render methods using localized optimal test functions no better than standard DG methods.

Thus, if optimal test functions are to provide a benefit in multiple dimensions, not only must the test functions request
accuracy in the fluxes, but the trial space must be capable of providing that accuracy. To ensure that the latter requirement 
is satisfied, in multiple dimensions the trial space can be enriched near element boundaries. In the current work, this is 
done by adding high-order one-dimensional Lobatto functions [34] along the element faces, which are then blended linearly 
into the element interior. Fig. 6 shows an example of a blended eighth-order Lobatto function defined on a single edge of a 
reference quadrilateral.

In the results section to follow, this is the enrichment strategy used. Note that we keep the interior interpolation order, 
pI , at a (low) value of 1, and then enrich this pI = 1 space with Lobatto functions of some higher order, pB . The combination 
of linear interior basis with order-pB Lobatto functions ensures that the trial space on element boundaries spans a full 
order-pB space. In the end, this is equivalent to using a standard order-pB hierarchical basis, but with all interior modes 
removed.

8.3. Benefit in multiple dimensions

Before moving on, it is worth pausing to reflect on the potential benefit of optimal test functions in multiple dimensions. 
The primary advantage is that, by requiring trial space resolution only near element boundaries, a BDPG scheme requires 
fewer degrees of freedom than a DG method. For example, on a two-dimensional quadrilateral mesh, BDPG requires 4pB



374 S.M. Kast et al. / Journal of Computational Physics 298 (2015) 360–386
Fig. 7. In the HDG method, additional unknowns on element interfaces allow for elimination of the element-interior degrees of freedom. This results in a 
global system size in which the number of unknowns scales as pdim−1 instead of pdim for DG.

degrees of freedom, whereas for a similar level of accuracy DG would require (pB + 1)2. Thus, the number of degrees 
of freedom scales as pdim for DG methods, but as pdim−1 for BDPG. In a sense then, BDPG may be viewed as a form 
of “hybridization,” since hybridization of a standard DG scheme results in a similar reduction in the number of globally 
coupled unknowns.

However, even within an existing hybrid framework (such as HDG), optimal test functions can still provide a benefit. 
Since BDPG requires trial space resolution only near element boundaries, it opens up the possibility of performing a targeted 
trial space optimization in those regions. For example, if the trial space were tuned to include the primary “modes” of the 
true interface fluxes, then hybridized BDPG schemes could significantly outperform standard HDG schemes. As a step in this 
direction – and to show that optimal test functions can be used within a hybrid framework – in the following sections we 
present a hybridized BDPG method.

9. A hybridized BDPG method

In this section, we first give a brief overview of hybridized discontinuous Galerkin (HDG) methods [35–37]. We then 
describe how these methods can be modified to incorporate optimal test functions, resulting in a hybridized BDPG scheme. 
The primary advantage of hybridized methods is that, by introducing new unknowns on element interfaces, they decouple 
elements during the linear solve and (for sufficiently high order p [35]) result in a smaller global system than DG. An 
illustration of the primary differences between DG and HDG is provided in Fig. 7.

9.1. HDG discretization

While the HDG method can be applied to general nonlinear systems, here we consider a linear steady-state system in 
conservation form:


q − ∇u = 
0, (47)

∇ · 
F(u, 
q) = 0, (48)

where u is the state, 
q is the state gradient, and 
F is the conservative flux. Weighting the above equations with test 
functions, discretizing, and integrating by parts yields, for an element K :

R Q ≡
∫
K


τ T
h · 
qh d� +

∫
K

∇ · 
τ T
h uh d� −

∫
∂ K

(

τ T

h · 
n
)

ûh ds = 0 ∀ 
τ h ∈ [Vh]dim, (49)

RU ≡ −
∫
K

∇vT
h · 
F d� +

∫
∂ K

vT
h F̂L ds = 0 ∀vh ∈ Vh, (50)

R� ≡
∫
f

μT
h

{
F̂L + F̂R

}
ds = 0 ∀μh ∈ Mh. (51)

Here, an additional variable ûh has been introduced on element interfaces. The test spaces Vh and Mh are polynomials 
on an element and its adjacent interfaces, respectively, while the third equation is a weak flux continuity statement required 
to close the system, since the fluxes on either side of an interface f need not match pointwise. These “one-sided” fluxes 
are defined as

F̂L = 
F (ûh, 
qh,L
) · 
nL + S

(
ûh
) (

uh,L − ûh
)

(52)

and likewise for F̂R , where the L and R indicate the side of a given face with which the flux is associated. (In Eq. (50) we 
arbitrarily designate the “left” side as that lying within element K , and define 
nL to be the outward-pointing normal to K .) 
Finally, the S term in the above expression is a stabilization tensor, which to obtain a Roe-like flux can be chosen as

S = R |�|L + τvisc I . (53)
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Here, τvisc = ν/	visc includes the viscosity ν and a user-specified viscous length scale 	visc , while the matrices R, �, and L
come from an eigen-decomposition of the convective flux Jacobian evaluated about ûh .

The above F̂L and ûh are defined on all interior faces. For faces on domain boundaries, no ûh is employed, and the 
one-sided fluxes are instead replaced by a standard boundary flux. As with DG, this boundary flux (which we will call 
simply F̂) consists of the analytical flux function evaluated with an appropriate boundary state uB .9 Finally, a stabilization 
tensor SB = τvisc I is also included, so that the total boundary flux is given by

F̂ = 
F (uB , 
qh,L
) · 
nL + SB (uh,L − uB

)
. (54)

In the end, when the HDG system described above is assembled, the interior degrees of freedom on each element can 
be statically condensed, resulting in a smaller global system involving the ûh unknowns alone. After solving this system for 
ûh , the interior states uh and 
qh can be computed through a series of element-local solves.

9.2. Optimal test function (BDPG) implementation

Next, we give a brief overview of using optimal test functions within the above HDG framework. First, we note that for 
single-element problems, Eq. (51) vanishes and the sum of R Q and RU (Eqs. (49) and (50)) reduces to the bilinear form in 
Eq. (29). The test function theory derived in Section 8 therefore carries over directly, and the optimal test functions make 
Eqs. (49) and (50) reduce to the error norm derivatives in Eqs. (41) and (42), thus minimizing the desired error.

For multi-element problems, localized optimal test functions can be computed as described in Section 8.1. This amounts 
to solving the following NU + N Q adjoint problems for the test functions ṽi = [τ j v]T on each element K :

bK
(
δũ, ṽi

)= J u
i

(
δũ
) ∀ δũ ∈ Ũtest i = 1..NU (55)

bK
(
δũ, ṽi

)= J q
i

(
δũ
) ∀ δũ ∈ Ũtest i = 1..N Q (56)

Here, bK (·, ·) is the bilinear form given by Eq. (36) (corresponding to a single-element problem on element K ), J u
i and J q

i

are the outputs defined in Eqs. (45) and (46), and Ũtest is an enriched space of order ptest. These equations can be written 
in discrete form as

∂R̃

∂Ũ

T

Ṽi = ∂ J u
i

∂Ũ

T

i = 1..NU (57)

∂R̃

∂Ũ

T

Ṽi = ∂ J q
i

∂Ũ

T

i = 1..N Q (58)

and solved to find the test function coefficients Ṽi . Here, the single-element Jacobian matrix ∂R̃/∂Ũ contains contributions 
from both the R Q and RU residuals, while Ṽi and Ũ contain the coefficients associated with 
τ i, vi and 
q, u, respectively.

When used to weight the R Q and RU residuals, the optimal test functions result in the following set of equations on 
each interior element and its faces:

J u
i (uh, 
qh) +

∫
∂ K

vT
i

(
F̂L − F̂

)
ds =

∫
∂ K

(
τ i · 
n)T ûh ds i = 1..NU (59)

J q
i (uh, 
qh) +

∫
∂ K

vT
i

(
F̂L − F̂

)
ds =

∫
∂ K

(
τ i · 
n)T ûh ds i = 1..N Q (60)

∫
f

μT
h

{
F̂L + F̂R

}
ds = 0 ∀μh ∈ Mh. (61)

Here, the F̂L − F̂ terms arise due to the fact that the flux F̂ used in the adjoint problems is not necessarily identical to the 
one-sided flux F̂L . This is because, as discussed in Section 8.1, F̂ represents the flux of a single-element Dirichlet problem 
(and contains a full Roe flux), whereas F̂L depends solely on “one-sided” information and in most cases is only approximately 
equal to F̂.

Finally, note that we leave the face residual (Eq. (61)) the same as in standard HDG – i.e. we do not compute optimal test 
functions for the interface states ûh . Instead, we view the interface states as a passive “glue” that transmits the boundary 
accuracy on a given element to its neighbors across each face. Thus, if the interior trial space is of order pB on element 
boundaries, we choose Mh to be a standard order-pB polynomial space, and take ûh ∈Mh . Lastly, we note that in the final 
formulation (Eqs. (59)–(61)) the optimal test functions appear only on element boundaries, so that no high-order interior 
integration is required.

9 In certain cases, e.g. at farfield boundaries, a Roe flux is used rather than the analytical convective flux.
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Fig. 8. One-dimensional advection–diffusion: (a) Sample p = 0 solutions for both HDG and BDPG. (b) Convergence of the right-boundary flux, where 
w = 1015 was used for BDPG. BDPG provides interior accuracy while achieving significantly greater flux accuracy than HDG.

9.3. Summary of hybrid BDPG method

The multi-dimensional BDPG method can be summarized as follows:

1. Use an order-pB hierarchical basis for the trial space of u and 
q, but with all interior modes removed.

2. Use an order-pB space for the interface states û.

3. Loop over each element.

4. Compute the local optimal test functions ṽi by solving Eqs. (57) and (58) at order ptest, where ptest ≥ pB . Choosing 
ptest = pB often suffices.

5. Normalize the ṽi with respect to a discrete or continuous L2 norm.

6. Use the ṽi to weight R Q and RU , while using a standard order-pB test space for R� . This amounts to solving 
Eqs. (59)–(61).

10. Results

In this section, we present results for the hybrid BDPG method and compare its performance to standard HDG. We begin 
with a one-dimensional advection–diffusion problem before progressing to two-dimensional boundary layer and airfoil cases.

10.1. One-dimensional advection–diffusion

We have shown that BDPG performs well for one-dimensional problems with advection. To demonstrate its performance 
for viscous problems, we solve the following advection–diffusion equation:

a
∂u

∂x
− ν

∂2u

∂x2
= 0 x ∈ �

u = 0 x = xL

u = 1 x = xR . (62)

As an example, we choose the Reynolds number to be aL/ν = 10 (where L is the domain width), the trial space orders to 
be p = 0 and p = 1, and the test space order to be ptest = 10. The viscous length 	visc is kept fixed at O (1). Sample p = 0
solutions for HDG and BDPG are shown in Fig. 8(a), while Fig. 8(b) gives the convergence of the right-boundary flux for 
p = 0 and p = 1 runs.

We see that, with a boundary weight of w = 1015, BDPG provides nearly 10 orders of magnitude lower flux errors than 
HDG, while maintaining interior accuracy in u. Furthermore, Fig. 9(b) shows that (as expected) the choice of w determines 
the amount of flux accuracy obtained, with higher w leading to proportionally greater accuracy. Finally, the optimal test 
functions for the p = 0 case are shown in Fig. 9(a). These test functions provide accuracy in both the left and right fluxes 
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Fig. 9. One-dimensional advection–diffusion: (a) Normalized v-component of the optimal test functions for the p = 0 solution in Fig. 8(a). The black test 
functions are associated with the q trial bases, while the remaining test functions are associated with the u bases. (b) Convergence of the left-boundary 
flux for p = 0 and various choices of boundary weight, w . The higher the boundary weight, the more accurate the flux.

leaving each element, which leads ultimately to accuracy in the domain-boundary fluxes. As in the advection–reaction ex-
ample, the initial convergence rate of the BDPG fluxes (which is observed to be ptest + p + 1) is due solely to the inexact 
representation of the test functions. Thus, if analytical rather than numerical optimal test functions were used, machine-
precision flux accuracy would be obtained on any mesh.

Remark 9. Note that for this problem, if we were to consider pure advection or pure diffusion (by setting ν = 0 or a = 0, 
respectively), HDG would achieve exact fluxes without the need for optimal test functions. This is because, in general, 
the adjoints for the fluxes satisfy homogeneous equations of the form L∗ v = 0. This equation reduces to L∗v = −a ∂v

∂x = 0

for advection and L∗v = −ν ∂2 v
∂x2 = 0 for diffusion. The solutions to these equations are just constant and linear functions, 

respectively. For p ≥ 1, HDG already contains these adjoint solutions in its test space, so in that sense it is already optimal.

10.2. Two-dimensional advection–diffusion: manufactured solution

Next, we move on to two dimensions. Before solving practical problems, we investigate two ideas related to the multi-
dimensional test function theory: first, whether adequate trial space representation of the fluxes is actually important (as 
claimed in Section 8.2); and second, whether, given adequate flux representation, the localized optimal test functions can
actually provide boundary accuracy.

As mentioned, in two dimensions we expect BDPG to perform well only if the trial space is capable of adequately 
representing the true fluxes. In order to confirm this theory, we construct a manufactured solution whose true fluxes lie 
exactly in a p = 1 space. This solution is given by

u(x, y) = sin (8πx)2 sin (8π y)2 + x + y , (63)

with contours shown in Fig. 10. Note that the sinusoidal terms vanish on all element boundaries, thus leaving a linear 
(x + y) variation there. To define the problem, the advective velocity is chosen to be 
a = [0.4, 0.8], the viscosity is taken to 
be ν = 0.01, and the domain has length L = 1.

We then solve the problem using BDPG with a standard trial space – i.e. with no Lobatto enrichment on element 
boundaries. When using a p = 0 trial space, we expect the performance of BDPG to suffer, since the true (linear) fluxes 
cannot be adequately represented. However, as soon as the trial space order is increased to p = 1, the true fluxes become 
representable, and we expect BDPG to be capable of delivering nearly exact boundary values.

To perform the test, we sweep through trial space orders from p = 0 to p = 4 and record the error in the boundary 
fluxes for both BDPG and HDG. For BDPG, we keep the test space order fixed at a high value of ptest = 10 to ensure that 
the test function representation has a minimal influence on the results.

Fig. 10 shows the error in the top-boundary flux for both methods, which is representative of the fluxes on all boundaries. 
The results are as we expect: for p = 0, the BDPG errors are large since the flux is not representable, but as soon as p = 1
is used, the error drops to machine-precision levels. This highlights the importance of flux resolution for multidimensional 
problems, and justifies the idea of enriching the trial space near element boundaries. Furthermore, the performance of 
BDPG for p ≥ 1 confirms that the optimal test space is functioning well, since if it were not, boundary accuracy – even with
adequate flux resolution – would not be achieved. This point is demonstrated clearly by the performance of standard HDG, 
which due to its suboptimal test space has nearly 10 orders of magnitude larger errors than BDPG.



378 S.M. Kast et al. / Journal of Computational Physics 298 (2015) 360–386
Fig. 10. Two-dimensional advection–diffusion: (a) Manufactured solution with fluxes that are exactly representable in a p = 1 space. (b) Convergence of the 
top-boundary flux as a function of p. As the order is increased above p = 0, the fluxes become representable and BDPG attains machine-precision accuracy. 
This verifies the performance of BDPG and highlights the importance of flux resolution in multiple dimensions.

Finally, we note that in order to achieve the machine-precision accuracy shown in Fig. 10, the viscous length scale for 
BDPG had to be taken small; specifically, a value of 	visc = 10−7 was used for the p ≥ 1 runs. (A more standard value 
of 	visc = 10−1 was used for all other runs.) This suggests that for multidimensional viscous problems, the test function 
localization becomes more effective as the elements become more tightly coupled, since the effect of a small viscous length 
is to penalize the inter-element jumps in u. While this issue warrants further analysis, we find that for practical problems 
(where the fluxes are not exactly representable) the performance of BDPG is relatively insensitive to the choice of viscous 
length, and more modest values of 	visc can be used. Finally, note that this issue does not arise for inviscid problems, since 
in that case no 	visc is defined. Indeed, when a similar manufactured solution is solved with the linearized Euler equations, 
BDPG attains machine-precision boundary fluxes with no “free” parameters involved.

10.3. Two-dimensional advection–diffusion: boundary layer

Next, we try a more practical advection–diffusion problem. With the same domain as above, we take 
a = [0.8, 0.4], 
ν = 0.01 (so that Re ≈ 100), and specify a Dirichlet boundary condition on all sides of the domain given by

u(x, y) = exp

[
1

2
sin (−4x + 6y) − 4

5
cos (3x − 8y)

]

x ∈ ∂� . (64)

This condition generates boundary layers on the two outflow boundaries (the top and right), and provides a test as to 
whether BDPG can accurately predict these features. Fig. 11 shows contours of both the solution and the optimal test 
functions (which are again computed with ptest = 10) for a p = 1 trial space.

Since we verified above that the resolution of interface fluxes is critical for BDPG, we enrich the trial space with Lobatto 
functions near element boundaries. For the results shown in Fig. 12, we consider enrichment orders of pB = 6, 7, 8, while 
keeping the interior basis at a low order of pI = 1. We compare the BDPG results to a standard HDG method with the same 
interior trial space order of pI = 1. Viscous lengths of 	visc = 10−4 and 	visc = 1 are used for BDPG and HDG, respectively, 
with the results being relatively insensitive to these values.

From Fig. 12, we see that BDPG with Lobatto enrichment can provide a nearly 6-orders-of-magnitude reduction in the 
flux errors, while maintaining accuracy in interior outputs. Furthermore, in addition to providing accuracy in the total flux 
through each boundary, BDPG also achieves accuracy in the solution profiles along the boundaries. The solution and gradient 
profiles along the right boundary of the domain are shown in Fig. 13, from which the enhanced accuracy of BDPG is 
apparent.

These results, of course, should be kept in perspective: the boundary enrichment of BDPG represents an additional 
expense (and additional degrees of freedom) compared to p = 1 HDG, so the comparison is in that sense unfair. However, 
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Fig. 11. Two-dimensional advection–diffusion: (a) The solution to a Re = 100 problem on a fine mesh. (b) The optimal test functions associated with the 
upper-right qy trial basis on each element. Note the upwinding nature of the test functions.

the results demonstrate clearly that, with BDPG, the attainment of global boundary accuracy depends solely on the ability 
to resolve the interface fluxes – a fact that is not true of standard HDG,10 and one that may be capitalized on in the future.

10.4. Two-dimensional linearized Euler: manufactured solution

With the performance of BDPG verified for scalar problems in one and two dimensions, we next move on to two-
dimensional systems. In particular, we solve the homentropic linearized Euler equations, with state variables and fluxes 
given by

u =
[

p
ui

]
, F j =

[
u0 j p + ρ0a2

0u j
p
ρ0

δi j + u0 j ui

]
, (65)

where 1 < i, j < dim. The state variables u represent velocity and pressure perturbations about the background state, which 
is described by the parameters a0, u0 j , and ρ0 (speed of sound, velocity, and density, respectively).

As an initial test, we construct a manufactured solution on a square domain (L = 1) given by

p(x, y) = sin (8.5x) sin (8.5y)

ui(x, y) = 0 . (66)

A plot of the pressure contours is provided in Fig. 14, along with a set of optimal test functions. The background state is 
chosen as ρ0 = 1, a0 = 3, u01 = 0.8, and u02 = 0.2, so that the Mach number is approximately 0.3. We again choose the 
test space order and boundary weights to be high (10 and 1010, respectively), and consider the same boundary enrichment 
orders as in the previous section.

The results shown in Fig. 15 are encouraging, and mirror those obtained in the two-dimensional advection–diffusion 
case. We see that BDPG achieves output error reductions of over 10 orders of magnitude compared to HDG at the same 
interior trial space order. Furthermore, BDPG also obtains accurate boundary profiles, as shown in Fig. 16. These results 
verify the effectiveness of optimal test functions for systems of equations.

10.5. Two-dimensional linearized Euler: cylinder and airfoil

Lastly, we consider linearized Euler cases of engineering interest: subsonic flow over a cylinder and an airfoil. For these 
cases, the background state is chosen as ρ0 = 1, a0 = 3, u01 = 1, u02 = 0, so that the flow is horizontal and the Mach 
number is approximately 0.3. In addition, the farfield boundary conditions on the state variables are p = 1, u1 = 1, and 
u2 = 1, so that a uniform perturbation travels upward and to the right. Finally, the mesh elements themselves are curved 
and are represented with Q = 4 polynomials, providing a first test of BDPG with curved geometry.

10 Fig. 18(b) provides an explicit demonstration of the fact that, with standard HDG, flux resolution does not guarantee accuracy.
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Fig. 12. Two-dimensional advection–diffusion: Convergence rates for various outputs. Note that pI and pB denote the interior and boundary interpolation 
orders, respectively. Higher accuracy is obtained with BDPG as the amount of boundary enrichment increases. Note that BDPG also achieves accuracy in the 
interior u2 output.

Fig. 13. Two-dimensional advection–diffusion: Solution profiles along the right boundary of the domain. BDPG with enrichment achieves greater accuracy 
than standard HDG.
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Fig. 14. Two-dimensional linearized Euler: (a) Manufactured solution pressure contours. (b) Component of the optimal test functions corresponding to the 
trial basis in the upper-right corner of each element.

First, we simulate the flow around a cylinder of radius unity. Solution contours are shown in Fig. 17, while the conver-
gence of the pressure flux along the cylinder wall is shown in Fig. 18(a). If the trial space is enriched appropriately, we see 
that BDPG can achieve nearly 6 orders of magnitude lower flux errors than HDG.

To demonstrate that these accuracy gains are not just due to the trial space enrichment, we perform another HDG 
simulation in which the same boundary-enriched (pB = 8) trial space is used as for BDPG. In this case, the only difference 
between BDPG and HDG is the test space. Fig. 18(b) shows the results of this comparison. We see that BDPG still achieves 
flux errors that are nearly 6 orders of magnitude lower than HDG. This again demonstrates that, in multiple dimensions, it 
is the combination of both optimal test functions and trial space resolution that is critical to achieving boundary accuracy.

Finally, to conclude our tests, we simulate the flow around a NACA 0012 airfoil. The airfoil has a unit chord and the back-
ground state is the same as above. Pressure contours for this case are provided in Fig. 19, which also gives the convergence 
of the x-velocity flux through the airfoil. Although the trailing-edge singularity limits the uniform-refinement rates for this 
problem, we see that, once again, BDPG achieves superior boundary accuracy.

11. Remaining challenges

Overall, the results shown in the above sections are encouraging, and verify the concept of using local optimal test 
functions to achieve global boundary accuracy. That said, before BDPG sees more widespread application, a few challenges 
remain.

The first of these, as mentioned, is the issue of trial space resolution near element boundaries. In the present work, we 
added order-pB Lobatto functions to the trial space to ensure that the fluxes are well-represented. While this is an effective 
strategy for primal DG formulations, for an already-hybridized method it represents a relatively large computational expense, 
since these additional degrees-of-freedom are globally coupled. Thus, dealing with this issue in a more efficient way is an 
important next step. One promising option – as mentioned in Section 8.3 – is to perform a local optimization of the trial 
space in order to reduce the number of degrees of freedom on element boundaries.

Another important issue, which has not yet been emphasized, is the representation of the test functions themselves. 
For certain problems, the optimal test functions can exhibit nonsmooth behavior that makes their approximation difficult. 
Nonsmoothness of the test functions arises, for instance, for pure advection problems in two dimensions. In this case, the 
exact local adjoints (test functions) contain discontinuities within each element. Since polynomials cannot adequately resolve 
these discontinuities, the error between the discrete and exact optimal test functions can be large. This leads to errors in 
the elementwise fluxes, which propagate globally. A similar issue arises for high Reynolds number advection–diffusion cases, 
where – rather than discontinuities – steep boundary layers appear in the test functions.

These issues exist for many multiscale methods (including other DPG schemes, as discussed in e.g. [21,38]), and there 
are various means of addressing them. One option is the use of a “subgrid” within each element to resolve the relevant 
fine-scale features. However, for BDPG methods, an alternative option presents itself. For most cases – as mentioned in 
Section 6.2 – it is only necessary to resolve the test functions on the boundaries of each element. Thus, if test function 
discontinuities or boundary layers exist inside a given element, these features do not actually need to be resolved. Therefore, 
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Fig. 15. Two-dimensional linearized Euler: Output convergence for HDG and BDPG runs. The flux outputs represent the sum of all state components of the 
flux vector. Higher accuracy is obtained as the amount of BDPG boundary enrichment increases. BDPG also achieves accuracy in the interior p2 output.

Fig. 16. Two-dimensional linearized Euler: Solution profiles along the right boundary of the domain. BDPG with boundary enrichment is again more accurate 
than HDG with the same interior basis.

when computing the optimal test functions, rather than using a standard DG or HDG method, we could instead attempt
to tailor the discretization to focus solely on obtaining boundary accuracy in the test functions. Indeed, since achieving 
boundary accuracy has been the primary goal of this work, it may be possible to apply some of the present ideas to the 
test function problem itself.
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Fig. 17. Two-dimensional cylinder: (a) Pressure and (b) y-velocity contours from a high-order HDG solution.

Fig. 18. Two-dimensional cylinder: (a) Pressure flux convergence for BDPG and p = 1 HDG. (b) Pressure flux convergence where the same pB = 8 trial 
space is used for both BDPG and HDG. Since the only difference is the test space, the results show that the optimal test functions of BDPG are effective in 
reducing boundary errors.

12. Conclusion

In this work, we presented a strategy for optimizing the test space of both primal and hybrid DG methods. The theory 
applies to linear PDEs and can be extended to nonlinear equations. We have shown that if the primary goal is to achieve 
boundary accuracy, the optimal test functions can be localized and computed independently on each element in the mesh. 
These test functions satisfy local adjoint equations and ensure that a proper upwinding of information occurs within each 
element. As shown, if the test functions and fluxes are well-represented, exact boundary fluxes are obtained. The resolution 
of both test functions and fluxes are critical issues, and while we have addressed certain aspects of these issues, additional 
challenges remain. Extension of the theory to nonlinear problems is another important step, and one that we explore in a 
future work.
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Fig. 19. Two-dimensional airfoil: (a) Pressure contours from a high-order BDPG solution. (b) x-velocity flux convergence for both BDPG and HDG. While the 
convergence rates are limited by the trailing-edge singularity, BDPG still provides a benefit over HDG.
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Appendix A. Localization of the test space (one-dimensional advection–reaction)

Our primary goal in this work is to achieve accuracy in the fluxes through the domain boundaries. For the advection–
reaction problem in Section 5, this means that we would like the flux on the right boundary,

J = auh(xR) , (A.1)

to be accurate. Ideally we would like it to have zero error.
From a posteriori error estimation, the error in a certain output (including the above J ) can be represented as the in-

ner product of a corresponding adjoint solution and the residual of the governing PDE [28,39,29]. For our one-dimensional 
advection–reaction problem, it is straightforward to show that the adjoint solution v corresponding to J satisfies the fol-
lowing equation:

L∗v = −a
∂v

∂x
+ cv = 0 v(xR) = 1 . (A.2)

This is a global differential equation, which can be solved analytically to obtain

v(x) = e−cxR/a︸ ︷︷ ︸
const.

ecx/a . (A.3)

The output error δ J = J (uh) − J (u) can then be written as a product of this v and the residual of the PDE:

δ J =
∫
�

v r(uh)dx = b(uh, v) − l(v) . (A.4)

From this expression, it is clear that if the adjoint v happens to lie in the test space of our finite element method, then 
the error in the flux J will be zero. This is because if v were in the test space, one of our finite element equations would 
be

b(uh, v) = l(v) 
⇒ b(uh, v) − l(v) = 0 
⇒ δ J = 0 . (A.5)

Our goal in this appendix is to show that, when using the local optimal test functions defined in Section 5, this v is in fact 
contained in the test space, and therefore the local test space can in fact deliver zero error in the domain-boundary flux.
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Fig. 20. Local and global coordinate systems and test functions. Note that a bar designates local quantities.

As described in Section 5, to compute the local optimal test functions, we solve elementwise adjoint problems for the 
following outputs on each element K :

J i =
∫
K

φiu dx + w Rφiu

∣∣∣∣
∂ K R

. (A.6)

Now, for a trial basis φi that is nonzero on the right boundary, taking w R large will make the boundary term in J i dominate 
the interior term. Therefore, in the limit of large w R , the interior term can be neglected and the output effectively becomes

J i = w Rφiu

∣∣∣∣
∂ K R

. (A.7)

This is just a constant multiple of the flux through the downwind boundary of the element. Since the constant makes no 
difference to the final test space, for purposes of analysis we can treat the above J i as a pure (local) flux output. This means 
that, on any given element, one of the local optimal test functions (denoted by v̄(x̄)) satisfies the following adjoint equation:

−a
∂ v̄

∂ x̄
+ cv̄ = 0 v̄(�x) = 1 . (A.8)

This equation is analogous to that for a global flux output (i.e. Eq. (A.2)), but is defined over an individual element rather 
than the entire domain. Here, x̄ is a local coordinate associated with the element in question (see Fig. 20 for a definition of 
the relevant quantities). Solving this equation for the test function v̄ gives

v̄(x̄) = e−c�x/a︸ ︷︷ ︸
const.

ecx̄/a . (A.9)

Finally, writing x̄ in terms of x using the transformation x̄ = x − d results in

v̄(x) = e−c�x/a e−cd/a︸ ︷︷ ︸
const.

ecx/a . (A.10)

Comparing this local test function v̄ to the global adjoint v in Eq. (A.3), we see these functions are indeed just constant 
multiples of each other. Thus, regardless of where a given element is located (i.e. regardless of d) and regardless of the size 
of the element (i.e. regardless of �x), one of the local test functions on each element satisfies

v̄(x) = C v(x) (A.11)

for some constant C . Since by definition the test space includes all constant multiples of v̄ , this means that the global adjoint 
v is in fact contained in the test space. From our earlier discussion, this then implies that the error in the domain-boundary 
flux J is zero. Thus, the local optimal test space is in fact globally optimal with respect to the domain-boundary flux. 
While we have focused on an advection–reaction problem here, similar logic holds for more general problems (such as 
advection–diffusion).
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