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We present a new Boundary Discontinuous Petrov-Galerkin (BDPG) method
for Computational Fluid Dynamics (CFD) simulations. The method represents a
modification of the standard Hybrid Discontinuous Galerkin (HDG) scheme, and
uses locally-computed optimal test functions to achieve enhanced accuracy along the
domain boundaries. This leads to improved accuracy in relevant boundary outputs
such as lift and drag. Results demonstrate that, for linear problems in both one
and two dimensions, exact boundary outputs are obtained if the test functions
and fluxes are well-represented. Furthermore, for nonlinear problems such as the
Navier-Stokes equations, the method can achieve 2p + 2 output convergence rates,
which represents an improvement over the 2p+ 1 rates of standard HDG.

I. Introduction

Recently, finite element methods have been gaining popularity in the aerospace community as
an alternative to finite volume methods. In addition to high-order accuracy, finite element methods
provide a rigorous setting for output-based error estimation and mesh adaptation. The ability to
compute accurate outputs is an attractive feature, since predicting quantities such as lift or drag
is often the primary goal of a CFD simulation.

The typical strategy for achieving output accuracy is to use a standard (e.g. discontinuous)
Galerkin method in combination with output-based mesh adaptation.1–3 In this case, the numerical
method itself is a “general-purpose” scheme, while the mesh bears the burden of providing accuracy
in outputs of interest. However, in the current work, rather than optimizing the mesh, we present
an alternative – and largely overlooked – strategy: that of optimizing the scheme itself.

In particular, we show that the test space of a finite element method can be optimized to
obtain accuracy in certain outputs of interest. This results in a Petrov-Galerkin method whose test
functions differ from the trial functions. In this work, we provide a general framework for deriving
and computing the optimal test space, and present a “boundary” discontinuous Petrov-Galerkin
(BDPG) method that achieves accuracy specifically in boundary outputs. These outputs are often
the most relevant from an engineering standpoint.

The concept behind optimal test functions is relatively straightforward. The idea is to choose
the test functions such that the finite element weighted residual becomes the derivative of a certain
error norm of interest. Since, by definition, the method forces the residual to be zero, it therefore
forces the derivative of the error to be zero as well. This then implies that the error is minimized,
and that the method is optimal in the desired norm.
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As we show, the optimal test functions turn out to be adjoint solutions for certain “projection”
outputs related to the chosen error norm. For general error norms, computing the optimal test
functions on a given element requires solving a global differential equation. From a practical
standpoint, this is infeasible, and appears to limit the method to one of purely theoretical interest.

However, our desire for accurate boundary outputs actually saves us, since the error norms
that emphasize boundary accuracy turn out to be exactly those that are easily localizable. As we
show, a key idea is to choose the norm such that errors in the inter-element fluxes are minimized,
as this reduces global error propagation and (among other things) leads to accuracy in boundary
outputs. The test functions themselves can be computed locally on each element, and represent
adjoint solutions for the local fluxes. For linear problems, if both test functions and inter-element
fluxes are well-represented, exact boundary outputs are obtained.

The work is inspired by the discontinuous Petrov-Galerkin (DPG) methods introduced in,4–7

but differs in several ways. Our emphasis on boundary outputs is unique, and unlike previous DPG
methods, we do not require the use of an “optimal test norm.”6 Furthermore, the ideas in this
work apply to both primal and hybrid formulations, as opposed to the more expensive “ultra-weak”
formulation espoused in.5 Finally, we note that the optimal test function theory has close ties to a
posteriori error estimation,1,2, 8 multiscale methods,9–12 and other stabilized schemes.13–19

In this work, we implement the optimal test functions within a hybrid framework (similar to20),
and demonstrate the resulting hybridized BDPG method on a series of problems in both one and
two dimensions. The results show that BDPG can achieve significant reductions in boundary error
compared to standard Galerkin methods.

II. Optimal Test Function Theory

In this section, we present the theory of optimal test functions. We begin with a 1D example
before progressing to multidimensional and nonlinear systems of equations. While the theory itself
is only optimal for linear problems, it can be extended readily to nonlinear problems once they
have been locally linearized.

II.A. A 1D Example

To make things concrete, assume we have a linear partial differential equation (PDE) of the following
form:

a
∂u

∂x
= f(x) x ∈ Ω

u|xL = uL x ∈ ∂Ω (1)

This is just linear advection with a source term, f(x). Here, we assume a > 0, so that the Dirichlet
boundary condition uL on the left is well-posed.

To generalize the notation, we see that the above PDE can be written as

Lu = f x ∈ Ω

u|xL = uL x ∈ ∂Ω (2)

where the differential operator L is given by L ≡ a∂()
∂x . Furthermore, we define the residual as

r(u) ≡ Lu− f . Since this residual is zero for the exact solution u, it is clear that we can write:∫
Ω
v (Lu− f) dx = 0 ∀v ∈ V , (3)
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where v is any test function in some continuous test space V .
Now, to compute an approximate solution to the above PDE, a finite element method attempts

to mimic the weighted-residual statement in Eqn. 3. In other words, it seeks an approximate
solution uh ∈ Uh that satisfies ∫

Ω
vh (Luh − f) dx = 0 ∀vh ∈ Vh , (4)

where vh is any test function in some discrete test space Vh. Once a basis is chosen for the
approximation space Uh, which is typically taken to be a polynomial space of order p, our discrete
uh can be represented as

uh =
N∑
i=1

Ui φi(x) , (5)

where the φi form a basis of Uh, and the Ui are the unknown solution coefficients.
Then the remaining question is: what should our test space Vh be? A standard Galerkin method

would choose Vh = Uh, so that the test space is identical to the trial space. But is this the best
choice?

We have arrived at the critical point – we have used the word “best.” Best in what way? In
general, we can think of our discrete solution uh as a type of “curve fit” to the exact solution u.
And when performing a curve fit, we know that in order to get a best-fit approximation, we must
first define the error norm that we want the best fit in. In the same way, when approximating the
solution to a PDE, we need to say how we would like our discrete uh to “fit” the exact u.

In practice, we would often like the discrete uh to give a good L2 approximation to the true
solution on both the interior and boundaries of the domain. Thus, for our current 1D problem, the
error norm that we desire the best approximation in might look something like:

||e||2 =

∫
Ω

(uh − u)2 dx + wR (uh − u)2

∣∣∣∣
xR

. (6)

Here, wR is a weight that determines how much emphasis to place on the solution near the right
boundary. If we want uh to match u closely at the right boundary, we would take wR to be large,
whereas if we are interested in only interior accuracy, we would choose wR = 0. Note that there is
no need to ask for accuracy on the left boundary, since the solution there is already known from
the Dirichlet condition.

In order to find the coefficients Ui that minimize this norm, we can take the partial derivative
of ||e||2 with respect to each Ui, and set this equal to zero. By basic calculus, the derivative of a
function is zero at a critical point, and in this case, we know that our critical point is in fact a
minimum, since ||e||2 is a positive (concave up) quadratic.

Given that uh =
∑N

i=1 Ui φi, we see that differentiating Eqn. 6 with respect to Ui gives:

∂||e||2

∂Ui
= 0 =

∫
Ω

2 (uh − u)φi dx + 2wR (uh − u)φi

∣∣∣∣
xR

. (7)

Thus, if the approximation uh is to provide the minimum error in our chosen norm (||e||2), it must
satisfy the following equation(s)∫

Ω
φi (uh − u) dx + wR φi (uh − u)

∣∣∣∣
xR

= 0 (8)

for i = 1 to N .
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Now, we claim that with a certain (“optimal”) choice of test functions, we can ensure that the
above equation is satisfied by our finite element solution. To see how this is done, note that Eqn. 8
involves some quantity that is equal to zero. Next, note that our weighted residual statement
(Eqn. 4) also involves a quantity that is equal to zero. Then the idea is this: if we can make our
weighted residual statement look like the error minimization statement, our finite element solution
uh will necessarily minimize that error. In other words, our weighted residual statement will simply
become a direct statement of error minimization.

We now show how this is done. From Eqn 4, we have that∫
Ω
vh(Luh − f) dx = 0 ∀vh ∈ Vh , (9)

and since the exact residual is zero pointwise, we also have∫
Ω
vh(Lu− f) dx = 0 ∀vh ∈ Vh . (10)

Now, since both of these quantities (Eqns. 9 and 10) are zero, we can equate them to get∫
Ω
vh(Luh − f) dx =

∫
Ω
vh(Lu− f) dx ∀vh ∈ Vh . (11)

Bringing everything to the left-hand side (and canceling the f terms) then gives:∫
Ω
vh(Luh − Lu) dx = 0 ∀vh ∈ Vh . (12)

Since L is a linear operator, we can rewrite this as:∫
Ω
vh L(uh − u) dx = 0 ∀vh ∈ Vh . (13)

Notice that we now have an error term (uh − u) in the equation. This is desirable, since Eqn. 8
also contains error terms, and we are attempting to make the weighted residual look like this
equation. To introduce a boundary term, we can integrate the above equation by parts. To make
this more concrete, let us first substitute L = a∂()

∂x back in for the differential operator. Then
Eqn. 13 rewritten is just ∫

Ω
vh a

∂(uh − u)

∂x
dx = 0 ∀vh ∈ Vh . (14)

Now integrating by parts gives∫
Ω

[
−a∂vh

∂x

]
︸ ︷︷ ︸

L∗vh

(uh − u) dx + vha(uh − u)

∣∣∣∣xR
xL

= 0 ∀vh ∈ Vh . (15)

Since we are specifying a Dirichlet condition on the left boundary, the error (uh−u) is zero there, so
the left boundary term above vanishes. Then if we define the operator that emerges after integration
by parts as L∗ ≡ −a∂()

∂x , we can rewrite the above equation as just:∫
Ω
L∗vh (uh − u) dx + vha (uh − u)

∣∣∣∣
xR

= 0 ∀vh ∈ Vh . (16)
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Finally, regardless of what the test space is, it must have the same dimension (N) as the trial space,
in order for the number of equations to equal the number of unknowns. Therefore, we can replace
the general test function vh above with a specific test function vi, where i ranges from 1 to N .
Doing so gives: ∫

Ω
L∗vi (uh − u) dx + via (uh − u)

∣∣∣∣
xR

= 0 ∀vi ∈ Vh . (17)

Recall that we are trying to make this look like Eqn. 8, which is:∫
Ω
φi (uh − u) dx + wR φi (uh − u)

∣∣∣∣
xR

= 0 ∀φi ∈ Uh

By simply comparing these two equations, we see that the way to make them identical is to set

L∗vi = φi x ∈ Ω

a vi

∣∣∣∣
xR

= wR φi

∣∣∣∣
xR

x ∈ ∂Ω . (18)

for i = 1 to N .
So we see that if we want the discrete solution uh to minimize the error given by Eqn. 6, we

need the test functions vi to satisfy the above differential equation(s) and boundary condition(s).
The test functions that satisfy the above equations are the optimal test functions, in the sense that
they give the best possible solution uh in the desired error norm.

Furthermore, recall that through our choice of the weight wR, we have direct control over
where we obtain solution accuracy. Choosing wR large will give an accurate solution on the right
boundary, while taking wR = 0 will provide a least-squares fit of u over the domain interior. For
the BDPG method presented in the current work, we are interested in obtaining accurate boundary
outputs, which in this case corresponds to choosing wR large.

Note that we have posed the above derivations in a continuous setting, which means the dif-
ferential equation satisfied by the vi is a global equation over the whole domain. In practice, this
would be too expensive to solve, so we will need to develop a method of localizing it. In addition,
the above equations assume that the vi are represented in an infinite-dimensional space. This is also
impossible to do in practice; instead, we can approximate the vi with (e.g.) high-order polynomials.
Note that if we were to compute the vi in the same space as the trial functions (i.e. in an order-p
space) then the method would reduce exactly to a standard Galerkin method. So in the end, if we
wish to do better than a Galerkin method, we must use test functions that are of higher order than
the trial space.

In this section, we have derived the optimal test functions. If we wanted, we could stop here.
However, it is worthwhile at this point to mention an interesting fact about the optimal test
functions – namely, that they are adjoint solutions.

II.B. Optimal Test Functions as Adjoints

To see that the optimal test functions satisfy adjoint equations, recall from functional analysis that,
for a given differential operator L, the definition of its adjoint operator L∗ is:

(Lu, v) = (u, L∗v) ∀u ∈ U, ∀v ∈ V, (19)

where U and V are function spaces over which the above inner product is defined. In practical
cases, the left-hand side of this relationship is just a differential equation (Lu) weighted by a test
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function (v). Thus, in order to find what L∗ is, we can simply integrate the left-hand side by parts.
This will remove all derivatives from u and place them on v. The resulting operator acting on v is
then defined to be L∗. So this adjoint operator L∗ could just as well be called the “integration by
parts” operator.

The important point is that the adjoint operator is exactly the operator in the optimal test
function equations (Eqn. 18). If we look back at the derivation (specifically, Eqn. 15), we see that
the L∗ there was indeed defined to be the operator obtained after integrating by parts.

Now, from optimization21 and a posteriori error estimation,1,2 we know that adjoint equations
relate the sensitivity of a certain output to perturbations in the residual of a PDE. Therefore, if
the optimal test functions themselves satisfy an adjoint equation, this begs the question: for what
output?

It turns out that the output associated with the optimal test functions is:

Ji =

∫
Ω
φiu dx + wRφiu

∣∣∣∣
xR

(20)

This is straightforward to verify, though we omit the proof for brevity. From the above equation,
we see that a given output Ji represents the projection of the exact solution u against the i-th trial
basis function.

From a posteriori error estimation, it is known that the adjoint-weighted residual for a certain
output gives the error in that output. Thus, since the optimal test functions (vi) are adjoints for
the outputs Ji, when we use them in the finite element weighted residual,∫

Ω
vi (Luh − f)︸ ︷︷ ︸

r(uh)

dx = 0 = δJi ∀vi ∈ Vh , (21)

we are directly enforcing that the error in each projection output, δJi ≡ Ji(uh) − Ji(u), is zero.
This means that our discrete solution uh is a direct projection of the true solution u into the trial
space, with respect to the desired (||e||2) norm. This is the same conclusion we arrived at in the
previous section, but we now understand it from a different angle.

Finally, to drive home the relationship between the outputs Ji and the minimization of the
error ||e||2, consider the following. We have said that using the optimal test functions vi, which are
adjoints for the Ji, gives us zero error in the Ji. But from the above definition of Ji, zero error in
Ji implies

δJi = Ji(uh)− Ji(u) = 0 =

∫
Ω
φi(uh − u) dx + wRφi(uh − u)

∣∣∣∣
xR

. (22)

We see that this is identical to the statement that ∂||e||2
∂Ui

= 0, i.e. it is identical to Eqn. 8, and thus

implies that ||e||2 is minimized.

II.C. Extension to Multi-Dimensional Systems

So far, we have derived the optimal test functions only in the context of a one-dimensional scalar
problem. However, the relevant concepts extend naturally to systems of equations as well as to
multiple dimensions. We will briefly describe those extensions here. To simplify the presentation,
we will assume that the domain Ω consists of a single element.

A general steady-state conservation law in multiple dimensions can be written as

∇ · ~F(u, ~q) = 0, (23)

~q−∇u = ~0 , (24)
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where u is the state vector and ~q represents the gradient of the state. ~F is a flux vector, which
may contain both advective and diffusive components, and consists of r state components in dim
dimensions. (Note that boldface indicates a state vector, while an arrow indicates a spatial vector.)

To obtain the weak form of the above problem, we weight Eqns. 23 and 24 by test functions v
and ~τ , respectively, giving a total weighted residual (upon summation) of

R ≡
∫

Ω

~τ T · (~q−∇u) dΩ +

∫
Ω

vT (∇ · ~F) dΩ = 0 . (25)

Note that this residual is just a scalar value. We next integrate both terms in Eqn. 25 by parts,
giving∫

Ω

~τ T · ~q dΩ +

∫
Ω
∇ · ~τ T u dΩ −

∫
Ω

(∇v)T · ~F dΩ +

∫
∂Ω

vT (~F · ~n) ds −
∫
∂Ω

(~τ · ~n)T u ds = 0.

(26)

If we now assume Dirichlet boundary conditions (denoted by uB), the right-most term above
becomes a “known” value and can be moved to the right-hand side. After making this change and
for convenience defining F̂ = ~F · ~n, we obtain:∫

Ω

~τ T · ~q dΩ +

∫
Ω
∇ · ~τ T u dΩ −

∫
Ω

(∇v)T · ~F dΩ +

∫
∂Ω

vT F̂ ds︸ ︷︷ ︸
b (u, ~q,v, ~τ )

=

∫
∂Ω

(~τ · ~n)T uB ds︸ ︷︷ ︸
l (v, ~τ )

. (27)

From this equation, we are able to define the bilinear form b (u, ~q,v, ~τ ).
Next, as in one dimension, we would like to write this bilinear form as a product of the state

variables and the adjoint operator applied to the test functions. In order to do this, we must first
write all domain integrals explicitly in terms of u and ~q. To start, we rewrite the flux ~F, assumed
linear, as

~F =
∂~F

∂u
u +

∂~F

∂qj
qj , (28)

where summation over the spatial dimension j is implied. Note that for nonlinear problems a
similar expression would hold for the Fréchet linearization of the flux. We now substitute this
expression (Eqn. 28) into Eqn. 27 and transpose the first three terms, giving

b =

∫
Ω

~qT · ~τ dΩ +

∫
Ω

uT∇ · ~τ dΩ −
∫

Ω

uT

[
∂~F

∂u

]T
+ qTj

[
∂~F

∂qj

]T · (∇v) dΩ +

∫
∂Ω

vT F̂ ds .

(29)

Grouping the u and ~q terms then results in

b =

∫
Ω

qTj

τj −

[
∂~F

∂qj

]T
· ∇v


︸ ︷︷ ︸

L∗q,j(~τ ,v)

dΩ +

∫
Ω

uT

∇ · ~τ − [∂~F
∂u

]T
· ∇v


︸ ︷︷ ︸

L∗u(~τ ,v)

dΩ +

∫
∂Ω

vT F̂ ds . (30)

Next, if we define group variables (denoted by a tilde) for the states and test functions as

ũ ≡

[
qj

u

]
and ṽ ≡

[
τj

v

]
, (31)
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then the weak form of the problem reduces to∫
Ω

qTj L
∗
q,j(ṽ) dΩ +

∫
Ω

uT L∗u(ṽ) dΩ +

∫
∂Ω

vT F̂ ds = l (ṽ) . (32)

To approximate the above equation, a finite element method chooses a set of discrete states and
test functions (denoted by a subscript h), resulting in∫

Ω
qTj,h L

∗
q,j(ṽh) dΩ +

∫
Ω

uTh L
∗
u(ṽh) dΩ +

∫
∂Ω

vTh F̂ ds = l (ṽh) . (33)

Once a basis is chosen for the trial space representations of uh and ~qh, these states can be
expanded as

us,h =

nU∑
m=1

Us,m φs,m(~x) and qs,d,h =

nQ∑
m=1

Qs,d,m φs,d,m(~x) . (34)

Here, s indexes the state component (ranging from 1 to the state rank, r), m indexes the basis
function (ranging from 1 to the number of nodes, nU or nQ) , and d indexes the dimension (ranging
from 1 to dim). Finally, Us,m and Qs,d,m represent the unknown solution coefficients, the total
number of which is given by N ≡ NU +NQ = r nU + r nQ · dim.

The remaining task is to define the test space. In order to derive the optimal test space, we
follow a similar strategy as before: we first define an error norm we wish to minimize, then choose
the test functions such that the bilinear form reduces to the derivative of that norm. Choosing a
common test function ṽi for Eqns. 32 and 33 and subtracting yields∫

Ω
(qj,h − qj)

T L∗q,j(ṽi)dΩ +

∫
Ω

(uh − u)T L∗u(ṽi)dΩ +

∫
∂Ω

vTi

[
F̂(uh, ~qh)− F̂(u, ~q)

]
ds︸ ︷︷ ︸

b(ẽ, ṽi)

= 0 . (35)

This equation is satisfied regardless of how the test space is chosen. However, when using
optimal test functions, we would like this expression to represent the minimization of a certain
error norm. To that end, we propose minimizing the following norm:

||ẽ||2 =
r∑
s=1

{ dim∑
d=1

∫
Ω

(qs,d,h − qs,d)2dΩ︸ ︷︷ ︸
interior q accuracy

+

∫
Ω

(us,h − us)2dΩ︸ ︷︷ ︸
interior u accuracy

+ws

∫
∂Ω

[
F̂s(uh, ~qh)− F̂s(u, ~q)

]2
ds︸ ︷︷ ︸

flux accuracy

}

(36)

where ẽ ≡ ũh − ũ is a group variable representing the error in the state and gradients. The above
norm emphasizes accuracy in the state, its gradients, and the boundary fluxes. Furthermore, we
see that choosing the weights ws to be large places particular emphasis on the flux accuracy, which,
as in one dimension, is our primary aim.

If we are to minimize this norm, we need its derivatives with respect to both the Uk,m and
Qk,d,m coefficients to be zero. Thus, we need

1

2

∂||ẽ||2

∂Uk,m
= 0 =

∫
Ω

(uk,h − uk)φk,mdΩ +
r∑
s=1

ws

∫
∂Ω

[
F̂s(uh, ~qh)− F̂s(u, ~q)

] ∂F̂s
∂uk,h

φk,mds (37)

and

1

2

∂||ẽ||2

∂Qk,d,m
= 0 =

∫
Ω

(qk,d,h − qk,d)φk,d,mdΩ +
r∑
s=1

ws

∫
∂Ω

[
F̂s(uh, ~qh)− F̂s(u, ~q)

] ∂F̂s
∂qk,d,h

φk,d,mds.

(38)
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For these equations to be satisfied by our finite element method, we must choose the test functions
ṽi such that the bilinear form b(ẽ, ṽi) reduces to them. A given ṽi will then ensure that one of the
above equations is satisfied. Since Eqns. 37 and 38 represent N derivative equations altogether,
with N test functions (i.e. a square system) we can ensure that each of them is satisfied in turn.

By comparing b(ẽ, ṽi) (Eqn. 35) to Eqn. 37, we see that to make these expressions identical the
test functions must satisfy:

i = 1 ... NU



L∗q,j(ṽi) = 0 j = 1 ... dim x ∈ Ω

L∗u,s(ṽi) = φk,m δs,k s = 1 ... r x ∈ Ω

vi,s = ws
∂F̂s
∂uk,h

φk,m s = 1 ... r x ∈ ∂Ω

(39)

Here, δs,k denotes the Kronecker delta function, L∗u,s denotes the sth component (i.e. equation)
associated with the operator L∗u, and repeated indices do not imply summation. As before, we
see that the optimal test functions satisfy adjoint equations in which the trial bases appear as
source terms on the right-hand side. The above equations are solved for each u basis function
φk,m, with the test function index i enumerating all combinations of (k,m). Since 1 ≤ k ≤ r and
1 ≤ m ≤ nU , there are a total of NU = r nU basis functions altogether, which provides, in the end,
a corresponding NU test functions.

Next, to make b(ẽ, ṽi) reduce to Eqn. 38, we see that the remaining test functions should satisfy:

i = 1 ... NQ



L∗q,j,s(ṽi) = φk,d,m δj,d δs,k j, s = 1 ... dim, r x ∈ Ω

L∗u(ṽi) = 0 x ∈ Ω

vi,s = ws
∂F̂s
∂qk,d,h

φk,d,m s = 1 ... r x ∈ ∂Ω

(40)

This set of equations is solved for each q trial basis φk,d,m, with the test function index i enumerating
all combinations of (k, d,m), where 1 ≤ k ≤ r, 1 ≤ d ≤ dim, 1 ≤ m ≤ nQ. The result is an
additional NQ = r nQ · dim test functions, for a total of NU + NQ = N . When used in place of
the standard Galerkin test functions, these optimal test functions ensure that Eqns. 37 and 38 are
satisfied, and hence that the error in Eqn. 36 is minimized.

Finally, as in one dimension, the optimal test functions can be interpreted as adjoint solutions
for certain “projection” outputs. These outputs are closely related to the error norm derivatives.
By inspection of Eqns. 37 and 38, we can write the effective outputs as

Juk,m =

∫
Ω
uk φk,m dΩ +

r∑
s=1

ws

∫
∂Ω
F̂s(u, ~q)

∂F̂s
∂uk,h

φk,m ds (41)

and

J qk,d,m =

∫
Ω
qk,d φk,d,m dΩ +

r∑
s=1

ws

∫
∂Ω
F̂s(u, ~q)

∂F̂s
∂qk,d,h

φk,d,m ds . (42)

It is easy to verify that enforcing zero error in these outputs is equivalent to enforcing zero derivative
of || ẽ ||2 – which of course is the actual goal.
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II.D. Localization of Test Functions and Minimization of Flux Errors

II.D.1. Computation of Test Functions

Above, we derived the optimal test functions while assuming a single-element mesh. This means
that the adjoint equations satisfied by the optimal test functions are global differential equations,
and that, if we have a multi-element mesh, we would need to solve a global equation for the test
functions on each element. This is not feasible in practice. Thus, we need to find a way to localize
the computation of the test functions without giving up their accuracy.

Fortunately, if all we desire is accuracy in the global boundary fluxes, then localizing the test
function computation is straightforward. We simply loop over each element in the mesh and
“pretend” that it is the only element in the domain. For example, to compute the optimal test
functions on an interior element, we just replace the F̂ flux terms in Eqns. 41 and 42 with the local
numerical flux. If necessary (i.e. for nonlinear problems), the states on neighboring elements act as
local Dirichlet boundary conditions. On the other hand, if we are on an element with a boundary
face, then we replace the F̂ terms with the relevant analytical boundary flux. In this way, we solve
local adjoint problems (defined over only a single element) to compute the optimal test functions,
with the local outputs involving whichever flux is naturally defined on the element’s boundaries.
These local adjoint problems are well-posed22,23 so long as the numerical flux performs a proper
upwinding of the data (as does, e.g., the Roe flux24).

II.D.2. Justification for Localization

We have claimed that it is valid to localize the test functions in this way, but we have not explained
why. The first argument we can give is mathematical. It can be proven analytically that for
1D advection and advection-diffusion problems, the test space formed by the local adjoints as
the weights w1, ..., wsr are taken large contains the global adjoints corresponding to the domain-
boundary fluxes. This implies that the local test spaces are in fact optimal for achieving accuracy
in the boundary fluxes.

A more intuitive argument is as follows. By using local optimal test functions with large
flux weights, we obtain accuracy in the outgoing flux on each element, rather than on the global
boundary. However, the critical idea is that, if local flux accuracy is obtained on each element
boundary, then this accuracy will propagate downstream, ultimately yielding global accuracy on
the domain boundary. This idea holds for general problems, including those with diffusion terms.
Since the fluxes represent the only means by which elements in the mesh communicate, if these
local fluxes can be made accurate, global accuracy follows naturally.

II.D.3. Flux Accuracy Issues

The question then becomes, can the local fluxes always be made accurate? There are two potential
impediments to obtaining accuracy in the local fluxes: (i) nonsmoothness of the local adjoint (i.e.
test function) problems, and (ii) the inability of the trial space to accurately represent the exact
flux.

Nonsmoothness of the local adjoints arises, for instance, in 2D for pure advection problems. In
this case, the local adjoints contain discontinuities within each element, and high-order polynomials
cannot do an adequate job of representing them. Thus, the error between the discrete test functions
and optimal test functions is large, leading to errors in the elementwise fluxes. To a lesser extent,
advection-diffusion problems at high Reynolds number encounter a similar issue – steep boundary
layers develop in the test functions, which again make them difficult to approximate discretely.
While these boundary layers reduce in severity upon mesh refinement, finding an efficient way to
represent them is an important topic for future investigation.
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The second issue – that of inadequate flux representation – is also critical, though this can be
dealt with more directly. The idea here is that even if our discrete test functions are perfectly
accurate, if the trial space cannot represent the true flux on element boundaries, then relatively
large pointwise errors in the local fluxes will remain, despite the best efforts of the test functions.
These errors will then compound globally and hinder the output accuracy.

To address this issue, in multiple dimensions we supplement the trial space with Lobatto func-
tions,25 which are high-order polynomials associated specifically with the boundaries of each ele-
ment. For example, we may have a p = 1 space defined over the interior of a given element, but
have p = 8 Lobatto functions defined on its boundaries. In the results section, we show that this
is an effective way to achieve accurate global fluxes. In the future, targeted trial space adaptation
near element boundaries may be a more efficient strategy.

Figure 1. An eighth-order Lobatto function defined along an edge of a quadrilateral reference element. These
functions are added to the trial space to improve flux resolution. Note that they are blended into the element
interior in a linear manner.

II.E. Extension to Nonlinear Problems

The discussion so far has focused primarily on linear problems. However, the above ideas can be
extended to nonlinear equations by simply linearizing and applying the same theory. After all, the
above test function theory can be described solely in terms of adjoint equations, and it is widespread
practice in optimization, error estimation, and other fields to compute adjoints based on a local
linearization of a given nonlinear problem.

There is, however, a price to be paid for this linearization. If we use the above test function
theory for a nonlinear problem, then the best output convergence rates we can expect to obtain
will correspond to the convergence rates of so-called “corrected” outputs – i.e. standard Galerkin
outputs that have been corrected by an adjoint-weighted-residual error estimate. This is because if
the optimal test space already contains the global adjoints, then the BDPG outputs will converge
as if they have already been “corrected” by an error estimate.

However, as is well known in error estimation, the linearization error2 associated with a standard
adjoint-based error estimate is O(δu2). Since δu typically converges at a rate of hp+1, this gives an
order of accuracy for a given adjoint-corrected output of O(h2p+2). Thus, for nonlinear problems,
the best output convergence rate we expect BDPG to achieve is O(h2p+2). This is one order higher
than the rate of a standard (but superconverging) DG method, which is O(h2p+1). So in the end,
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for nonlinear problems, the benefit of optimal test functions is to increase the order of accuracy by
one.

This rate limit does have one beneficial implication. Since the best we can do is to increase the
order of accuracy by one, this means that using a test space order higher than p + 1 will provide
no further benefit in terms of convergence rates. Thus, although we can only gain one order of
accuracy with nonlinear BDPG, we can do this while using test functions that are of relatively low
order – specifically, of order ptest = p+ 1.

III. Discretization: A Hybrid BDPG Method

The theory derived above applies to both primal and hybridized discontinuous finite element
methods. However, in this work, we implement the above ideas within the framework of a hy-
bridized discontinuous Galerkin (HDG) method. A standard HDG method treats both u and ~q as
independent unknowns, and introduces a separate “trace” variable, û, which is defined on element
boundaries. For details on the HDG discretization, see e.g.26–28 The primary benefit of HDG over
DG is that it performs a static condenstation of the element-interior degrees-of-freedom in terms
of the face degrees-of-freedom, resulting in a smaller global system size. Figure 2 shows a pictorial
comparison of DG and HDG.

y

x

y

x

HDGDG

uR, ~qR

uL, ~qL
F̂(uL, ~qL, û, ~n)

F̂(uR, ~qR, û, ~n)

û
uR

uL
F̂(uL,uR, ~n)

Figure 2. In the HDG method, additional unknowns on element interfaces allow for elimination of the element-
interior degrees of freedom. This results in a global system size in which the number of unknowns scales as
pdim−1 instead of pdim for DG.

We will avoid a detailed discussion of the hybridized implementation and instead just mention
a few important points. The first is that, for the hybrid BDPG method, we only compute optimal
test functions associated with the u and ~q trial basis functions. We do not compute optimal
test functions associated with û. The reason for this is that accuracy in û follows naturally from
accuracy in u and ~q, so it is not necessary to attempt to optimize û directly.

Secondly, we compute the discrete optimal test functions by injecting a given element HDG
Jacobian (i.e. “A” matrix) to the desired order, ptest, and multiplying its inverse transpose by the
local output linearization vector. This is a standard method of solving discrete adjoint equations.

Finally, for nonlinear problems, the optimal test functions depend on the state, so must be
updated within each Newton iteration. However, when computing the primal Jacobian for the
Newton solve, we assume that the test functions are “frozen;” that is, we ignore their derivatives
with respect to the state. This is justified so long as the nonlinearity is not too strong.

IV. Results

In this section, we present results for BDPG in one and two dimensions. These results demon-
strate that for linear problems BDPG obtains machine-precision output errors, provided the fluxes
and test functions are well represented, while for nonlinear problems it has the capability to achieve
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2p+ 2 convergence rates.

IV.A. 1D Advection-Diffusion

To start, we consider a simple advection-diffusion problem in one dimension. We solve the following
equation with Dirichlet boundary conditions and a > 0:

a
∂u

∂x
− ν ∂

2u

∂x2
= 0 x ∈ Ω

u|xL = 0

u|xR = 1 . (43)

We choose the Reynolds number to be aL/ν = 10 (where L is the domain width), the trial space
order to be p = 0 and p = 1, the test space order (for BDPG) to be ptest = 10, and the boundary
weights to be wL, wR = 1015. The high test space order and boundary weights are chosen to
demonstrate the potential boundary accuracy that can be achieved with BDPG.

0 0.5 1

0

0.5

1

Reference position

T
e

s
t 

fu
n

c
ti
o

n
s

Figure 3. 1D Advection-Diffusion: The optimal test functions, in reference space, for a p = 1 Lagrange trial
basis. Note the upwind (leftward) bias.

The optimal test finctions for a p = 1 trial basis are shown in Figure 3. The test functions
display a clear upwind bias, which is expected, since their adjoint nature implies that they should
provide a proper upwinding of the data within each element.

A comparison of the HDG and BDPG solutions in terms of both convergence rates and solution
profiles is shown in Figure 4. We see that even while using completely local test functions, BDPG is
able to obtain machine-precision boundary flux outputs. This verifies our earlier idea that achieving
accuracy in the local fluxes is enough to guarantee accuracy in the global fluxes. Finally, note that
the initial convergence rate of BDPG is due solely to the fact that the test functions are not
represented exactly, but are instead approximated in a ptest = 10 space. If the test functions were
exactly represented, the boundary flux error would be zero to machine precision on any size mesh.

IV.B. 1D Nonlinear Problems

Next, we move on to nonlinear problems. As mentioned, the test function theory is no longer optimal
for these cases (even if the test functions are computed gobally), and the best flux convergence rate
we can hope for is 2p+ 2. On the other hand, we only need ptest = p+ 1 to achieve this rate. This
is the test space order used for the following runs.
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(a) Numerical solutions

0 10 20 30

10−15

10−10

10−5

100

# Elements

Fl
ux

E
rr

or

HDG
BDPG

p=0

p=1

p=0
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(b) Output convergence rates

Figure 4. 1D Advection-Diffusion: Numerical solutions and output convergence rates for standard HDG and
the (optimal) BDPG method. BDPG is significantly more accurate near the boundaries. The error in the
right-boundary output for p = 0 and p = 1 runs is shown in (b).

IV.B.1. Euler

We first try a subsonic Euler case, which consists of an inflow at the left boundary, an inviscid wall
at the right boundary, and a source term ST = [ 0.4ρ2 0.7(ρu)2 0.1(ρH)2 ] added to the left-hand
side of the equations. The flow enters from the left and collides with the wall on the right, while
the source term acts as a sink that relieves the buildup of mass that would otherwise occur within
the domain. Figure 5 shows the steady-state values of the solution states (density, momentum, and
energy) throughout the domain.

We solve this problem numerically with both HDG and BDPG for a trial space order of p = 1.
For BDPG, we choose the test space order to be ptest = p + 1 = 2 and the boundary weights to
be large; specifically, wL, wR = 108. Note that for nonlinear problems, since the accuracy of the
fluxes depends to a certain extent on the accuracy of the element-interior solution, we do not take
the boundary weights to be as large as for linear problems.

Figure 6a shows the convergence of the energy flux on the left boundary for both HDG and
BDPG as the mesh is refined. For the BDPG runs, we observe a rate of 3.72, which is close to (but
slightly below) the optimal rate of 2p + 2 = 4. Similar rates are obtained for the remaining flux
components on both left and right boundaries.

Next, we try a supersonic case, where the Mach number is approximately 2 and Dirichlet values
of 1 (in all state components) are set on the left. The same quadratic source term is used as in the
above case, and steady-state solution profiles are shown in Figure 5b. To solve the problem, we
again use HDG and BDPG, with trial space orders ranging from p = 0 to p = 2. The test space
order and boundary weights are again taken to be ptest = p + 1 and wL, wR = 108, respectively.
Figure 6 (parts b-d) shows convergence rates for various flux outputs and trial space orders p. We
see that for this problem BDPG achieves the optimal rate of 2p + 2 for all fluxes and trial space
orders.

IV.B.2. Navier-Stokes

Next, to confirm that BDPG performs well for nonlinear problems with viscosity, we try a Navier-
Stokes run similar to the above Euler cases. The flow starts out supersonic at the inflow (with Mach
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(b) Supersonic case

Figure 5. 1D Euler: (a) Subsonic case with inviscid wall on right boundary. (b) Supersonic case with Dirichlet
conditions on left and outflow on right.

number of 1.5) and becomes subsonic as it collides with a wall on the right boundary. The inflow
Reynolds number is 10 (the same as our earlier advection-diffusion case), and a quadratic source
term of ST = [ 0.3ρ2 0.1(ρu)2 0.1(ρH)2 ] is used to allow for a steady-state solution. Figure 7 shows
the corresponding solution profiles throughout the domain.

The boundary flux convergence for both HDG and BDPG is shown in Figure 8, where the
same test space properties are used for BDPG as in the Euler cases. We see that BDPG again
outperforms HDG, and attains the optimal rate of 2p + 2 in the fluxes on both the left and right
boundaries.

IV.C. 2D Linear Problems

With the performance of BDPG confirmed for both linear and nonlinear problems in one dimension,
we now turn to linear problems in two dimensions.

IV.C.1. 2D Advection-Diffusion

We first try an advection-diffusion case with Re = 100. An analytic Dirichlet boundary condition
of

u(x, y) = exp

[
1

2
sin (−4x+ 6y)− 4

5
cos (3x− 8y)

]
~x ∈ ∂Ω (44)

is specified on all sides of the domain, which generates boundary layers on the two outflow bound-
aries (the top and right). Figure 9 shows contours of both the solution and a sample optimal test
function.

As mentioned, to ensure adequate flux resolution for multidimensional problems, we enrich
the BDPG trial space with Lobatto functions on element boundaries. For the results shown in
Figure 10, we consider boundary enrichment orders of pB = 6, 7, 8, while keeping the interior basis
at a low order of pI = 1. The test space order is set to ptest = pB. We compare the BDPG results
to a standard HDG method with the same (interior) order of pI = 1. From Figure 10, we see
that BDPG delivers a reduction in boundary-flux errors of nearly 6 orders of magnitude. As an
additional benefit, it also achieves greater accuracy in interior outputs, as evidenced by the domain
integral output shown in Figure 10d.

15 of 23

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d 

by
 U

N
IV

E
R

SI
T

Y
 O

F 
M

IC
H

IG
A

N
 o

n 
M

ar
ch

 2
3,

 2
01

5 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/6
.2

01
5-

19
56

 



10
0

10
1

10
2

10
3

10
−15

10
−10

10
−5

10
0

E
rr

o
r

1/h

 

 

HDG

BDPG

2.93

3.72

(a) p = 1, Subsonic, left energy flux

10
0

10
1

10
2

10
−5

10
−4

10
−3

10
−2

10
−1

E
rr

o
r

1/h

 

 

HDG

BDPG

1.99

0.99

(b) p = 0, Supersonic, right sum of fluxes

10
0

10
1

10
2

10
−10

10
−8

10
−6

10
−4

E
rr

o
r

1/h

 

 

HDG

BDPG

3.95

2.99

(c) p = 1, Supersonic, right sum of fluxes

10
0

10
1

10
−12

10
−10

10
−8

10
−6

10
−4

E
rr

o
r

1/h

 

 

HDG

BDPG

5.94

4.96

(d) p = 2, Supersonic, right sum of fluxes

Figure 6. 1D Euler: Various flux outputs for subsonic and supersonic cases. The supersonic BDPG runs
achieve the optimal 2p+ 2 rate, while the subsonic run nearly attains this rate.

IV.C.2. 2D Linearized Euler

Finally, we move on to two-dimensional systems of equations. In particular, we solve the homen-
tropic linearized Euler equations, with state variables and fluxes given by

u =

[
p

ui

]
, Fj =

[
u0jp+ ρ0a

2
0uj

p
ρ0
δij + u0jui

]
, (45)

where 1 < i, j < dim. The state variables u represent velocity and pressure perturbations about the
background state, which is described by the parameters a0, u0j , and ρ0 (speed of sound, velocity,
and density, respectively).

As a first test, we try a NACA 0012 airfoil with horizontal background flow at a Mach number
of 0.3. The pressure and velocity perturbations are set to unity on the farfield boundaries, so
that the net velocity perturbation is upward and to the right. The mesh and solution contours
are shown in Figure 11. Note that the mesh is curved (with Q = 4 geometry representation) and
has hanging-node refinement near the airfoil, providing a first test of BDPG on a general mesh
topology.

For the BDPG runs, we choose the boundary weights to be 1010 and the test space order to
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Figure 7. 1D Navier-Stokes: (a) State variables within the domain. (b) Mach number and pressure variation
within the domain. Note that the flow transitions from supersonic to subsonic near the inflow.
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Figure 8. 1D Navier-Stokes: Convergence rates for a mixed supersonic/subsonic flow with p = 1. BDPG
obtains optimal 2p+ 2 rates.

be equal to the enrichment order, i.e. ptest = pB. (There is not much benefit in taking ptest > pB,
since the pointwise flux errors cannot be reduced beyond the interpolation error dictated by pB.)
Convergence rates for p = 1 HDG and BDPG with various edge enrichments are provided in
Figure 11. From the figure, we see that BDPG achieves orders of magnitude lower errors in the
boundary fluxes compared to HDG. As expected, use of a higher enrichment order pB results in
improved performance for BDPG.

While BDPG performs well for the above airfoil, the trailing edge singularity limits the potential
convergence rates. To eliminate the effect of this singularity, we round off the trailing edge and
instead simulate the flow around the flattened ellipse shown in Figure 13. Figure 14 shows the
convergence rates for the fluxes along the ellipse boundary. We see that with the singularity
removed, BDPG shows even greater gains relative to HDG, achieving boundary flux errors roughly
6 orders of magnitude lower than HDG by the final refinement.
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(a) Solution, u (b) Optimal test functions

Figure 9. 2D Advection-Diffusion: (a) The solution to a Re = 100 problem on a fine mesh. (b) A particular
optimal test function shown on each element in the domain. This specific test function ensures accuracy in the
flux through the top face of each element. Additional test functions (not shown) ensure accuracy in the fluxes
through the remaining faces. The advective velocity is upward and to the right, and the upwinding nature of
the optimal test functions is apparent.

IV.C.3. 2D Ellipse: Additional Comparisons

At this point, we may wonder to what extent BDPG’s error reduction is due specifically to the
use of optimal test functions, since the fact that the BDPG trial space is enriched may provide
improved accuracy on its own. To demonstrate that BDPG’s accuracy gains are not just due to the
trial space enrichment, we perform another ellipse simulation in which the same boundary-enriched
trial space is used for both BDPG and HDG. In this case, the only difference between BDPG and
HDG is the test space. Figure 15a illustrates the results of this test, showing the pressure flux
convergence for both methods. (The other fluxes show similar behavior.) We see that even when
HDG uses an enriched trial space, BDPG achieves boundary-flux errors that are roughly 6 orders
of magnitude lower for pB = 8. This again demonstrates that, in multiple dimensions, it is the
combination of both optimal test functions and trial space resolution that is critical to achieving
boundary accuracy.

Lastly, as a final demonstration of the 2D test function performance, we compare BDPG runs in
which ptest = pB to standard HDG runs of order p = pB. In other words, we do the following: We
start with a standard HDG method at order p. For the BDPG scheme, we then delete all interior
trial space modes, leaving only the edge representation at order p, so that pB = p while pI = 1.
Finally, we stipulate that the test functions be computed in an order ptest = p space. This creates a
situation in which BDPG cannot possibly do better than HDG, because HDG contains all order-p
functions in its test space, and will necessarily include any of the test functions used by BDPG.

The goal then is to see how BDPG’s performance compares to HDG in this situation. The idea
is that, if BDPG’s test functions are truly optimal, then we should theoretically be able to recover
the same boundary accuracy as HDG, despite the fact that we have deleted all of the interior trial
functions (and their associated test functions). On the other hand, if there were some error in the
optimal test function derivation or computation, the performance of BDPG would suffer relative
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Figure 10. 2D Advection-Diffusion: Convergence rates for various outputs. Note that pI and pB denote
the interior and boundary interpolation orders, respectively. Higher accuracy is obtained as the amount of
boundary enrichment increases. Note that the interior u2 output is also accurate, despite the fact that it is
nonlinear and that the method is not designed for interior ouptuts.

to HDG.
Figure 15 shows these comparisons for p = 4, 6, and 8 for the ellipse case. From the figure,

we see that the BDPG results lie exactly on top of the HDG values – meaning that the optimal
test functions are in fact performing well, and are enabling BDPG to achieve the same accuracy as
HDG with fewer total degrees of freedom. For example, if we consider the case where p = 6, then
standard HDG has (p+1)2 = 49 basis coefficients (i.e. unknowns) per element. On the other hand,
after deleting the interior trial space modes, BDPG has only 4p = 24 unknowns per element. So
for this case, BDPG attains the same accuracy as HDG with just half the total number of degrees
of freedom.

That said, it must be emphasized that fewer total degrees of freedom does not necessarily
translate into lower computational time. In particular, for hyridized methods, the computational
time scales primarily with the number of degrees of freedom on element boundaries (i.e. the trace
degrees of freedom). In this case, the advantage of BDPG over HDG in terms of CPU time is not
clear, since the edge enrichment leaves a relatively large number of degrees of freedom on element
boundaries. However, the edge enrichment used in the current work is a “brute-force” approach,
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(a) Pressure contours (b) x-velocity contours

Figure 11. 2D airfoil: Pressure and x-velocity contours.
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Figure 12. 2D airfoil: Pressure and x-velocity flux convergence for both BDPG and HDG. While the conver-
gence rates are limited by the trailing-edge singularity, BDPG still outperforms standard HDG.

and can be performed in a more intelligent manner that would provide further CPU time reductions.
In addition, since BDPG requires trial space resolution only near element boundaries, it opens up
the possibility of performing a targeted trial space optimization in those regions. For example, if the
trial space were tuned to include the primary “modes” of the true interface fluxes, then hybridized
BDPG schemes could significantly outperform standard HDG schemes in terms of CPU time.

V. Conclusions and Future Work

In this work, we have shown how to derive and compute optimal test functions for discontin-
uous finite element methods. These test functions render a finite element method optimal in a
chosen error norm. The theory applies to arbitrary linear PDEs in multiple dimensions and can
be extended to nonlinear equations. We have further shown that, if the primary goal is to achieve
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(a) Pressure contours (b) y-velocity contours

Figure 13. 2D ellipse: Pressure and y-velocity contours.
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Figure 14. 2D ellipse: Pressure and x-velocity flux convergence for both BDPG and HDG.

accuracy in boundary outputs, the theory can be localized and the test functions can be computed
independently on each element. These test functions satisfy local adjoint equations and ensure that
a proper upwinding of information occurs within each element. When used in a discrete setting, a
“boundary” discontinuous Petrov-Galerkin (BDPG) method results.

For linear problems, if the test functions and fluxes are well-represented, BDPG can obtain
exact boundary fluxes, while for nonlinear problems rates of O(h2p+2) are achieved. On the other
hand, if the test functions are nonsmooth or the fluxes not well-represented, the performance of
the method can suffer. Addressing these issues while providing further reductions in CPU time is
the subject of future research.
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