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SUMMARY

Hessian-based model reduction was previously proposed as an approach in deriving reduced models for
the solution of large-scale linear inverse problems by targeting accuracy in observation outputs. A control-
theoretic view of Hessian-based model reduction that hinges on the equality between the Hessian and the
transient observability gramian of the underlying linear system is presented. The model reduction strategy is
applied to a large-scale (O.106/ degrees of freedom) three-dimensional contaminant transport problem in an
urban environment, an application that requires real-time computation. In addition to the inversion accuracy,
the ability of reduced models of varying dimension to make predictions of the contaminant evolution beyond
the time horizon of observations is studied. Results indicate that the reduced models have a factor O.1000/
speedup in computing time for the same level of accuracy. Copyright © 2012 John Wiley & Sons, Ltd.
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1. INTRODUCTION

An inverse problem is posed to estimate unknown parameters of a system given indirect obser-
vations. These parameter estimates can then be used in simulations to make predictions of output
quantities of interest. For large-scale problems, when the parameter is high-dimensional and sim-
ulations are computationally expensive, state-of-the-art algorithms on parallel clusters may not be
sufficient in scenarios requiring real-time computations. One example is response to a contaminant
release, where the goal is to use sparse sensor data to determine an estimate of the initial release.
Once the contaminant’s initial release is ascertained, prediction of the evolution of the contaminant
beyond the current observations informs evacuation and decontamination procedures. The timescale
of these events necessitates real-time computations.

Instead of solving the inversion and prediction problems by using a high-fidelity model that
resolves the system dynamics everywhere in space and time, we propose to exploit the low-
dimensionality of the input–output maps of interest by generating reduced models. These reduced
models are constructed to be accurate for the outputs of interest and can be simulated in seconds or
minutes on a laptop computer in the field. This dramatic speedup in computing time makes possible
in-the-field analysis of inversion and subsequent prediction to inform real-time decision making.
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Consider the linear time-invariant unforced discrete-time forward model

x.k/D Ax.k � 1/, x.0/D x0, y.k/D Cx.k/, k D 1, 2, : : : , (1)

where x.k/ 2 Rn and y.k/ 2 Rq are the system state and output at time step k, respectively. Our
system has n state dimensions, q outputs of interest, and we consider K time steps. The initial con-
dition is x0. The model dynamics and spatiotemporal discretization determine the full-rank constant
matrix A 2 Rn�n, whereas the outputs of interest define the constant matrix C 2 Rq�n. Our goal
will be to utilize output observations from time steps k D 1, 2, : : : ,K to infer the initial condition
x0 in order to make predictions for k > K. We assume that (1) is stable. Dynamical models of the
form (1) describe many physical processes, such as contaminant transport, diffusion processes, and
linearized fluid dynamics.

Projection-based model reduction seeks a low-dimensional subspace of the state space,
range.V / � Rn, defined by a matrix V 2 Rn�m, m � n, such that we approximate x � Vxr ,
where xr 2Rm is the reduced state. We obtain the reduced model that describes the evolution of xr
by projecting the governing equations onto a subspace, range.W /�Rn, where W 2Rn�m. For the
system (1), the reduced model is

xr.k/D Arxr.k � 1/, xr.0/DWT x0, yr.k/D Crxr.k/, k D 1, 2, : : : ,K, (2)

where the projection matrices W and V are defined such that WTV D I . The reduced system
matrices are Ar DWTAV 2Rm�m and Cr D CV 2Rq�m.

Several methods exist for determining the bases W and V , including the proper orthogo-
nal decomposition (POD) [1–3], approximate balanced truncation [4–8], and Krylov-subspace
methods [9–11]. In this work, we use the POD with Galerkin projection (i.e., orthonormal W D V )
combined with a Hessian-based model reduction approach that provides a basis tailored specifically
for initial value problems [12]. In the Hessian-based model reduction approach, a set of seed ini-
tial conditions is computed as the dominant eigenvectors of the Hessian matrix, which encapsulates
the input–output map. These eigenvectors can be computed efficiently using iterative matrix-free
approaches [13]. State trajectories are computed for each seed initial condition and then combined
via the POD method of snapshots to compute the basis V [3].

Projection-based model reduction methods have been employed to a limited extent in the inverse
problem setting. Examples include a radiative source statistical inversion problem [14], the his-
tory matching context in computational geoscience [15], and identification of reaction parameters
[16]. The control-theoretic concepts that underly model reduction have also been used to define
problem-specific regularization for identification and control of a reservoir [17].

In this paper, we show why the Hessian-based model reduction method demonstrated for the
forward problem in [12] is appropriate in the inverse setting. We demonstrate the approach for
the solution of a large-scale initial condition inversion problem: convective–diffusive transport of
a contaminant in an urban canyon. In [12], the Hessian-based model reduction was motivated by
the solution to inverse problems but was applied only to forward predictions. In this work, we
utilize the same Hessian-based model reduction algorithm and also apply the reduced model to
the convection–diffusion equation modeling a contaminant transport problem. Unique to this work
is the solution of the inverse problem using the reduced model, discussion of the regularization
effects in the inverse problem for both full and reduced models, the presentation of a control-
theoretic motivation for Hessian-based model reduction including a discussion of a compelling
equality between the Hessian of the inverse problem and the transient observability gramian of
the discrete-time forward model, the large-scale application whose full model has more than one
million degrees of freedom, and the analysis of prediction accuracy on the basis of the inverted
initial condition.

The paper is organized as follows. The state-space model, inverse problem, and a review of
Hessian-based model reduction are presented in Section 2. In Section 3, we describe the control-
theoretic motivation for the use of Hessian-based model reduction in the solution of large-scale
inverse problems. We establish the equality between the transient observability gramian and the
Hessian of the inverse problem. In Section 4, we describe the implementation of the model reduction
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algorithm for a large-scale application in convective–diffusive transport. The implementation
includes parallel discontinuous Galerkin (DG) finite elements and large-scale eigenvalue solvers. In
Section 5, we apply the algorithm to an inverse and a prediction problem in the convective–diffusive
transport of a contaminant in an urban setting. We demonstrate the efficiency of the reduced models
and analyze the convergence of the approximation with the size of the reduced model. Finally, we
state conclusions in Section 6.

2. BACKGROUND

To develop the theory for the inverse problem and our model reduction approach, we rewrite the
forward model (1) in block matrix form,

AxD Fx0, yD Cx, (3)

where x D Œx.1/ � � � x.K/�T , y D Œy.1/ � � � y.K/�T , and the matrices A 2 RnK�nK and
C 2RqK�nK are given by

AD

2
66666666666664

I 0 0 0 � � � 0

�A I 0 0
...

0 �A I 0
. . .

0 0 �A I
. . .

. . .
. . .

. . .
. . . 0

0 0 0 �A I

3
77777777777775

, CD

2
66666666666664

C 0 � � � � � � � � � 0

0 C 0
...

... 0 C 0

. . .
. . .

. . .

...
. . .

. . .
. . . 0

0 0 0 C

3
77777777777775

, (4)

and FD
�
AT 0 � � � 0

�T
.

2.1. Inverse problem

We consider the inverse problem that seeks to reconstruct the initial condition x0, given sparse mea-
surements of the state from distributed sensors over a specified time horizon. The inversion task can
be written as an optimization problem,

min
x0

J D 1

2
.y� y�/T .y� y�/CR.x0/, (5)

where AxD Fx0,

yD Cx,

where the vector y� contains the space-time sensor readings, and y contains the corresponding
model predictions of concentration over time at those sensor locations. The first term in the objec-
tive function J seeks to minimize the misfit between the predicted and the sensed data. The second
term R.x0/ is a regularization term that is required because, in general, the entire system state
cannot be uniquely identified from sparse observations [18]. This means that the inverse problem is
ill-posed: many initial conditions x0 may lead to identical observations y�. Regularization is a means
of selecting a single initial condition estimate out of many candidates that are consistent with the
observations, by incorporating prior knowledge about the problem. This can be achieved by penal-
izing states that do not exhibit certain desirable characteristics; for example, regularization may be
used to preferentially select only smooth initial conditions by increasing the objective function cost
of states with sharp peaks and troughs.
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With the elimination of the state and output equations, the inverse problem can be written as an
unconstrained optimization problem,

min
x0

J D 1

2
.CA�1Fx0 � y�/T .CA�1Fx0 � y�/CR.x0/. (6)

Our theoretical analysis focuses on the unregularized problem—just the data misfit portion of the
objective function. The Hessian matrix, H 2 Rn�n, of this unregularized optimization problem is
given by

HD .CA�1F/T .CA�1F/. (7)

The regularization term will reappear in Section 5 when we solve the inverse problem.
The ill-posedness of the unregularized inverse problem manifests itself through singularity of the

Hessian. The null space of the Hessian describes the initial conditions about which the observed
data provide no information—initial conditions that are unobservable with respect to the available
outputs y. In the following, we show how this ill-posedness may be exploited to construct a reduced
model by defining a projection subspace on the basis of the eigenvectors of the Hessian with the
largest nonzero eigenvalues. We also describe the connection between the Hessian and the tran-
sient observability gramian of the forward model and show how a reduced model, constructed using
dominant eigenvectors of the Hessian, represents states in the observable subspace of the forward
model.

2.2. Hessian-based model reduction

We define vi to be the i th eigenvector of the Hessian, Hvi D �ivi , with corresponding eigenvalue
�i . We order the eigenvalues of the Hessian, �1 > �2 > : : : > �n > 0. The Hessian-based model
reduction approach from [12] then proceeds as described in Algorithm 1.

Algorithm 1
Hessian-based model reduction

1. For the Hessian matrix H as defined in (7), find the r eigenvectors v1, v2, : : : , vr with largest
eigenvalues �1 > �2 > : : : > �r > �rC1 > : : : > �n > 0. Select r on the basis of the decay of
the Hessian eigenvalues.

2. For i D 1, : : : , r , set x0 D vi and compute the corresponding solution xi by using (3).
3. Form the reduced basis as the span of the snapshots xi .k/, i D 1, 2, : : : , r , k D 0, 1, : : : ,K.

A common method for approximately solving the inverse problem is to form a low-rank approx-
imation of the Hessian by using its dominant eigenvectors [18]. This method takes advantage of
the compact eigenvalue spectrum of the Hessian [19]. Our model reduction approach also uses the
dominant eigenvectors of the Hessian to construct the reduced basis; however, it differs in that we
first derive a reduced model for the forward problem (3) and then solve the inverse problem by using
the reduced model. Approximating directly the Hessian will likely yield a lower complexity online
inversion; however, reducing the forward problem adds considerable flexibility because our reduced
model may be used for the forward prediction of state evolution beyond the observation horizon for
a much lower computational cost than that of the full model. Although we do not consider it here,
it is, at least in principle, possible to treat variation in velocity fields or sensor locations with a non-
linear model reduction approach (e.g., empirical interpolation [20, 21] and missing point estimation
[22]). Time-varying and space-varying velocity fields would affect the system matrix A, whereas
time-varying sensor locations would affect the observation matrix C.

3. CONTROL-THEORETIC VIEW OF HESSIAN-BASED MODEL REDUCTION

In this section, we present a control-theoretic motivation for the use of Hessian-based model reduc-
tion in the solution of large-scale inverse problems. This is one example of the many connections that
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exist between concepts found in the controls community and those found in the PDE-constrained
optimization and inverse problem communities.

We first recall the transient observability gramian, its properties, and how it can be used to
define the output energy associated with a given initial condition. We then show that the unregu-
larized Hessian of the inverse problem is equal to the transient observability gramian of the forward
model (1), implying that the Hessian-based model reduction targets initial condition modes (and
their state evolutions, via POD) that are informed by the sensor data.

3.1. Transient observability gramian

Consider the forward model (1). For a given initial condition x.0/ D v, we define the total output
energy of the forward model

KX
kD1

ky.k/k22 D

KX
kD1

kCAkvk22 D v
T

 
KX
kD1

Ak
T

C TCAk

!
v D vTGKv, K > 1,

where GK D
PK
kD1A

kTC TCAk is the transient observability gramian [23].
The transient observability gramian is the finite-time analog of the infinite horizon observability

gramian G D
P1
kD1A

kTC TCAk . The transient gramian has several useful properties:

Recurrence relation The transient observability gramian is given by the recurrence relation

GK D A
TC TCACATGK�1A, G0 D 0, K > 1.

Proof

Let K > 1. We have GK D ATC TCA C
PK�1
kD1 A

kC1TC TCAkC1 D ATC TCA C

AT
PK�1
kD1 A

kTC TCAkAD ATC TCACATGK�1A. �

Symmetric positive semidefiniteness The transient observability gramian is trivially symmetric,
and its positive semidefiniteness results directly from the nonnegativity of the norm.

Gramian limit If the forward model (1) is stable, then G D limK!1GK exists and is the
observability gramian of (1), satisfying the Lyapunov equation G D ATC TCACATGA [23].

3.2. Hessian equality

Before we establish the equality between the transient observability gramian and the Hessian of the
inverse problem, we first reason that the eigenvectors of GK corresponding to nonzero eigenvalues
form an appropriate basis for the solution of the inverse problem. Let ZK D span.v1, v2, : : : , vr/,
whereGKvi D �ivi with �i > 0 for i D 1, 2, : : : , r and �rC1 D 0. Let x0 be an arbitrary initial con-
dition for the forward model (1). Let xZK0 be the component of x0 in ZK and x?0 be the component
in the orthogonal complement of ZK . We may write x0 D x

ZK
0 C x?0 .

Because the model is linear and x?0 … ZK , we only observe the output because of xZK0 , that
is, y.k/ D CAkx

ZK
0 C CAkx?0 D CAkx

ZK
0 . Therefore, when solving the inverse problem, the

sensor data will not reveal any information regarding the component of the initial condition in
the orthogonal complement of ZK . We cannot determine x?0 . In the setting of inverse problems,
this is the mathematical manifestation of one type of ill-posedness—there are an infinity of initial
conditions that produce the same sensor data.

The classical inverse problem approach is to solve the optimization problem (6) with a low-rank
approximation of the Hessian. This approach approximates xZK0 and disregards x?0 . The Hessian-
based model reduction approach utilizes ZK to form a basis for the solution of the inverse problem
but also projects the governing equations onto the subspace defined by that basis. The additional
error incurred by the projection of the equations is compensated by our ability to use the resulting
reduced model for forward predictions past the observation period at a low computational cost.
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We now show the equality between the transient observability gramian and the Hessian of the
inverse problem. In light of this, the previous discussion can be seen as an alternative motivation for
the Hessian-based model reduction for the solution of inverse problems of the form (6).

Proposition 1
The Hessian H is equal to the transient observability gramian GK .

Proof
Note that

A�1 D

2
66666666664

I 0 0 0 � � � 0

A I 0 0
...

A2 A I 0
. . .

... A2 A I
. . .

...
. . .

. . .
. . .

. . . 0

AK�1 � � � A3 A2 A I

3
77777777775

,

so that

A�1FD

2
6664

A

A2

...
AK

3
7775

and

CA�1FD

2
6664

CA

CA2

...
CAK

3
7775 .

Therefore, H D .CA�1F/T .CA�1F/D
PK
kD1

�
CAk

�T
CAk DGK . �

4. APPLICATION TO ATMOSPHERIC CONTAMINANT TRANSPORT

We consider a physical process modeled by the convection–diffusion equation,

@w

@t
C Ev � rw � �r2w D 0 in �� .0, tf /, (8)

w D 0 on �D � .0, tf /, (9)

@w

@n
D 0 on �N � .0, tf /, (10)

w D w0 in � for t D 0, (11)

where w is the contaminant concentration (which varies in time and over the domain �), Ev is the
velocity vector field, � is the diffusivity, tf is the time horizon of interest, and w0 is the given ini-
tial condition. Homogeneous Dirichlet boundary conditions are applied on the inflow boundary �D ,
whereas homogeneous Neumann conditions are applied on the other boundaries �N .

Figure 1 shows our three-dimensional domain representing the Massachusetts Institute of Tech-
nology campus. The convection–diffusion equation for contaminant transport is discretized using
the DG finite element method. The approximation basis is an order-p Lagrange on a fixed mesh of
251,853 tetrahedral elements. The degree of freedom count is therefore 251, 853 � 4 D 1, 007, 412
for p D 1 and 251, 853� 10D 2, 518, 530 for p D 2. For the DG discretization, pure upwinding is
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z

(a) Domain and sensor locations (b) Velocity field (y-component)

Figure 1. (a) Computational domain with sensor locations (triangles). (b) The y-component of the velocity
field on a horizontal slice (´D 0.09) of the domain. The freestream velocity is in the y-direction.

used for the convection term, and the second form of Bassi and Rebay is used for the diffusive term
[24]. For the results in this paper, the Peclet number based on the domain length (L), freestream
velocity magnitude (jEv1j), and diffusivity is Pe D jEv1jL=� D 50.

The DG method was chosen for its stability properties for convection-dominated flows, for its
arbitrary high-order capability on general unstructured meshes around complex geometries, and for
a compact stencil that simplifies the solver algorithm and parallelization. We note that although
p D 1 DG yields the same formal second-order accuracy as standard reconstruction-based finite-
volume methods, the methods are different in that DG places all high-order degrees of freedom
within an element and, hence, maintains an element-wise compact stencil.

Second-order backwards-differencing is used for temporal discretization. With this choice of time
discretization, state x.k/ depends on states x.k� 1/ and x.k� 2/. However, the system can still be
written as in (3), with the appropriate modification of the subcomponent matrices to account for the
two-step recurrence. The specific form (1) could also be recovered by redefining the state (e.g., by
coupling adjacent states). We use 60 time steps for the inversion over time in which the contaminant
traverses about one-third of the computational domain.

A temporal convergence study was performed with the forward model to determine an adequate
number of time steps. This number was one for which the temporal error was on the order of
the spatial discretization error. We note that both the spatial and temporal schemes are formally
second-order accurate, and 60 time steps over the time interval considered yield a CFL number of
approximately unity.

At each time step, the linear system of equations is solved using a line-preconditioned generalized
minimal residual algorithm. To enable large-scale simulations, we performed the DG forward solver
and the offline model reduction in parallel on a distributed-memory cluster with a message-passing
interface communication. Specifically, 200 processors (quad-core AMD Opteron2354, 2.3 GHz, 2
GB random-access memory per core (Advanced Micro Devices, Sunnyvale, CA, USA)) are used
for the model reduction calculations

Reduced models are constructed offline for p D 1 solution approximation of the inverse and the
prediction problems. For us to construct these reduced models, eigenvalues and eigenvectors of the
Hessian matrix are calculated using an implicitly restarted Lanczos iteration based on the method
implemented in ARPACK [13]. Each iteration requires a forward solve and an adjoint solve, as
the Hessian matrix is too large to form or store explicitly. For the inverse problem, a fixed number
of 250 eigenvectors are calculated to 10�6 relative tolerance in the Ritz values in about 5000 CPU
hours or roughly a day on 200 processors. We select the first 250 eigenvectors because they meet our
user-specified tolerance that the ratio of the smallest to the largest eigenvalue is less than 5� 10�5.

Next, the Hessian eigenvectors are used to seed forward simulations, and basis vectors are com-
puted using the POD of the forward simulation snapshots. These snapshots are taken every three iter-
ations. A continuous vector inner product corresponding to the integration over the computational
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domain is used in the POD. The full-order sparse matrices associated with the DG discretization
and the output calculation are projected onto the basis vectors to produce the reduced model matri-
ces. All calculations involving full-order vectors and matrices are performed in parallel. All reduced
model computations are performed in MATLAB on an AMD Athlon64 X2 Dual Core Processor
operating at 1 GHz core (Advanced Micro Devices, Sunnyvale, CA, USA).

Two types of regularization terms R.x0/ in (5) are used in the full and reduced inversion calcu-
lations. These are continuous Tikhonov regularization RM .x0/ and Laplace regularization RL.x0/

given by

RM .x0/D
ˇM

2
xT0Mx0, RL.x0/D

ˇL

2
xT0 Lx0, (12)

where M ,L 2 Rn�n are, respectively, the mass matrix and the discrete Laplace operator arising
from the DG discretization. ˇM ,ˇL are the regularization parameters. The mass matrix is included
in the Tikhonov case to yield basis-independent regularization with a continuous interpretation as
the square integral of the initial concentration. On the other hand, Laplace regularization penal-
izes spatial oscillations in the initial condition. In our numerical experiments, both Tikhonov and
Laplace regularizations are used for the full-order inversions, that is, R.x0/DRM .x0/CRL.x0/,
whereas for the reduced-order inversions, Laplace regularization R.x0/ D RL.x0/ alone is found
to be sufficient. The regularization parameters, ˇM and ˇL, are determined empirically by monitor-
ing the convergence of the inverse solve, which is performed using the conjugate gradient method,
and by inspecting the inverse solutions and computed outputs. The full-order results are shown for
ˇM D 10 and ˇL D 0.5, whereas the reduced-order results use ˇL D 0.1.

5. RESULTS AND DISCUSSION

The outputs in this example are obtained from 36 sensors with locations as shown in Figure 1(a)
and with a prescribed velocity field shown in Figure 1(b). The sensors are spread evenly in x and
y (away from the farfield boundaries) to span the range ´ D 0.05–0.12 in the vertical direction.
The sensors were chosen in a pseudorandom fashion by a user without iteration or tuning. For ref-
erence, the dimensions of the right rectangular prism enclosing the domain are 4.7 � 4.1 � 0.85,
where one model unit corresponds to 100 m in the real urban domain. The velocity field is gov-
erned by potential flow with isopotential planes at the inflow (minimum y) and outflow (maximum
y) boundaries and flow tangency on all other boundaries. The potential difference was set to unity,
resulting in a freestream velocity magnitude of 1=4.1. No physical significance is ascribed to this
velocity magnitude, as comparisons with reality are made on the basis of the Peclet number. The
sensors provide an estimate of the local contaminant concentration at every time step. Experimen-
tal observations are generated synthetically by using a forward simulation run with finite element
order p D 2 approximation and a prescribed initial condition as shown in Figure 2. The data are

Figure 2. Prescribed (actual) initial condition used for the experiment. This plot depicts an isosurface of the
contaminant at a nondimensional concentration of 0.75.
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corrupted by an additive, unbiased normal error with standard deviation � D 0.005, which amounts
to approximately 5% error for many of the sensors. The observation period consists of time steps
k D 1, 2, : : : , 60, and the prediction period is k D 61, 62, : : : , 120.

Our objective is to utilize the corrupted data to invert for the initial condition by solving the inverse
problem (6). Once we have an estimate of the initial condition, the goal is to predict the future evolu-
tion of the contaminant field, forward through time step k D 120. We study the inversion, prediction,
and combined performance of the Hessian-based reduced models of varying dimensions for the ini-
tial condition and noisy data set described previously. To generate the reduced models, we sample
250 initial conditions (eigenvectors of the Hessian), which includes all eigenvectors up to our user-
specified tolerance on the basis of the eigenvalues of the Hessian (see Figure 3). From each of these
initial conditions, we generate a state trajectory. The POD basis vectors are then computed using a
singular value decomposition of the complete set of snapshots. Figure 4 shows the resulting POD

Figure 3. Eigenvalue spectrum of the Hessian of the inverse problem. The first 250 eigenvectors (i.e., those
with nonnegligible eigenvalues) are used as seeds for the reduced model construction. The first (inset, top),

second (inset, left), and third (inset, bottom) Hessian eigenvectors are also presented.

Figure 4. The first 1000 POD singular values, 	i , for the snapshot set resulting from the use of 250 Hessian
eigenvectors to generate state trajectories. The first (inset, top), second (inset, left), and third (inset, bottom)

proper orthogonal decomposition modes are also presented.
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singular values. We obtain a reduced model of size m by using the first m POD basis vectors in the
columns of the basis matrix V.

For the entirety of this section, we use the following notation. We use x0 for the actual initial con-
dition, x0F for the inversion estimate of the initial condition using the full finite element model, and
x0m for the inversion estimate of the initial condition using a reduced model of dimension m. For
full finite element model prediction runs, we denote the state at time step k starting from the initial
condition estimate u by xF .kIu/. Likewise, reduced model (of dimension m) state predictions are
denoted by xm.kIu/. Further in this section, we study the `2 output error over the prediction period.
The full model prediction resulting from the initial condition estimate u is written yF .61�120Iu/;
the reduced model prediction is ym.61� 120Iu/.

Before investigating the convergence of the reduced models with increasing dimension, we first
present a side-by-side comparison of the state at time steps k D 0, 60, 120 (initial condition, end
of observation period, end of prediction period). In Figure 5, we show a horizontal slice of the
state at each time for three cases: (i) the actual initial condition; (ii) inversion and prediction using
the full finite element model with n D 1, 007, 412 (p D 1); and (iii) inversion and prediction
using a reduced model of dimension m D 800. Although the full and reduced model inversions
do not recover the initial condition exactly, they do locate the most concentrated regions with the
contaminant. Note that we do not expect either model to be able to recover the initial condition
exactly, unless it happens to reside only within the observable subspace of the full model. How-
ever, the figure shows that the reduced model has picked up all of the features of the full inversion
with only 800 basis vectors, whereas the full model contains over 1 million degrees of freedom.
This large reduction in dimension translates directly to computational savings in the inversion

Figure 5. Comparison between the actual contamination event (left column), inversion and prediction by
the full model (center column), and inversion and prediction by the reduced model of dimension m D 800
(right column) at the initial condition k D 0 (top row), at the end of the observation period k D 60 (middle
row), and at the end of the prediction period k D 120 (end row). All plots are cuts through ´ D 0.1, a

representative slice.
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Table I. CPU timings and percent relative errors for the full and reduced model inversions and predic-
tions. For the sake of brevity, we record the timings only for the reduced models of dimension m D
200, 400, 600, 800. The percent relative errors are provided for the inversion (Figure 7) and prediction
(Figure 10). For the prediction, the relative errors are computed using the same model for inversion and
prediction. Full-order computations are performed in parallel to a distributed-memory cluster with MPI
communication by using 200 processors (quad-core AMD Opteron2354, 2.3 GHz, 2 GB RAM per core),
and the CPU time is shown aggregated over all cores used in the parallel runs. The reduced model compu-
tations are performed in MATLAB on an AMD Athlon64 X2 Dual Core Processor operating at 1 GHz. The

offline computational cost associated with the reduced-order model is 5000 CPU hours.

Inversion Prediction

Model CPU time Error (%) CPU time Error (%)

Full nD 1 007 412 3300 h 57 7.8 h 5.3
Reduced mD 800 68 min 62 3.7 s 3.1
Reduced mD 600 47 min 55 1.7 s 3.9
Reduced mD 400 3.5 min 58 1.4 s 11
Reduced mD 200 16 s 171 0.6 s 58

(see Table I). Figure 6 shows the observations and predictions at six sensor locations in the domain.
The noise-corrupted data are shown in the observation period followed by the actual contamina-
tion in the prediction period. The results demonstrate that the reduced model is able to replicate
and, in some cases, outperform the full model in the predictions for both growing and decaying
concentration profiles.

The authors believe that the better performance of the reduced model may be due to the effects
of regularization in the full inversion. The reduced model is a natural regularizer because the
governing equations are projected onto a low-dimensional subspace defined by basis vectors that
tend to be smooth. We find that difficulties with choosing regularization type and magnitude are
often diminished when using the reduced model. The type of regularization for the reduced model
is different from that used for the full model because the reduced model already incorporates a
certain subspace regularization because the initial condition is obtained as a linear combination of
POD modes.

We now turn our attention to the inversion performance. In particular, we are interested in the
convergence of the reduced model initial condition estimate as the model dimension m increases.
In Figure 7, we plot the relative error of the inversion estimate of the initial condition for models of
dimension varying from m D 50 to m D 800. We present the error relative to the L2-norm of the
actual initial condition. Also shown in the figure is the inverted field for the full model and three of
the reduced models. The dashed line indicates the relative error of the full model inversion estimate.
For reduced models of dimension smaller than m D 350, the inversion is inaccurate. For reduced
models of dimension m > 400, the accuracy of the reduced model inversion is similar to that of
the full model inversion. We have not tied this model size to an energy criterion; in general, it will
depend on the problem and the regularization used in the inversion.

Another way of measuring the performance of the inversion is to propagate the inverted initial
condition estimates forward by using the full finite element model. In Figure 8, we plot the relative
error of the full model prediction stemming from initial conditions estimated via inversions with
reduced models of varying dimension. In particular, we measure the error at the midpoint of the
prediction period, time step k D 90. The results are similar to Figure 7. Once the reduced model
becomes large enough (m > 400), the relative error falls below 8%. The full model prediction of
the initial condition estimated using the full model to solve the inverse problem is also shown for
reference; it has approximately 9% relative error.

In Figure 9, we consider the prediction performance of the reduced models using the inversion
estimate of the reduced model of dimension mD 800. This singles out the prediction performance,
relegating lossy projections only to that of the initial condition from themD 800model to a smaller
reduced model. Note that the transformation from the m D 800 inverted initial condition estimate
to a smaller reduced model of dimension r involves only retaining the first r reduced states because
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(a) (b)

(c) (d)

(e) (f)

Figure 6. Sensor readings and predictions at six representative sensors. The diamonds show the noisy obser-
vation data for k D 1, 2, : : : , 60, whereas the solid black line is the prediction given the actual initial
condition for k D 61, : : : , 120. The dotted and dashed lines show the prediction from the inverted initial

condition ahead for k D 1, 2, : : : , 120 using the full and mD 800 reduced models, respectively.

of the orthogonality of the basis vectors. At time step k D 90, we measure the error relative to the
actual concentration field. Using the reduced model for both inversion and prediction is the fastest
method for obtaining a prediction. However, if there is extra time available to carry out the compu-
tations, it is possible to use the reduced model for the more costly inversion, followed by the full
model to predict forward. The figure reveals, once again, that the combined performance is adequate
for a reduced model of modest dimension.

Finally, we consider the error in the prediction of outputs, as opposed to the state, over the predic-
tion period (see Figure 10). The errors are measured in the discrete `2 sense relative to the outputs
of the actual scenario. The inversion estimates and forward predictions are computed here with the
same reduced model for each size m. For comparison, the prediction error resulting from the full
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Figure 7. Convergence in the relative error of the reduced model inversion estimate with increasing
dimension. The inversion estimate using a reduced model of dimension m has a relative error hx0mi D
kx0m � x0kL2.�/=kx0kL2.�/, where x0 is the initial condition used to generate the data. For comparison,

the full model inversion estimate x0F (inset, right) and its relative error (dashed line) are also shown.

Figure 8. Convergence in the relative error, for the increasing dimension, of the full model prediction
using the reduced model inversion estimate. The error is measured at the midpoint of the predic-
tion period, time step k D 90. The relative error is given by hxF .90I x0m/i D kxF .90I x0m/ �
xF .90I x0/kL2.�/=kxF .90I x0/kL2.�/, where x0 is the initial condition used to generate the data. For
comparison, the full model prediction using the full model inversion xF .90I x0F / (inset, right) and its

relative error (dashed line) are also shown.

model inversion is shown. These results demonstrate that we can predict the output of interest within
approximately 5% error by using reduced models with as few as mD 500 dimensions.

It is important to note that the prediction capability of the reduced model is directly tied to the
Peclet number, the size of the domain, and the length of the observation period. If the observation
period is long enough such that an initial condition can travel across the entire domain, then that
condition is included in the basis constructed by the Hessian-based model reduction. Because time
t D 0 is arbitrarily assigned, this implies that the reduced model will be able to predict adequately
forward as long as the state at the end of the observation period is properly reconstructed.

Our reduced models are able to deliver accurate prediction performance for a time horizon beyond
the observation period even though the snapshot data do not extend into the prediction period. This
occurs for our problem because prediction locations are identical to sensor locations and because
the observation period is sufficiently long compared with the prediction period. Because of the time
invariance of the model, the evolution of the state from the end of the observation period is the same
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Figure 9. Convergence in the relative error, for increasing dimension, of the combined performance of the
reduced models. Inversion estimates are all computed using the reduced model of dimension mD 800, and
predictions are performed using the reduced models of varying dimension m. The relative error is given by
hxm.90I x0800/i D kxm.90I x0800/ � xF .90I x0/kL2.�/=kxF .90I x0/kL2.�/, where x0 is the initial con-
dition used to generate the data. For comparison, the full model prediction using the full model inversion

estimate xF .90I x0F / (inset, right) and its relative error (dashed line) are also shown.

Figure 10. Convergence of the reduced model prediction errors with increasing dimension m. The pre-
diction error is measured in discrete `2 over the sensors for the time steps k D 61, : : : , 120. That is,
hymi D kyF .61� 120I x0/�ym.61� 120I x0m/k`2=kyF .61� 120I x0/k`2 . Note that the forward predic-
tion and inversions are computed here with the same reduced model for each size m. The dashed line is the

relative error in the full model prediction.

trajectory that would result with that state as an initial condition, but shifted in time. If this trajectory
lies within the observable subspace, its dynamics will have been sampled in the reduced model con-
struction. It should be noted that for this problem, large inversion errors can lead to small prediction
errors (see Table I). Only some components of the initial condition impact the prediction outputs
of interest. Accurate predictions, therefore, require only an accurate estimation of those modes.
In our problem, the prediction outputs are the same as the observations from sensors, just shifted
in time. Because of the time invariance of the model and that the Hessian-based model reduction
targets accuracy for the observation outputs, the modes needed for an accurate prediction are also
accurately estimated in the inverse problem; this leads to small prediction errors.

6. CONCLUSIONS

The results demonstrate that the Hessian-based reduced models can be used for inversion and pre-
diction in some contaminant transport scenarios. Control-theoretic concepts play an important role
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in our understanding of our ability to reconstruct certain modes of the initial condition and the effect
of regularization on the solution. The application of similar concepts to prediction and control prob-
lems are subjects of ongoing research. Connections between control-theoretic concepts and PDE-
constrained optimization approaches is a rich area that may lead to new insights and algorithms.
For example, controllability and observability of the isothermal weakly compressible single-phase
flow equations are studied for the identification and control of a reservoir in [17]. The findings lead
to a new method for controllability-based and observability-based subspace regularization in the
history-matching problem.

We present results for just one arbitrarily chosen initial condition and corrupted data, but we
expect the results to be similar for initial conditions with the characteristics encoded in our regu-
larization scheme (exhibiting some smoothness). With the dramatic reduction in model dimension
from more than 1 million degrees of freedom to just a few hundred, we make possible the inversion
and prediction of large-scale contaminant transport events on laptop computers in the field. Future
applications of reduced models in this setting include the addition of optimal control scenarios to
mitigate contamination in critical areas. The Hessian-based model reduction could also be applied
in the nonlinear setting, but the explicit connection to the transient observability gramian is limited
to the linear case.
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