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This paper presents a novel approach to solution-based adaptation for unsteady discretiza-

tions of symmetrizable conservation laws. This approach is based on an extension of the

entropy adjoint approach, which was previously introduced for steady-state simulations. Key

to the approach is the interpretation of symmetrizing entropy variables as adjoint solutions

for an output that states the entropy balance in the space-time computational domain. This

relationship is shown for general �rst-order conservation laws, and it is applied to the case

of the shallow water equations. Speci�cally, the entropy variable weighted residual is used

to drive an adaptive indicator that targets regions of the space-time domain where spurious

entropy generation is greatest. The error estimation and adaptation strategies are the same as

those prescribed by output-based theory, with the advantage that no separate adjoint solution

is required. Results for the unsteady shallow water equations in both one and two spatial

dimensions show that the adaptive indicator performs better than uniform re�nement and as

well as or better than an unweighted residual indicator.

I. Introduction

Mesh-adaptive computational methods are important for producing accurate answers with e�-
cient use of resources. They are relevant to aerospace applications, which possess a wide range of
scales whose required resolution is often not known a priori. Unsteady problems can be particularly
di�cult in this regard, as the inclusion of time adds the possibility of both spatially and tempo-
rally localized features that require resolution. Choosing su�cient spatial and temporal resolution
while maintaining computational e�ciency is a di�cult task. For more than very simple problems,
the risk of loss of accuracy due to insu�cient resolution is one that cannot be reliably managed
by the user, even an expert practitioner. Instead, in such applications, robust and automated
solution-based adaptive methods are critical.

Many solution-adaptive algorithms, also known as adaptive mesh re�nement (AMR), rely on
solution features to dictate mesh re�nement.1{3 These features could be gradients, curvatures, or
any other directly computable solution characteristics. Such indicators are inexpensive compu-
tationally, but they provide no guarantees on the quality of the solution. Even in steady-state
simulations, adapting on solution features can lead to poor performance, especially for predicting
engineering outputs.4,5

�Research Assistant
yAssistant Professor, AIAA Member
zProfessor, AIAA Fellow

1 of 20

American Institute of Aeronautics and Astronautics

20th AIAA Computational Fluid Dynamics Conference
27 - 30 June 2011, Honolulu, Hawaii

AIAA 2011-3694

Copyright © 2011 by Steven Kast, Krzysztof Fidkowski, and Philip Roe.  Published by the American Institute of Aeronautics and Astronautics, Inc., with permission.



More robust are output-based adaptive algorithms, which produce meshes speci�cally suited
for the prediction of a scalar output of interest. These methods also return error estimates that
improve robustness of the output calculation. While the topic of output error estimation and mesh
adaptation has been studied in depth for steady problems,5{11 unsteady problems have received
considerably less attention.12{14 One reason for this is that while in the steady case the cost of the
adjoint solution is generally no more than that of the original forward problem (implementation
�xed costs aside), the cost rises in the unsteady case, especially in terms of storage for nonlinear
problems.

For steady-state, a compromise between heuristic and output-based adaptive indicators was
introduced as the \entropy adjoint" approach .15 This method appealed to the observation that
the entropy state variables act as an adjoint solution for an output that expresses an entropy bal-
ance statement in the computational domain. Adaptation driven by the entropy adjoint approach
was demonstrated to produce \all-around" good solutions that competed with engineering output
adjoint solutions in terms of output accuracy, even though the generation and transport of entropy
in the domain is generally not of direct engineering interest.

In the present work, we extend the entropy adjoint approach to unsteady problems. In this
case, the output becomes an entropy balance statement that accounts for the entropy in
ow and
out
ow through all boundaries of the space-time domain. That is, the accounting includes the
entropy present in the initial condition, the entropy present at the �nal time, and the net entropy
that leaves the spatial domain during the course of the simulation.

We derive the entropy adjoint output expression for general, unsteady �rst-order conservation
laws, and we present adaptive numerical results for one instructive system: the shallow water equa-
tions. These nonlinear equations govern the depth (height) and velocity of 
uid in free surface

ows. They are hyperbolic, exhibiting steep gradients or discontinuities, and hence are similar in
character to 
ows of aerodynamic interest. The system has no separate thermodynamic entropy;
instead, it is the total energy that gives rise to \entropy variables" that symmetrize the equa-
tions. We stress that it is the symmetrizing property of the entropy variables, not necessarily a
thermodynamic connection, that is the foundation for the entropy-adjoint approach.

The error estimate from the unsteady entropy adjoint approach is localized in the space-time
discretization to provide information on regions in the space-time computational domain that are
important for the prediction of the entropy balance output. This indicator can be used to drive a
general adaptive method that re�nes/coarsens the spatial and temporal discretizations as appro-
priate. In the present results, we use this indicator to drive combinations of temporal and spatial
re�nement in both one-dimensional and two-dimensional unsteady cases.

The outline for the remainder of this paper is as follows. Section II derives the connection
between entropy variables and unsteady adjoint solutions, for �rst order conservation laws. Sec-
tion III presents the shallow water equations in conservative form, the �nite volume and �nite
element discretizations, and the symmetrizing entropy variables. Next, Section IV outlines the er-
ror estimation and mesh adaptation algorithms. Finally, results are given in Section V for two test
cases: a one-dimensional problem solved via the �nite volume method and adapted dynamically in
space, and a two-dimensional problem solved via the discontinuous Galerkin method and adapted
simultaneously in both space and time.
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II. The Unsteady Entropy Adjoint Connection

Consider a system of partial di�erential equations arising from an unsteady conservation law,

r(u) = @tu + @iF i = 0; (1)

where u(x; t) 2 V is the vector of conservative state variables, F i is a general 
ux that may
consist of convective and di�usive components, and i in the implied summation indexes the spatial
dimension. The computational domain is assumed to be a tensor product between a spatial domain

 and a temporal domain T , where

x 2 
; t 2 T = [t0; tf ]:

We will denote by @
 the boundary of 
, and by @T the boundary of T (i.e. t0 and tf ). The theory
is not tied to a tensor-product space-time domain (e.g. moving geometries can be incorporated),
but the following exposition is less cumbersome in the tensor-product case.

A. The Unsteady Adjoint Equation and Boundary Conditions

In a continuous setting, an adjoint is a Green’s function that relates residual source perturbations
in the original equation to an output of interest. Equivalently, it is a Lagrange multiplier on
the residual when used in constrained optimization. The latter de�nition allows for a rigorous
discussion of the adjoint equations and boundary conditions, which arise in the discussion of the
entropy variables in the next sub-section.

Given a scalar output J(u), we de�ne a Lagrangian as

L = J(u)�
Z
T

Z


 T r(u) d
 dt; (2)

where the Lagrange multiplier,  2 V , is the adjoint solution.7,16 Enforcing stationarity of L with
respect to permissible variations in the state yields the adjoint equation,

J 0[u]�u�
Z
T

Z


 T r0[u]�u d
 dt = 0; 8 �u 2 Vperm; (3)

where Vperm denotes the space of permissible state variations, that is, those allowed by the boundary
conditions. The primes above denote Fr�ech�et linearization with respect to the arguments in square
brackets. Using the conservation form in Eqn. 1, Eqn. 3 can be integrated by parts to yield an
interior di�erential equation and boundary conditions for the adjoint,

J 0[u]�u =

Z
T

Z


 T r0[u]�u d
 dt

=

Z
T

Z


 T
�
@t�u + @i

�
F 0i[u]�u

��
d
 dt

= �
Z
T

Z



�
@t 

T + @i 
TF 0i[u]

�
�u d
 dt

+

Z
T

Z
@

 TF 0i[u]�uni dS dt+

�Z


 T �u d


�tf
t0

; (4)
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where dS is the di�erential area element on @
 and ni is the ith component of the outward pointing
spatial normal on @
.

The standard next step is to assert that the �rst term in the �nal right-hand-side of Eqn. 4 is
the adjoint equation on the interior of the space-time domain, so that

@t +
�
F 0i[u]

�T
@i = 0; 8 �u 2 Vperm; (5)

while the second and third terms are associated with the boundary and initial conditions, respec-
tively. Speci�cally, on pure Dirichlet in
ow boundary conditions, the permissible primal variation
is �u = 0, and hence  is not constrained, while at pure out
ow boundary conditions, �u is not
constrained, and hence  is constrained. Similarly, initial conditions only constrain �u = 0 at
t = t0, so that  is not constrained at t = t0 but fully constrained at t = tf . This duality in con-
straints represents the \reversal" in initial and boundary conditions when considering the adjoint
problem.

However, the constraints on  at the out
ow boundary conditions and t = tf do not necessarily
mean that information has to be speci�ed there. If the last two terms in Eqn. 4 have counterparts
in J 0[u](�u), the adjoint constraints will be satis�ed. This is the case for the entropy variables, as
discussed in the next sub-section.

We note that in the \interior adjoint equation", Eqn. 5, a negative sign appears on both the
spatial and temporal derivative terms following the respective integration by parts, so that there
is no relative sign change between these two terms compared to the primal equation. In addition,
Eqn. 5, does not constitute the complete adjoint equation when J contains contributions from the
interior of the space-time domain.

B. Entropy Variables as Unsteady Adjoints

At present we restrict our attention to �rst order conservation laws, for which we write F 0i[u] = Ai.
The conservative variables then satisfy the following quasi-linear system of equations.

@tu + Ai@iu = 0: (6)

We assume the existence of a scalar entropy conservation law,

Ut + @iFi = 0;

where U is an entropy function (e.g. proportional to the physical entropy for the Euler equations)
and Fi(u) is the entropy 
ux associated with U(u). The entropy conservation law holds only if
the compatibility relation UuAi = (Fi)u is satis�ed. For a convex entropy function U , the set
of corresponding entropy variables is de�ned by v � UTu . The entropy variables symmetrize the
conservation laws in the sense that2,17

� the transformation Jacobian matrix, uv, is symmetric, positive de�nite,

� Aiuv is symmetric.
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Using these symmetry properties, the quasi-linear conservation law in Eqn. 6 can be manipulated
as follows:

0 = @tu + Ai@iu

= uv@tv + Aiuv@iv

= uv@tv + (Aiuv)T @iv

= uv@tv + uTvAT
i @iv

= uv@tv + uvAT
i @iv:

Since uv, is symmetric, positive de�nite, we multiply the above equation by u�1
v to obtain

@tv + AT
i @iv = 0: (7)

A comparison of this equation to Eqn. 5, with Ai = F 0i[u], suggests that the entropy variables
satisfy an adjoint equation for an output that has no contributions from the interior of the space-
time domain. To verify the validity of this assertion and to determine the associated output, we
substitute the entropy variables in place of  in the output linearization, Eqn. 4. The �rst term
drops out, leaving

J 0[u]�u =

Z
T

Z
@


vTAi�uni dS dt+

�Z



vT �u d


�tf
t0

:

Now, vTAi�u = (Fi)u�u = �Fi and vT �u = Uu�u = �U , so that

J =

Z
T

Z
@

Fini +

�Z


U

�tf
t0

+ constant: (8)

Since initial conditions prescribe u at t = t0, and hence constrain �u there,
R
@T just reduces to

evaluation at t = tf up to the arbitrary constant in Eqn. 8. Thus, the output associated with the
entropy variables is an entropy balance statement for the computational domain. The �rst term in
Eqn. 8 is the net out
ow of the entropy function U through the spatial domain boundary, integrated
over time. The second term is the net increase of the entropy function integrated over the spatial
domain 
, between t0 and tf . For the exact solution, these two terms should balance and J should
be zero. However, J need not be zero in a numerical simulation on a discretized space-time mesh
because most conservative schemes do not conserve entropy.

III. Discretization and Solution

In the present study we consider the shallow water equations, which fall into the category of
�rst-order conservation laws, Eqn. 1. In two spatial dimensions, the state and 
ux vectors are

u =

264 h

uh

vh

375 ; F1 =

264 uh

u2h+ gh2=2

uvh

375 ; F2 =

264 vh

uvh

v2h+ gh2=2

375 ; (9)

where h is the 
uid depth (height), u and v are the depth-averaged velocities in the x1 and x2

directions, respectively, and g is the gravitational acceleration.

5 of 20

American Institute of Aeronautics and Astronautics



The shallow water equations can be symmetrized by expressing them in terms of an appropriate
set of entropy variables,18

v =

264 gh� (u2 + v2)=2

u

v

375 : (10)

These entropy variables correspond to the following entropy function and 
uxes:

U =
gh2 + h(u2 + v2)

2
; F1 = u

�
gh2 +

h(u2 + v2)

2

�
; F2 = v

�
gh2 +

h(u2 + v2)

2

�
: (11)

We note that in this system, no thermodynamic entropy is de�ned, and instead the entropy function
U is the sum of the potential energy and the kinetic energy in the 
uid column.18

In the present work, we consider the shallow water equations in both one and two dimensions.
The discretizations and solution methods for these cases are described in the following sections.

A. One-Dimensional Finite Volume Discretization

In one dimension, only F1 is present, and the variable v is set to zero everywhere. The one-
dimensional shallow water equations are discretized in space using a �rst-order �nite volume
method, and in time using an implicit backward Euler scheme. We denote by Uk

H 2 RsNk
H the

vector of unknowns on time slab k 2 1 : : :K, for which t 2 (tk�1; tk]. N
k
H is the number of cells on

time slab k, and s = 2 is the number of partial di�erential equations in the system. A temporally
constant solution on each time slab is consistent with an r = 0 DG in time interpretation (see next
section) of backward Euler.19 We consider dynamic spatial re�nement of the grid, so that Nk

H is
variable in time.

The discretized form of the one-dimensional conservation law reads

R
k
H(Uk

H ;U
k�1
H ) �Mk

H

�
Uk
H �Uk�1

H

�
+ �tRH(Uk

H) = 0; (12)

where R
k
H is the unsteady residual associated with time slab k, Mk

H 2 RsNk
H�sN

k
H is the spatial mass

matrix that includes the cell lengths, and RH(Uk
H) is the spatial residual vector that incorporates

the details of the spatial discretization, which is performed using the Roe 
ux function, as presented

in.20 Note that R
k
H depends on the state at time slab k and k � 1. Since the spatial grid may

change between time slabs, the solution from slab k � 1 is projected onto the grid associated with

slab k before the Uk�1
H term in R

k
H is calculated. For example, for a cell on time slab k with left

and right boundaries at locations xi and xi+1, respectively, there may be several cells on time slab
k � 1 within the same spatial range. In this case, Uk�1

H is taken to be the weighted average of the
cells on the slab k � 1 grid between xi and xi+1.

B. Two-Dimensional Discontinuous Galerkin Discretization

In two dimensions, a discontinuous Galerkin (DG) �nite element discretization is used in both space
and time. Details on the discretization can be found in.21 Brie
y, for order r approximation in
time, the r + 1 discrete residual vectors, indexed by m 2 1 : : : r + 1, on one time slab k are

R
k;m
H (Uk;n

H ;Uk�1;n
H ) � am;nr MHUk;n

H � ’mH(tk�1)MHUk�1;r+1
H +

Z tk

tk�1

’mH(t)RH(Uk
H(t)) dt = 0: (13)
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In this expression n 2 1 : : : r + 1 is a time node index within a time slab, and the discrete vectors

Uk;n
H ;R

k;m
H ;Rk

H are of size NH , which is the number of spatial degrees of freedom (assumed constant
in time). Summation is implied on the repeated index n. In the spatial discretization, the Roe
linearization22 is used for the inviscid 
ux and the second form of Bassi and Rebay23 is used for
the viscous 
ux. In addition, the ’mH(t) are temporal basis functions, MH is the spatial mass

matrix, Uk�1;r+1
H is the state at the end of the previous time slab, and am;nr = �

R tk
tk�1

’nH
d’m

H
dt dt+

’nH(tk)’
m
H(tk). Note the dependence of the residual on the states at time slab k and k � 1.

Due to the �rst and last terms in Eqn. 13, all degrees of freedom within a time slab are
coupled together. Each time slab is also coupled to its predecessor through the solution at the
end of the previous slab. We solve this system using an iterative method based on an approximate
linearization,19,21 which only requires solutions of systems that have the same size and (block)
sparsity as the spatial Jacobian.

The two-dimensional results include output-based error estimation and mesh adaptation, which
are based on the solution of a discrete adjoint equation. The r+ 1 adjoint residuals on time slab k
are obtained by linearizing and transposing the residuals in Eqn. 13, resulting in

R
 ;k;n
H (	k;m

H ;	k+1;m
H ) �

 
@R

k;m
H

@Uk;n
H

!T
	k;m
H +

 
@R

k+1;m
H

@Uk;n
H

!T
	k+1;m
H �

 
@JH

@Uk;n
H

!T
= 0; (14)

where JH is the output of interest, and 	k;m
H is the discrete adjoint vector on time node m of time

slab k. These equations are solved using the same approximate factorization technique used for the
forward solution, in a time-reversed simulation.

IV. Error Estimation and Mesh Adaptation

We estimate the numerical error in a scalar output, J , computed from the discrete solution,
using the adjoint-weighted residual method. Details on the theory are reviewed in.11 In this work,
we estimate the output perturbation relative to a �ner space that is obtained by uniformly re�ning
the temporal discretization and uniformly re�ning (1D) or incrementing the order (2D) of the
spatial discretization.

We denote by UH;k;n
h the coarse solution injected into the �ne space, where n 2 1 : : : r+1 indexes

the time nodes per slab (r = 0 in the Backward Euler case). There is no loss of approximation in
this injection as the coarse space is a subset of the �ne space. Weighting the �ne-space unsteady
residual computed with UH;k;n

h by the unsteady adjoint on the �ne space yields the output error
estimate,

�J �
KX
k=1

r+1X
m=1

�
�	k;m

h

�T
R
k;m
h (UH;k;n

h ;UH;k�1;n
h ); (15)

where �	k;m
h = 	k;m

h � 	H;k;m
h , 	k;m

h is the discrete vector representing the �ne-space adjoint,

and 	H;k;m
h is the injection of the coarse adjoint into the �ne space. Since the entropy variables

are unsteady adjoints, using them in place of 	 in Eqn. 15 yields an estimate of the error in the
entropy balance output de�ned in Eqn. 8.

The �ne-space adjoint/entropy variables 	k;m
h can be approximated using reconstructions or

approximate solutions. However, in the present work, we solve for 	k;m
h to machine zero residual
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on the �ne space to eliminate unquanti�ed error sources. We do not expect much deterioration of
the adaptive method when adjoint approximations are employed.

The output error calculation in Eqn. 15 can be recast as a sum over space-time cells in the
coarse mesh,

�J �
KX
k=1

NHX
e=1

"k;e;

where the error contribution of a coarse space-time element in spatial cell e and time slab k is

"k;e =
X

m2dofh(IHk )

X
i2dofh(T H

e )

(	k;m
h;i )TR

k;m
h;i (UH;k;n

h ;UH;k�1;n
h );

where dofh(IHk ) is the set of �ne time slab indices corresponding to the coarse time slab index k,
and dofh(T He ) is the set of �ne cell indices corresponding to the coarse spatial cell index e. Note

that both 	k;m
h;i and R

k;m
h;i are vectors in Rs. R

k;m
h;i is the unsteady residual associated with spatial

degree of freedom i and temporal degree of freedom m on time slab k. The error indicator for a
space-time cell is obtained by taking the absolute value of the elemental contribution,

error indicator = �k;e =
��"k;e��:

This indicator identi�es the space-time cells most responsible for the error in the targeted output,
J . In general, the adaptive strategy is to reduce the output error by re�ning those cells responsible
for the largest amount of error in the output. However, in the following results, we use a more
conservative error indicator in which absolute values are placed around the error contributions
associated with each conservation equation prior to summation.

The above error indicator ascribes a certain amount of error to each space-time cell but does not
provide information about whether this error is associated with the spatial or temporal discretiza-
tion. To determine whether the cell should be re�ned in space or time, a measure of space-time
anisotropy is required. In the present work, we use an anisotropy measure based on solution jumps,
so that the amount of error associated with each timeslab and spatial element is

temporal error on time slab k = �k =

NHX
e=1

�k;e�
time
k;e ;

spatial error on element k,e = �space
k;e = �k;e�

space
k;e ;

where �time
k;e is de�ned as the ratio of the average temporal (across time slabs) jump to the sum of

the temporal and spatial (across spatial cells) jumps, and

�space
k;e = 1� �time

k;e .

Finally, to determine which elements to re�ne, the errors associated with each timeslab and
spatial cell are divided by the number of new degrees of freedom that would be generated upon
re�nement. In 1D, a �xed fraction strategy is then used to re�ne a fraction fadapt of the spatial
elements and/or time slabs with the highest ratio of error to additional degrees of freedom. In
2D, a �xed growth strategy is used in which the number of elements/slabs re�ned is based on a
prescribed growth in total degrees of freedom, fgrowth. In addition, in 2D the spatial indicators
�space
k;e are summed over slabs k to drive a spatially-static adaptive strategy.
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V. Results

This section presents a computational veri�cation of the equivalence between the entropy vari-
ables and the adjoint corresponding to the output in Eqn. 8, as well as adaptive results for one-
and two-dimensional unsteady cases solved via the �nite volume and the discontinuous Galerkin
method, respectively. Performance of the entropy adaptation is measured in terms of accuracy of
domain and boundary integral outputs relative to uniform and residual-based adaptation.

A. Veri�cation of the Unsteady Entropy-Adjoint Connection

To verify that the entropy variables do in fact serve as an adjoint solution to the output in Eqn. 8,
comparisons between the entropy variables and the actual adjoint are presented for sample one-
and two-dimensional unsteady problems solved via DG with approximation order p in space and r
in time.

In the �rst case, a sinusoidal perturbation in 
uid height in one spatial dimension is allowed to
evolve from rest under the in
uence of gravity. The 
uid height contours for this case are shown in
Figure 1. From the contours, we see that the initial perturbation splits in half as it falls, forming
a set of waves moving in opposite directions, which then interact with the walls and each other as
they propagate. In two dimensions, an initial Gaussian perturbation in 
uid height, situated in the
center of a square domain as shown in Figure 1, is allowed to evolve in time.

(a) 1D space-time 
uid height contours (b) 2D initial 
uid height: contours from 0.2
(blue) to 0.225 (red)

Figure 1. Test cases used for veri�cation of the entropy adjoint connection in one and two dimensions.

Figures 2 and 3 compare contours of the �rst entropy variable (corresponding to the mass
conservation equation), computed by a direct transformation of the primal solution, to the adjoint
variable solved separately, in a discrete fashion by marching backwards in time via Eqn. 14 for the
output in Eqn. 8. The qualitative similarity between the two can be readily seen. We note that
the quantities are not identical as they are di�erent �nite dimensional approximations to the same
continuous adjoint solution: the entropy variables.

As a quantitative measure of similarity, the L2 norm of the error between entropy variables and
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(a) Entropy variable (�rst component) (b) Output adjoint (�rst component)

Figure 2. Qualitative illustration of equivalence between entropy variables and the unsteady adjoint
corresponding to the output in Eqn. 8 for a one-dimensional problem.

(a) Entropy variable (�rst component) (b) Output adjoint (�rst component)

Figure 3. Qualitative illustration of equivalence between entropy variables and the unsteady adjoint
corresponding to the output in Eqn. 8 for a two-dimensional problem. Spatial contours shown at one
time, the middle of the temporal domain.
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the adjoint,

entropy variable adjoint error =

�Z
T

Z


jj h � vhjj2 d
 dt

�1=2

, (16)

is calculated for both cases, and its convergence with uniform space and time re�nement is shown
in Figure 4 for di�erent choices of approximation orders p and r. Although asymptotic convergence
rates, which are expected to be min(p+ 1; 2r + 1), are not yet achieved in the re�nements shown,
the error does decrease upon mesh re�nement, so that the entropy variables approach the actual
adjoint solution.
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(a) One spatial dimension
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(b) Two spatial dimensions

Figure 4. L2 error between entropy variables and the adjoint variables corresponding to the output
in Eqn. 8. Convergence shown for uniform re�nement in both space and time, using order p for
spatial approximation, and order r for temporal approximation in a discontinuous Galerkin space-
time formulation.

B. One-Dimensional Sinusoidal Wave

In this section, we present adaptive results for a one-dimensional unsteady case solved via the
�rst-order �nite volume method. The initial condition for this problem (t = 0 in Figure 5) consists
of a sinusoidal perturbation in 
uid with a velocity that is zero where the height is constant and
otherwise positive and proportional to the magnitude of the perturbation in height. The 
uid is
allowed to evolve for one second in time under the in
uence of gravity (9.81 m=s2), and its behavior
is shown in Figures 5 and 6.

From the contours and solution pro�les, we see that a depression in the 
uid forms behind
the initial positive perturbation, and the two mirror each other as they propagate throughout the
space-time domain, re
ecting o� the boundaries and colliding brie
y before reaching the opposite
ends of the domain by the end of the simulation. The uh, or momentum, contour shows that while
the depression propagates initially to the left, the actual 
uid in the depression travels to the right,
replacing the 
uid that leaves with the rightward-moving wave and thereby satisfying conservation.
During the collision near t = 0:7, the interaction between the perturbation and depression produces
a cancellation e�ect, and the height of the perturbation is reduced slightly, as expected.
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Figure 6. One-dimensional sinusoidal wave: space-time state contours of the solution on a �ne mesh.
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Figure 7. One-dimensional sinusoidal wave: space-time entropy variable contours of the solution on a
�ne mesh. Note that due to the relative magnitude of h and uh in this problem, the entropy variable
contours show a strong correlation to the state contours.

The adaptation strategy for this problem consists of dynamic re�nement of the spatial grid in
time, with the temporal grid (consisting of 150 uniformly-spaced nodes) remaining constant for all
adaptations. A constant temporal grid is not a requirement, but we found that for this 1D problem,
using solution jumps to weight the residual is not a particularly e�ective way to apportion the error.
Instead, we present only spatial adaptation for this case, and show combined spatial and temporal
adaptation in the two-dimensional problem presented in the following section.

The outputs of interest in this simulation were chosen to be the square of the conserved variables
integrated over the space-time domain,

J1 =

Z
T

Z


h2 dx dt;

J2 =

Z
T

Z



(uh)2 dx dt:

As integrals over the entire space-time domain, J1 and J2 are taken to re
ect the convergence of
the entire solution. The convergence of these outputs is shown for three di�erent spatial adaptation
strategies in Figure 8. Degrees of freedom, which is the total number of space-time elements in the
grid, is chosen as a surrogate for the computational cost.

The �rst adaptation strategy is simply uniform spatial re�nement, achieved via bisection of
each spatial cell. Next is a \heuristic" adaptive indicator, which consists of the �ne-space residual
weighted by the solution-jump anisotropy measure. The �nal indicator, and that of primary interest
in this paper, is based on the entropy adjoint, which is the �ne space residual weighted by the
entropy variables. Figure 8 shows that the entropy adjoint and residual-based strategies display
markedly similar convergence rates, both performing better than uniform re�nement and requiring
approximately 40 percent fewer degrees of freedom to reach convergence. This gain relative to
uniform re�nement is consistent with expectations for adaptation in only one dimension.
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Figure 8. One-dimensional sinusoidal wave: convergence of outputs which are the integral of h2 and
(uh)2 over the space-time domain for three adaptation strategies. (fadapt = :25 for adaptive methods).

The adapted meshes for the entropy-adjoint and residual indicators are shown in Figure 9. For
clarity, the temporal nodes (which would appear as horizontal lines in the grid) have been omitted,
and only the spatial cell boundaries are shown.

(a) Entropy grid after 12 adaptations (b) Residual grid after 12 adaptations

Figure 9. One-dimensional sinusoidal wave: grids for entropy-adjoint and residual adaptation meth-
ods.

We see that the entropy and residual indicator target similar regions, re�ning around the pertur-
bation and depression as they propagate throughout the domain and leaving the areas of stagnant

uid unre�ned. The residual indicator appears to target the depression slightly more than the
entropy indicator, while the entropy indicator re�nes more around the perturbation after it has
collided with the depression. As expected, the entropy indicator generally appears to target the
regions where the entropy variables are large in magnitude, as shown in Figure 7.
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C. Two-Dimensional Depth Disturbance

In this problem a cylinder geometry interacts with disturbances that emanate from a two-dimensional
Gaussian depth distribution at t = 0. The Gaussian depth distribution, shown in Figure 10a, is
centered 7 cylinder radii away from the cylinder origin. It has an amplitude 30% above the nominal
depth of one cylinder radius, and a variance of 1/2 cylinder radii squared. The 
uid velocity is zero
everywhere at t = 0.

The simulation extends to a time tf = 12, measured in units based on the cylinder radius and
gravitational acceleration (both set to unity for convenience). The 
uid depth at the half-way time,
t = 6, is shown in Figure 10b. Note that at this time the cylinder is in the midst of interacting
with the radial wave propagating from the disturbance center.

(a) Fluid height at t = 0: contours
from 1.0 (blue) to 1.3 (red)

(b) Fluid height at t = tf=2: contours
from 0.98 (blue) to 1.05 (red)

(c) Fluid height adjoint at t = tf=2:
contours from -0.2 (blue) to 0.2 (red)

Figure 10. Two-dimensional depth disturbance simulation: initial condition and primal/adjoint solu-
tions half-way through the simulation.

This problem is discretized using a discontinuous Galerkin �nite element method in both space
and time. The solution approximation order is p in space and r in time, on prismatic (tensor
product basis) space-time elements.

The output of interest in this simulation is the time integral of the horizontal force (integrated
momentum 
ux) on the cylinder. Adaptive simulations are performed from an initial mesh that is
coarse in both space and time. Speci�cally, the coarse space-time mesh consists of 16 time slabs
and the spatial mesh illustrated in Figure 12a, with p = 1 spatial approximation order and r = 1
temporal approximation order.

Uniform re�nement and three adaptive indicators are compared in their ability to e�ciently
predict the output: entropy-adjoint adaptation; adaptation driven by the adjoint of the output of
interest; and adaptation driven by the unweighted residual. The temporal adaptation consists of
time slab bisection at a �xed r = 1. In space, two static adaptive strategies are considered: static
h-re�nement, in which the quadrilateral elements are re�ned in a hanging-node fashion, and static
p-re�nement, in which the approximation orders on individual elements are increased. We note
that \static" in this context refers to the spatial mesh resolution remaining �xed in time.

Figure 11 shows the convergence of the output under the various adaptive indicators, for both h
and p spatial re�nement. Error bars obtained by the adjoint-weighted residual are included with the
output adjoint results. The \actual" value of the output is obtained by Richardson extrapolation of
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Figure 11. Two-dimensional depth disturbance: convergence of an output which is the time integral
of the x-direction force on the immersed cylinder geometry.

the uniform h-re�nement results, using two additional uniform re�nements beyond those shown. As
expected, uniform re�nement converges the slowest in terms of degrees of freedom for a given output
accuracy. In contrast, the indicator based on the output adjoint yields the most rapid convergence
rate. We note that the error bars are quite accurate after a few initial adaptive iterations. The next
most rapid convergence is observed, in general, from the entropy-adjoint indicator, followed by the
residual indicator. The di�erences among the indicators are apparent primarily in the h-re�nement
strategy; under p-re�nement, the spread in performance is much smaller, likely due to the e�ciency
with which high p resolves the spatially-smooth solution.

Figures 12 and 13 show the spatial meshes for various indicators at the �fth adaptive iteration of
h-re�nement and p-re�nement, respectively. We see that in the h-re�nement cases, the residual and
entropy indicators target similar regions, focusing on the location of the initial Gaussian disturbance
and the left-hand side of the domain. The output indicator, on the other hand, ignores the portion
of the wave propagating away from the cylinder, and instead clusters its re�nement closely around
the cylinder to accurately predict the incident force. The spatial regions targeted for p-re�nement
are similar to those targeted in the h-re�nement cases.

Figure 14 shows the temporal meshes for the h and p re�nements at the sixth adaptation. Note
that the temporal domain is more re�ned in the p-re�nement cases, since increasing approximation
order is more e�cient at reducing error than h-re�nement for this smooth problem, so that more
degrees of freedom can be used to adapt temporally. Overall, all indicators re�ne the temporal
grids in a relatively uniform manner. The output-based indicator has a slight preference for the
middle of the temporal domain, the entropy adjoint indicator for the initial times, and the residual
for the end of the simulation. Presumably, the residual adaptation skips the initial times because,
since the disturbance is localized, the average residual over the whole domain at those times is
small. Instead, it re�nes temporally after the wave has spread out, since then the wave covers a
larger spatial region and therefore increases the average residual. The entropy indicator seems to
target the initial times since, although the initial disturbance is localized, the entropy variables are
large and likely not well-approximated in this region. Finally, the output indicator’s preference for
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the middle of the temporal domain can be explained by the fact that these are the times of closest
interaction between the cylinder and the wave, and therefore are most important to the accurate
prediction of the incident force.

VI. Conclusions

This paper presents an unsteady extension of the entropy adjoint approach to adaptive mesh
re�nement. For �rst-order conservation laws and tensor-product space-time domains, the output
associated with using the entropy variables as adjoint solutions is shown to be an entropy balance
statement that accounts for the entropy in
ow and out
ow through all boundaries of the space-time
domain. We expect this result to hold for more general domains and for symmetrizable second-order
conservation laws, and such investigations are the subject of ongoing work.

The adaptive indicator obtained from the entropy-variable weighted residual provides informa-
tion on the areas of the domain most responsible for numerical error in the entropy balance output.
These are understood as regions in space-time where spurious entropy is created. Adapting on this
indicator then targets one general measure of numerical error.

The present work deals with the shallow water equations, and the results provided show the
advantage of using the entropy adjoint approach in unsteady mesh adaptation. Although output
adjoints are expected to provide the most robust strategy for targeting speci�c outputs, adapting on
the entropy balance output via the entropy adjoints appears to produce accurate \general-purpose"
solutions without the cost of a separate unsteady adjoint solution. Future work will apply these
ideas to the unsteady Euler and Compressible Navier-Stokes equations.
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(a) Initial mesh (b) Output adjoint

(c) Entropy adjoint (d) Residual

Figure 12. Two-dimensional depth disturbance: h-re�nement meshes at the �fth adaptation iteration
for various indicators.
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(a) Initial mesh (b) Output adjoint

(c) Entropy adjoint (d) Residual

Figure 13. Two-dimensional depth disturbance: p-re�nement meshes at the �fth adaptation iteration
for various indicators. The gray scale ranges from p = 1 (white) to p = 6 (black).
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Figure 14. Two-dimensional depth disturbance: temporal meshes at the sixth adaptation iteration
for various indicators. The top plots represent the error associated with each timeslab for the output
adjoint case.
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