Initial Mesh Generation for Solution-Adaptive
Methods Using Machine Learning

Vivek Ojha*, Guodong Chen ! and Krzysztof J. Fidkowski#
Department of Aerospace Engineering, University of Michigan, Ann Arbor, MI 48109, USA

This paper presents a machine-learning approach for determining anisotropic initial
meshes in the context of an output-based adaptive solution procedure. Artificial neural
networks are used to predict the desired element sizing and anisotropy from flow conditions
and geometry parameters. The network serves as a computationally efficient acceleration
technique compared to a more common approach of starting with a hand-generated initial
mesh and then using adjoint-weighted residual error estimates for element sizing and mesh
optimization through error sampling and synthesis (MOESS) for evaluating the element
stretching magnitude and direction. The network is trained to provide element sizing, ori-
entation, and stretching in the form of a normalized metric field, as a function of position in
a normalized domain. The MOESS-optimized meshes for a variety of steady aerodynamic
flows governed by the Reynolds-averaged Navier—Stokes equations in two dimensions pro-
vide data for training the multi-layer perceptron network. The network is then deployed
and tested by driving mesh adaptation, and the results show similar optimized meshes
obtained from the network at much lower computational cost for steady-state cases.

I. Introduction

By virtue of the fast growing computational capacity and highly developed numerical methods, complex
aerodynamic simulations are now routinely carried out in aerospace design and analysis. Most of these
simulations rely on spatial discretization of the physical domain and appropriate time evolution strategies
of the discretized system. The spatial discretization, i.e., the computational mesh, therefore strongly affects
both the accuracy and efficiency of the computations. An a priori mesh generation procedure based on
engineering experience often gives sub-optimal meshes since such a method is mostly agnostic to the solu-
tion accuracy or numerical error. A better strategy is the solution-adaptive meshing process, in which the
computational mesh is adapted using estimates of the numerical error. In scenarios where the quantities of
interest are scalar outputs of the system, the adjoint-based method provides a robust and effective way of
quantifying the numerical error and driving the mesh adaptation.!

In adjoint-based mesh adaptation, the adjoint variables weight the flow residual to form an estimate of
the output error. The adjoint-weighting is applied locally and identifies regions that produce high output
errors. Solution-adaptive methods based on adjoint-weighted residual have dramatically improved the ac-
curacy and efficiency of aerodynamic simulations.2™® Despite their great success in aerospace applications,
the additional computational cost and implementation complexity associated with adjoint-based methods
cannot be neglected. First, adjoint-based methods require solving a dual linear system, i.e., the adjoint equa-
tion set, which is of the same size as the primal system or even larger when solving on an enriched space.
Second, the implementation of adjoint methods often requires the transpose of the residual Jacobian matrix,
which is not always available in explicit solvers or Jacobian-free methods. In these circumstances, either the
continuous adjoint equations could be derived and directly discretized,'® or special implementation efforts
are required,'! adding considerable costs and effort in the development. The additional computational costs
associated with the adjoint solutions, in addition to the implementation efforts, have largely hindered more
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widespread use of adjoint-based adaptation techniques in practice.

In order to simplify and accelerate the mesh adaptation procedure, several attempts have been explored
recently using machine learning techniques, chosen mainly for their non-intrusive nature and fast online
evaluations. Manevitz et al.'? used feed-forward neural networks to predict the solution gradients in time-
dependent problems, which then provided an indicator to drive mesh adaptation. Zhang et al. proposed
MeshingNet!'3 which takes in a chosen set of parameters to predict the local mesh density, through feed-
forward networks with residual connections. Huang et al.'* treated the computational mesh with various
element sizes as a gray-scale image such that convolutional neural network architectures can be applied in
mesh generation. Chen and Fidkowski'® presented a convolutional neural network using a physical-reference
mapping to avoid direct treatments of physical quantities as images. Most of these studies only focused on
the element sizing and largely ignored mesh anisotropy, i.e., element stretching and orientation. However,
anisotropic meshes are important in practice for efficiently resolving certain flow features, such as boundary
layers, wakes, and shocks in aerodynamic simulations. For optimal anisotropic mesh generation, Fidkowski
and Chen'® designed feed-forward networks to predict the mesh anisotropy information using the flow primal
and adjoint features, while still requiring appropriate sizing information from standard adjoint-based error
estimates.

In this work, we investigate the idea of using a neural network to predict the optimal computational mesh,
including both the element sizing and stretching. We follow the work of Fidkowski and Chen,¢ while taking
the element sizing also as a network output. Furthermore, in order to enable fast mesh generation, a priori
information, such as the geometry and the boundary conditions, are taken as the network inputs instead of
the primal and adjoint solutions. The network is trained with optimal anisotropic meshes generated using an
adjoint-based method that incorporates the mesh anisotropy through an expensive sampling procedure.?> 7
The goal is to predict the optimal mesh for a given cost only using the a priori information. The network
is trained on subsonic and transonic aerodynamic simulations over airfoils and is tested on unseen flow
conditions. We expect the model to guide optimal mesh generation in practical simulations or to generate
favorable initial meshes to accelerate standard adjoint-based adaptation procedures.

The outline for the remainder of this paper is as follows. Section II presents the numerical approach used
in this work, a discontinuous finite-element discretization. Section IIT summarizes output-based error esti-
mation, which is used to drive the adaptation algorithms presented in Section IV. Section V introduces the
new machine-learning approach for mesh adaptation. Finally, Section VI presents results of the training and
deployment of the neural network, and Section VII concludes with a summary and a discussion of future
directions.

II. Equations and Discretization

II.A. Governing Equations

The flow is governed by the Navier—Stokes equations, which in the case of the steady-state conditions assumed
in the present work, are given by

—U

V- F(u,Vu) + S(u,Vu) =0, F=F (u)-F (u,Vu), (1)

where u(Z) € R? is the conservative state vector, & € R? is the spatial coordinate, d is the number of space

dimensions, F' and F' are the inviscid and viscous fluxes, respectively, and S is a source term associated
with turbulence modeling closure equations, in this work RANS-SA.18
II.B. Discretization

To discretize the differential equation in Eq. 1, a discontinuous Galerkin (DG) finite-element method is
used.'¥ 2! DG, as a finite-element method, approximates the state u in functional form using linear combi-
nations of basis functions on each element. No continuity constraints are imposed between adjacent elements.
Denoting by T}, the set of N, elements in a non-overlapping tessellation of the domain €2, the state on element
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e, ¢, is approximated as

—

up(7())

Np
Q = Z Uen¢en (f(g)) (2)
¢ n=1

In this equation, N, is the number of basis functions per element, U,,, is the vector of s coefficients for the
n'™ basis function on element e: ¢, (Z(€)), and s is the state rank. # denotes the global coordinates, and
5 denotes the reference-space coordinates in a master element. Formally, u, € V5, = [V4]®, where, if the
elements are not curved, V), = {u € La(Q) : u|q, € PP VQ, € T}, }, and PP denotes polynomials of order p
on the element. With the spatial discretization described above, the governing equations can be written in
an abbreviated form as

Ry (Uh) =0, (3)

where R is the discrete nonlinear spatial residual vector in the space Vy, .

III.  Output Error Estimation

In a CFD simulation, the numerical error in an output of interest results from discretization errors. To
adapt the mesh, discrete adjoint solutions can be used to estimate and localize the output error.??

III.A. Adjoint Evaluation

Consider an output that is a function of the discrete state vector,
J=J(U),. (4)

The discrete adjoint, W, represents the sensitivity of the output to perturbations in the spatial residual, R.
To derive the adjoint equations, a Lagrangian is defined as

L=J+9TR. (5)

Substituting (3) into (5) and requiring stationarity of the Lagrangian with respect to the permissible state
variations, 60U, gives the adjoint differential equation

o]  _;OR
au Y u Y (©)

III.B. Error Estimation

The adjoint can be used to evaluate the error in the output of interest through the adjoint-weighted residual.??
Let Uy be the approximate primal solution obtained from the current approximation space denoted by
subscript H and lIlf be the adjoint in the fine space, denoted by h. The error in the output is defined as

aJ,
0J = Ju(Un) = Jn(Un) = 550U ~ ~¥[Ra(U), (7

where 6U),, = UhH — Uy, is the primal error in the state and UhH is the injected solution from space H to
h. The exact adjoint, which is unavailable, is approximated in a finer space by increasing the degrees of
freedom in the spatial discretization through an order increment.

IV. Mesh Adaptation

The error estimate developed in the previous section can be localized to elemental contributions and
provides information about how to adapt the computational mesh. However, as just one scalar quantity per
element, the error indicator is not sufficient to provide information about mesh anisotropy. This information
comes from a mesh optimization procedure, MOESS,? 7 which optimizes the computational mesh in order
to minimize the output error at a prescribed computational cost. The approach iteratively determines the
optimal change in the mesh metric field given a prescribed metric-cost relationship and a sampling-inferred
metric-error relationship.
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IV.A. Metric-Based Meshing

A Riemannian metric field, M(Z), is a field of symmetric positive definite (SPD) tensors that can be used to
encode information about the desired size and stretching of a computational mesh. At each point in physical
space, &, the metric tensor M(Z) provides a “yardstick” for measuring the distance from & to another point
infinitesimally far away, & + 0Z. After choosing a Cartesian coordinate system and basis for physical space,
M can be represented as a d X d SPD matrix. The set of points at unit metric distance from & is an ellipse:
eigenvectors of M give directions along the principal axes, while the length of each axis (stretching) is the
inverse square root of the corresponding eigenvalue. The aspect ratio is the ratio of the largest stretching
magnitude to the smallest.

A mesh that conforms to a metric field is one in which each edge has the same length, to some toler-
ance, when measured with the metric. An example of a two-dimensional metric-conforming mesher is the
Bi-dimensional Anisotropic Mesh Generator (BAMG),2* and this is used to obtain the results in the present
work. BAMG generates a mesh given a metric field, which is specified at nodes of a background mesh — the
current mesh in an adaptive setting. The optimization determines changes to the current, mesh-implied, met-
ric, Mo (Z). Affine-invariant?® changes to the metric field are made via a symmetric step matrix, S € R?*¢,
according to

M = MZ exp(S)ME. ®)

Note that S = 0 leaves the metric unchanged, while diagonal values in S of & 2 log2 halve/double the metric
stretching sizes.

IV.B. Error Convergence Model

The mesh optimization algorithm requires a model for how the error changes as the metric changes. We
consider one element, 2., with a current error &, and a proposed metric step matrix of S.. The error on
Q. following refinement with this step matrix is given by

Ee = Ecpexpltr(ReSe )], (9)

where R, is a symmetric rate tensor. The total error over the mesh is the sum of the elemental errors,
&= Eé\ﬁlge.The rate tensor, R, is determined separately for each element through a sampling procedure.'”

IV.C. Cost Model

To measure the cost of refinement, we use degrees of freedom, DOF, which on each element just depends
on the approximation order p, assumed constant over the elements. By (8) and properties of the metric
tensor, when the step matrix S, is applied to the metric of element e, the area of the element decreases
by exp[3tr(S.)]. Equivalently, the number of new elements, and hence degrees of freedom, occupying the
original area €2, increases by this factor. So the elemental cost model is

Ce = Cegexp [;tr(Se)] , (10)

where Co=DOF,, is the current number of degrees of freedom on element e. The total cost over the mesh
is the sum of the elemental costs, C = %)<, C..

IV.D. Metric Optimization Algorithm

Given a current mesh with its mesh-implied metric, M (&), elemental error indicators, &, and elemental
rate tensor estimates, R, the goal of the metric optimization algorithm is to determine the step matrix field,
S(Z), that minimizes the error at a fixed cost. The step matrix field is approximated by values at the mesh
vertices, S,, which are arithmetically-averaged to adjacent elements:

1
Se = Sus 11
> D

VEV,
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where V is the set of vertices (|V,[is the number of them) adjacent to element e. The optimization problem
is to determine S,, such that the total error £ is minimized at a prescribed total cost C. First-order optimality
conditions require derivatives of the error and cost with respect to S,. We note that the cost only depends
on the trace of the step matrix; i.e. the trace-free part of S, stretches an element but does not alter its area.
We therefore separate the vertex step matrices into trace (s,Z) and trace-free (S,) parts, with Z the identity
tensor,

S, =5, +S, (12)
The optimization algorithm is then the same as presented by Yano:®
1. Given a mesh, solution, and adjoint, calculate &, C., R, for each element e.
2. Set 05 = dSmax/Nstep, Su=0.

3. Begin loop: ¢ = 1...ngtep

(a) Calculate S, from (11), g—gz from (9) and gg: from (10).

(b) Calculate derivatives of £ and C with respect to s, and S,.

(¢) At each vertex form the ratio, A, = % and

e Refine the metric for 30% of the vertices with the largest |\, |:S, = S, + dsT
e Coarsen the metric for 30% of the vertices with the smallest |\, |:S, = S, — dsZ

(d) Update the trace-free part of S, to enforce stationarity with respect to shape changes at fixed
area: S, = S, + 0s(0E/0S8,)/(0E/0s,) .

(e) Rescale S, — S, + SZ, where S is a global constant calculated from (10) to constrain the total

cost to the desired dof value: 5 = %log%, where Clarget is the target cost.
Note, A, is a Lagrange multiplier in the optimization. It is the ratio of the marginal error to marginal
cost of a step matrix trace increase (i.e. mesh refinement). The above algorithm iteratively equidistributes
Ay globally so that, at optimum, all elements have the same marginal error to cost ratio. Constant values
that work generally well in the above algorithm are ngp = 20 and dsmax = 2log2. In practice, the mesh
optimization and flow/adjoint solution are performed several times at a given target cost, Ciarget, until the
error stops changing. Then the target cost is increased to reduce the error further if desired.

IV.E. Machine-Learning Based Mesh Adaptation

As an alternative to the adjoint-based mesh adaptation process, a data-driven method is developed to improve
the efficiency of non-uniform anisotropic mesh generation compared with existing approaches. Optimum
mesh generation for CFD simulations requires information about the elemental size as well their anisotropy,
in the CFD domain. The anisotropy information becomes more relevant at higher Reynolds and Mach
numbers with many directional features such as boundary layers, wakes, and shocks. In MOESS, both the
primal and adjoint solutions are combined via sampling of the adjoint-weighted residual to produce the most
efficient element size and anisotropy distribution. This information guides the movement of mesh vertices
so that each element is as close as possible to its ideal size and shape. As an alternative to determining
the ideal size and anisotropy information from MOESS, we present an approach that uses a neural network
to determine the metric from relevant features such as the flow conditions and relative position in the
computational domain.

V. Neural Network Training

The neural network is trained using meshes adapted for a variety of flow conditions and angles of attack
over a NACA 0012 airfoil. All cases are two-dimensional and use the Reynolds-averaged Navier-Stokes
equation. The aerodynamic lift output is considered for error estimation and mesh adaptation. Adapted
meshes are generated at a chosen target degree-of-freedom cost using MOESS, at a solution approximation
order of p = 2. The Riemannian metric, described in the previous subsection, stores the ideal size, stretching
and orientation of the mesh elements in a single matrix entity and is used to train the network. The metric
is a general entity that can be used in any adaptation process, independent of how it is constructed and
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what characteristics the user wants to achieve through the adaptation process. As the metric of the adapted
mesh is used to train the network, the number/distribution of elements in the initial mesh is irrelevant and
any coarse mesh can be used to start the adaptation. In this work, a common initial mesh generated using
BAMG,?* is used for all test cases for simplicity. The number of elements in the final adapted mesh is
important as all the adapted meshes are optimized for the the final number of DOFs. Keeping the total
DOFs in the optimized mesh the same helps make the training process easier but also restricts the output
of the network. In the present study, networks are only trained for a constant total DOF.

The neural network uses the logarithm of the Reynolds number, the angle of attack, and the Mach
number as inputs to the parameter network and the normalized centroidal position of each element and the
normalized wall distance as inputs to the spatial network to predict the elemental metric of the optimized
mesh. The centroidal position vector of each element is normalized by the maximum distance in both
dimensions. The wall distance, evaluated by averaging the wall distance of all the nodes of the element, is
normalized by the maximum achievable value of the wall distance. To capture the wide range of values in the
metric of the elements, the matrix logarithm of the elemental metric is used as the output of the network.

V.A. Neural Network Architecture

A fully connected multi-layer perceptron neural network, as shown in Figure 1 is constructed for training.
The neural network consists of two individual networks, which initially process the fluid flow parameters and
the spatial position of the elements separately. The parameter and spatial network have two hidden layers,
consisting of 10 neurons each, between the input layer and the output layer. The outputs of the parameter
and the spatial network are then combined by normalizing them and multiplying them. This serves an an
input to the final network which has a single hidden layer of 100 neurons. Within each hidden layer, the input
vectors are multiplied by a weight matrix before adding a bias vector. An activation function is then applied
to the result to give the output of the hidden layer. The map from the input to the hidden layer involves an
entry-wise rectified linear-unit (ReLU) activation function o(z) = max(0, z), whereas no activation function
is used for the output layer calculation. The parameters associated with the network consist of the weights
and biases,

0O 0O

W, € R"*™-1 b, € R™, (13)
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Figure 1: Structure of the artificial neural networks used to predict element anisotropy and sizing.
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where n; is the number of neurons in layer 3.

The values of these parameters are determined using an optimization procedure, the adaptive moment
(Adam) estimation algorithm in TensorFlow,?% that minimizes the mean squared error loss function between
predicted and actual output layer values. The actual values come from training data, which are obtained
from the meshes adapted using MOESS on prototypical cases.

Each element in an adapted mesh serves as a training data point. These data points are split 80%/20%
into training and validation categories. The training data are used to drive the optimization, whereas the
validation data are used to monitor the loss on untrained data. The training data are broken into mini-
batches of size 100 for the optimizer, and the learning rate is set to .005. Prior to training, the weights and
biases are initialized randomly from a unit normal distribution. Several tens of thousands of optimization
iterations typically lead to a stabilization of the mean-squared error, as shown in Figure 2. Typically, an
order of magnitude drop in the loss is observed, without a significant difference between training and test
data loss. This indicates that the data are not being over-fitted, which would be difficult to do with the
small neural network size presently considered. Furthermore, the results of the training were not found to
be overly sensitive to the choices of the mini-batch size, learning rate, or the initialization.

VI. Results

This section presents results obtained from implementing the trained neural network to generate opti-
mized starting meshes for various flow cases. The meshes obtained from the neural network are compared
to meshes obtained using MOESS. In all cases, metric-based re-meshing is performed using BAMG.

VI.A. Varying Reynolds number and angle of attack

The first case that is tackled in this study is the optimal mesh generation for a two-dimensional steady-state
flow over a NACA 0012 airfoil for a variety of Reynolds numbers and angles of attack at a constant Mach
number. Two Mach numbers, one in the subsonic regime, M = 0.25, and one in the transonic regime,
M = 0.75, are used in this case. The airfoil is located in the center of the domain, the boundary of which
consists of a square box which spans from [—100¢, 100¢] in both dimensions. The fluid flow is simulated

—— Mini-batch loss
—— Training set loss
102 —— Validation set loss
wn
(%)
o
g 10! A
(]
el
g
©
>
a
c 100 N
©
[}
=
10—1 N

0 100000 200000 300000 400000 500000
Mini-batch Iteration

Figure 2: Neural network training loss history, using a 80% training, 20% validation split.
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using a RANS solver with the SA turbulence model.2” For training and testing purposes, 100 optimized
meshes are generated for various flow conditions, where Re € [10%,107] and angle of attack, a € [0,5]°,
and these meshes are obtained using MOESS. To sample the parameter space, Latin hypercube sampling is
used in this work. The data from the various flow cases are randomized and split 80%/20% into training
and validation categories. For each training case, starting from a coarse initial mesh with 500 triangular
elements, the meshes are subjected to 10 cycles of mesh adaptation with a growth factor of Gy = 1.5 and
a constraint on the total degree of freedom, DOF=50,000. The total number of degree of freedom after
each adaptive iteration is set by the growth factor. The resulting adapted meshes have approximately 8500
triangular elements of approximation order p = 2.

A Riemannian metric, generated using the flow and adjoint solution in MOESS or predicted using the
neural network, guides the mesh adaptation process. In the neural network, the predicted metric is obtained
by taking the matrix exponent of the output obtained from the network. The predicted metric is then
provided to BAMG for mesh generation and using the same set of growth factor and number of adaptive
iterations as MOESS, the adapted mesh is obtained. Note, in the neural-network approach, no primal or
adjoint solutions are needed during the course of adaptation, as the metric only depends on the parameter
and spatial network inputs shown in Figure 1, and not on the state or adjoint. To test the prediction capa-
bility of the neural network, adapted meshes and output convergence in the adapted meshes are compared
between neural network and MOESS for the flow conditions in the validation set. Figure 3 and Figure 4
compare adapted meshes for two flow condition in the validation set at M = 0.25. For both of the flow
conditions in the subsonic regime, the network is able to reproduce meshes with good detail. The network
is able to successfully produce the anisotropic elements above and below the airfoil, thereby, resolving the
boundary layer. The element distribution away from the airfoil also looks similar to that of the optimized
meshes obtained from MOESS, where large isotropic elements are used.

Figure 5 compares the convergence of the lift coefficient for which both the meshes have been adapted.
The final mesh obtained after 10 cycles of MOESS serves as the reference mesh. The output convergence
in the meshes adapted using the network show, on average, a reduction in the output error after every

A
e

(c) MOESS (d) Neural Network

Figure 3: Comparison of element distribution in adapted meshes obtained using MOESS and the neural
network for a flow at M = 0.25, a = 4.6° and Re = 3.5 x 10°
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Figure 6: Comparison of element distribution in adapted meshes obtained using MOESS and the neural
network for a flow at M = 0.75, a = 1.06 and Re = 3.5 x 10°.
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Figure 7: Comparison of element distribution in adapted meshes obtained using MOESS and the neural
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Figure 8: Comparison of output convergence in adapted meshes obtained using MOESS and the neural
network for a flow at M = 0.75.
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adaptation cycle and give comparable accuracy relative to the meshes obtained from MOESS. The network
doesn’t outperform the meshes obtained using MOESS as the error in training also affects the quality of
the output meshes, thereby affecting the output error. The meshes obtained from the network also mirror
the distribution and anisotropy in elements and are close to being optimal for the output evaluation , given
the constraint on the DOF. In the cases where the meshes obtained from the network are sub-optimal, a
few cycles of adjoint based mesh adaptation with the output mesh from the network serving as the starting
mesh can be used to further improve the meshes, as shown by the blue curves in Figure 5. The meshes
can be improved for the target DOF’s by choosing a growth factor, Gy = 1 and reshuffling the elements or
for a higher growth factor for obtaining optimal meshes for larger DOF’s. The number of MOESS adaptive
iterations needed to achieve higher accuracy will be fewer than the case when a network is used initially as
compared to just using MOESS. This can be observed in the blue curve in Figure 5, where only two adaptive
iteration of MOESS are required on the final mesh obtained by the neural network to produce an optimal
mesh with similar errors. A growth factor of one is used for the MOESS adaptive shown in the blue curve.

The adapted meshes for the transonic case at M = 0.75 show similar results, as shown in Figure 6 and
Figure 7. The adapted meshes obtained from the network are able to successfully resolve the boundary
layer and stagnation streamline, however, the shock is under resolved by the network. The lack of resolution
around the shock compared to the boundary layer results in the network not resolving the shock accurately.
The output convergence is unaffected by the under resolution of the shocks as the meshes obtained for the
network are able to give comparable accuracy to that obtained form MOESS, as shown in Figure 8. Figure
9 compares the simulation times for the two mesh adaptation strategies for both the subsonic and transonic
cases. Mesh adaptation using the network avoids the solution and adjoint solve needed in MOESS resulting
in a 10x-15x savings in computational cost. The only time consuming component of the mesh adaption using
the neural network is from the mesh generator, BAMG.

VI.B. Varying Mach number, Reynolds number and angle of attack

The second case that is tackled in this study is the optimal mesh generation for a two dimensional steady
state flow over a NACA 0012 airfoil for a variety of Mach numbers, Reynolds numbers and angles of attack
at a constant Mach number. For training and testing purposes, 100 optimized meshes are generated for
various flow conditions, where M € [0.25,0.8], Re € [10%,107] and angle of attack, a € [0,5]° are obtained
using MOESS. Similar initial meshes and mesh adaptation parameters are used in this case, as described in
the first case.

Figure 10 and Figure 11 compare adapted meshes for a transonic and subsonic flow condition respectively,
in the validation set. While the adapted meshes from the network perform well in the subsonic regime,
they struggle to resolve the shock flow feature, stagnation streamlines and the streamlines exiting from the
trailing edge, in the transonic regime. This also results in poor output convergence for the transonic cases
as shown in Figure 12. The reason for this poor optimal meshes in the transonic regime is due to the lack
of transonic cases used to train the network. Shock features are present in M € [0.5,0.8] at high angles of
attack, which comprise of only 15% of the total training data set. Secondly, in the case of shocks the ratio of
elements used to resolve the shock compared to the boundary layer is low. This leads to less emphasis on the
shock position and shock strength by the network. As the flow features targeted by mesh adaptation depend
strongly on the Mach number regime, training the networks for subsonic and transonic cases separately can
leads to better optimal meshes. Separating the network and training for obtaining optimal meshes only in
the transonic regime where M € [0.5,0.8] leads to much better output convergence, as shown in Figure 13.
This better convergence in the outputs is observed due to better resolution of the stagnation streamlines and
the wake but not better shock capturing.

The benefits of the neural network are more pronounced when the mesh adaptation process begins with
coarser initial meshes. The lack of convergence in the steady state primal and adjoint solvers due to the
coarseness of the mesh affects the mesh adaptation in MOESS, however, the neural network mesh adaptation
process is unaffected by the initial mesh.
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Figure 9: Comparison of the average time required for adapting a fluid mesh using MOESS and the neural
network.
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(a) MOESS (zoom)

(b) Neural Network (zoom)

Figure 10: Comparison of element distribution in adapted meshes obtained using MOESS and the neural
network for a flow at M = 0.68, o = 4.94 and Re = 3.05 x 106.
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Figure 11: Comparison of element distribution in adapted meshes obtained using MOESS and the neural
network for a flow at M = 0.44, o = 4.96 and Re = 7.92 x 109.
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Figure 12: Comparison of output convergence in adapted meshes obtained using MOESS and the neural
network. The network is trained using meshes adapted for varying Mach number, angle of attack and
Reynolds number flows.
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Figure 13: Comparison of output convergence in adapted meshes obtained using MOESS and two neural
networks for a flow at M = 0.68, o = 4.94 and Re = 3.05 x 10%. The two networks are trained using meshes
adapted for varying Mach number, angle of attack and Reynolds number and varying Mach number in the
transonic regime, angle of attack and Reynolds number flows.

VI.C. Entropy Adjoint - Varying Mach number, Reynolds number and angle of attack

A further test to examine the capability of the network is by training it to reproduce meshes optimized using
the entropy adjoint instead of the lift adjoint. The entropy-based adjoint indicator uses entropy variables to
drive the mesh adaptation. The areas of the mesh that are targeted by the entropy indicator are those re-
gions that exhibit high net production of spurious entropy. The formulation of the entropy-variable approach
can be found in Doetsch et al.2® Adapting on an output of interest using the entropy variables as adjoints
constitutes output-based adaptation. Without the need for a separate system solve to obtain the entropy
variables, adapting using entropy variables instead of the output-based adjoint is far less computationally
expensive. However, this indicator does not disregard areas of spurious entropy generation that have no
effect on a particular engineering output. This may lead to over-refinement, particularly for cases with flow
discontinuities. The entropy adjoint resolves the boundary layer, the wake (extending up the boundary of the
domain) and also the shock (if present). Due to a greater number of flow features that the entropy adjoint
focuses on, it acts as a good litmus test and stresses the network to the maximum. A similar network as
previously discussed is used for this test case. For training and testing purposes, 100 optimized meshes are
generated for various flow conditions in the transonic regime, where M € [0.5,0.8], Re € [10%,107] and angle
of attack, « € [0, 5]° are obtained using MOESS. Figure 14 and 15 compare adapted meshes for two flow con-
ditions in the transonic regime, from the validation set. The network is able to accurately resolve the wake
and the boundary layer. However, the network struggles in predicting the shock position and strength. For
this Mach number range, the shock traverses above the airfoil increasing in strength while moving towards
the trailing edge, as the Mach number increases. Instead of refining around the shock location, the network
refines the entire region where the shock traverses in an isotropic manner. As the Mach number increases,
the refined region in the network adapted meshes moves with along the chord, mimicking the shock traversal.

For the first two cases in this study, the lack of training cases containing shocks and less emphasis on
the shock features explained the poor resolution of the shock feature in the meshes adapted by the network.
However, the entropy adjoint removes both of these pitfalls and the network still struggles to resolve the
shock. The number of elements used to resolve the shock, the boundary layer and the wake are comparable in
the case of a meshes adapted using the entropy adjoints and 60% of the training dataset has shocks present.
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Figure 14: Comparison of element distribution in adapted meshes obtained using MOESS and the neural
network for a flow at M = 0.60, o = 4.45 and Re = 4.54 x 10%. Entropy adjoint is used to adapt the meshes
obtained using MOESS.
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Figure 15: Comparison of element distribution in adapted meshes obtained using MOESS and the neural
network for a flow at M = 0.76, a = 2.8 and Re = 6.67 x 10°. Entropy adjoint is used to adapt the meshes
obtained using MOESS.

15 of 17

American Institute of Aeronautics and Astronautics



Resolving the shock flow feature with the flow parameters needs more examination and different network
structures are being investigated to resolve this issue. A promising avenue is to use the flow features to
firstly predict the shock position and the combining this information with the existing network.

VII. Conclusion

A machine-learning approach for determining the optimal anisotropic initial meshes, in the context of an
output-based adaptive solution procedure is developed. Artificial neural networks are used to predict the
desired element sizing and anisotropy from flow conditions and relative position in the fluid domain. The
benefits of mesh adaptation using a neural network are demonstrated for a steady state flow over a NACA
0012 airfoil, where the network is able to produce optimal starting meshes for a variety of Mach numbers,
Reynolds numbers and angles of attack. Meshes optimized using the lift and the entropy adjoint are used
to train the network. The meshes generated from the neural network showcase good output convergence as
that obtained using adjoint-based mesh adaptation. Mesh adaptation using the machine learning approach
produces optimal meshes without solving for the state or the adjoint leading to 10x-15x saving in compu-
tational time. The network is able to successfully resolve flow features such as the boundary layer, wake,
stagnation streamlines. In the presence of shock features in transonic flow, the network struggles to resolve
around the shock location and further investigation is needed. Extension of the machine-learning approach
to generate optimal meshes for unsteady simulations is expected to give similar benefits and will be pursued
in the future.
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