
High-Fidelity Coupled Fluid-Structure Interaction

Simulations with Adaptive Meshing

Vivek Ojha∗, Krzysztof J. Fidkowski†, and Carlos E. S. Cesnik‡

Department of Aerospace Engineering, University of Michigan, Ann Arbor, MI 48109, USA

This paper demonstrates an adaptive approach for solving fluid-structure interaction
problems using high-fidelity numerical methods. A high-order partitioned approach is
applied to couple the fluid and the structural subsystems, where the fluid subsystem is dis-
cretized using a discontinuous Galerkin finite-element method, while the structures solver
uses a continuous Galerkin discretization. High-order time integration schemes are used by
the coupled solver to march forward in time. The space-time mesh of the fluid subsystem
is adapted using output-based methods. The error estimates for the unsteady outputs are
evaluated by calculating the uncoupled, unsteady adjoint of the fluid subsystem. The ben-
efits of adaptive meshing are showcased on a one-dimensional cantilevered Euler-Bernoulli
beam placed in a low-Reynolds number flow and on a two-dimensional pitching-plunging
airfoil in a high-Reynolds number flow.

I. Introduction

Numerical simulation of fluid structure interaction (FSI) is a complex and challenging problem that finds
relevance across disciplines. The focus of this paper is on the aeronautical applications of FSI where numer-
ical simulation can be used to improve the understanding and prediction of coupled instabilities observed in
aircraft.1 The interaction between the two systems is non-linear and involves multiple scales, thereby making
the coupled system challenging to solve. Many approaches have been suggested for simulating fluid-structure
interaction.2 Numerical approaches for solving the coupled fluid-structure system can be broadly divided
into two: monolithic and partitioned. The monolithic approach3 is a fully-coupled approach where the two
systems are solved simultaneously. This approach combines both systems into one large system of equations
and solves them simultaneously, which often leads to accurate results but requires significant implementation
effort and uses less efficient solvers. The second approach, generally referred to as the partitioned approach,
uses two separate solvers to solve the subsystems and then couples them by communication between the
solvers. This method facilitates software modularity and mathematical modelling. This work implements a
high-order partitioned approach based on the implicit explicit Runge Kutta scheme (IMEX) presented in the
work of Van Zuijlen et al,4 which coupled the two subsystems in a high-order manner without sub-iterations.

The main motivation for developing a high-order FSI solver is to be able to accurately predict coupled
outputs like lift, drag and structural deformation. Increasing the accuracy of a simulation by refining the
entire space-time mesh makes the simulation computationally expensive and inefficient. A better strategy
is to evaluate errors in the output of interest and to adapt the mesh in the regions of space time which
contribute most to the error. Such methods are called output-based adaptive methods. They offer a system-
atic approach for identifying regions of the domain that require more resolution for the prediction of scalar
outputs of interest.5

In this paper, a high-order fluid structure interaction solver is developed by using a high-order partitioned
coupling algorithm. Further, the adaptive techniques are applied to 1D and 2D cases to validate the output-
based adaptation strategy, and to demonstrate a reduction in computational cost. The outline of the re-
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mainder of the paper is as follows. Section II reviews the governing equations of the fluid and structural
subsystems. Section III reviews the spatial and temporal coupling algorithm for the partitioned approach.
Section IV reviews the error estimation and mesh adaptation strategies used in this work. Finally, Section
V outlines the results generated using these methods.

II. Governing Equations

II.A. Fluid Subsystem

The fluid subsystem is governed by the Navier-Stokes equations, given by

∂u

∂t

∣∣∣
x

+∇ · ~F(u,∇u) = 0, ~F = ~F
i
(u)− ~F

ν
(u,∇u), (1)

where u(~x, t) ∈ Rs is the conservative state vector, ~x ∈ Rd is the spatial coordinate, t ∈ R, and ~F
i

and ~F
ν

are the inviscid and viscous fluxes, respectively. In the case of a non-deformable domain, the fluid equations
are solved numerically in the Eulerian frame of reference, where the computational grid is fixed and the
fluid moves with respect to the grid. However, numerical simulation of fluid dynamics involving a deforming
domain, such as in the case of FSI, face issues due to the lack of precise interface definition and under-
resolved flow features when solved in the Eulerian frame of reference. The Lagrangian approach on the other
hand, faces problems dealing with large distortions of the computational domain. To resolve these issues, an
alternate method, the Arbitrary Lagrangian Eulerian approach, has been introduced and is applied in the
present work.

II.B. Arbitrary Lagrangian-Eulerian Formulation

The Arbitrary Lagrangian Eulerian (ALE) approach combines advantages of both the Eulerian and La-
grangian approaches. In this method, the deformable physical domain is mapped to a fixed referenced
domain by a time dependent mapping. A simple and effective ALE method for DG was introduced by
Persson et al6 and a similar approach is followed in this work.7

Let the physical space be defined by v(t) and the reference space by V(t), and let G(~x, t) represent the

one-to-one time-dependent mapping between the two spaces. Each point ~X in the static reference domain
is mapped to a corresponding point ~x( ~X, t) in the physical domain, based on the desired deformation of the
mesh. The gradient of the mapping, represented by G, and the mapping velocity, ~vX , are given by:

G = ∇XG, ~vX =
∂G

∂t

∣∣∣
X

(2)

Let g=det(G). Thus, the corresponding Navier-Stokes equations in the reference frame can be written as

∂uX
∂t

∣∣∣
X

+∇X · ~FX(uX ,∇XuX) = 0, ~FX = ~F
i

X(uX)− ~F
ν

X(uX ,∇XuX), (3)

where the transformed vectors, derivatives, and fluxes in the reference frame are given by:

uX = gu, (4)

∇xu = ∇X(g−1uX)G−T = (g−1∇XuX − uX∇X(g−1))G−T , (5)

~F
i

X = gG−1~F
i
− uXG−1~vX , ~F

ν

X = gG−1~F
ν
. (6)

II.C. Spatial Discretization

To discretize the state equations (Eq. 1), a discontinuous Galerkin finite-element method is used in space.
DG,8 as a finite-element method, approximates the state u in functional form using linear combinations of
basis functions on each element. No continuity constraints are imposed between adjacent elements. Denoting
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by Th the set of Ne elements in a non-overlapping tessellation of the domain Ω, the state on element e, Ωe,
is approximated as

uh(~x(~ξ))
∣∣∣
Ωe

=

Np∑
n=1

Uenφen(~x(~ξ)). (7)

In this equation, Np is the number of basis functions per element, Uen is the vector of s coefficients for the

nth basis function on element e: φen(~x(~ξ)), and s is the state rank. ~x denotes the global coordinates, and
~ξ denotes the reference-space coordinates in a master element. Formally, uh ∈ Vh = [Vh]s, where, if the
elements are not curved, Vh = {u ∈ L2(Ω) : u|Ωe

∈ Pp ∀Ωe ∈ Th} , and Pp denotes polynomials of order p
on the element. With the spatial discretization described above, the governing equations can written in an
abbreviated form as:

R̄
f

= Mf dUf

dt
− rf = 0, (8)

where rf is the discrete spatial residual vector, R̄
f

is the temporally strong-form unsteady residual, and the
f superscript denotes that these equations apply to the fluids subsystem.

II.D. Structural Subsystem

The structural dynamics are governed by a set of partial differential equations derived on the basis of
continuum modelling with an arbitrary constitutive law. For the initial development of the coupled solver,
a linear structure model is assumed. Discretizing the governing equations in space using a continuous finite-
element method, the semi discrete form of the equation is given by:

Müs + Cu̇s + Kus = F, (9)

where us represents the vector of displacements, M is the mass matrix, and K is the stiffness matrix of
the structure. C denotes the internal or external damping in the structure, and F represents the vector
of external forces acting on the structure. The semi-discrete form can be re-written as a system of two
first-order ordinary differential equations:[

M 0

0 1

]
U̇
s

+

[
C K

-1 0

]
Us =

[
0
]

where Us =

[
u̇s

us

]
, (10)

where 1 denotes the identity matrix. The governing equations can be written in an abbreviated form as:

R̄
s

= Ms dUs

dt
− rs = 0, (11)

where rs is the discrete spatial residual vector, and R̄
s

is the strong-form unsteady residual. The superscript
s denotes that these equations apply to the structures subsystem.

III. Fluid Structure Coupling

Solving the coupled fluid-structure problem using a high-order partitioned approach intrinsically requires
separate high-order solvers for both the fluid and the structural subsystems. The coupling then occurs by
communication between the two solvers. The Discontinuous Galerkin (DG) formulation of the Navier-Stokes
equations coupled with high-order time stepping schemes such as ESDIRK4/ DIRK4 allows for the solution
of the fluid subsystem with high-order accuracy in both space and time. Similarly, high-order elements
in the continuous Galerkin formulation of the structural governing equations coupled with high-order time
stepping provides us with high-fidelity solutions for the structural subsystem. Thus, development of a high-
order partitioned solver comes down to the order of coupling between the subsystems.

III.A. Spatial Coupling

The partitioned approach for FSI allows us to use a separate mesh discretization for each subsystem which
offers the advantage of resolving regions of complex flow in the fluids or large displacement in the structures.
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This may result in meshes for the coupled problem which may not coincide at the interface. Thus, a spatial
coupling algorithm is required to interpolate interface displacement and velocities from the structural mesh
to the fluids and loads from the fluid mesh to the structures. For one-dimensional test cases, cubic splines
provide high-order of accuracy for interpolation and have been used for the spatial coupling in this work.
When dealing with complex structures for multi-dimensional problems, radial basis function (RBF) or near-
est neighbor interpolation will be considered based on previous studies.9

III.B. Mesh Deformation

For deforming domains, the ALE formulation of the Navier-Stokes equations requires a mapping between the
reference and the deformed physical mesh. An explicit mapping presented by Persson and Peraire10 for the
case of a membrane has been used in this study, where the mapping that deforms the structure according to
a given shape reduces to the identity mapping away from the structure and is smooth in-between. The mesh
motion algorithm differs slightly from the explicit mapping where 7th order (septic) polynomials instead of
quintic polynomials are used to blend in the radial directions.

III.C. IMEX

The time integrator used in this study is the Implicit Explicit Runge Kutta scheme.11 IMEX is a high-order
time integration scheme developed for stiff time marching problems where the velocity term can be split
into a stiff and non-stiff component. The stiff component of the velocity is then solved implicitly in time,
while the non-stiff component is solved explicitly. To demonstrate the scheme, consider a semi-discretized
multiphysics equation,

Mu̇ = r(u, t) = f(u, t) + g(u, t), (12)

where M is the mass matrix, u is the state vector, and r is the residual which is split into f and g, the stiff
and non-stiff component respectively. f is integrated with an s-stage explicit Runge-Kutta scheme and g is
integrated with an s-stage diagonally-implicit Runge-Kutta scheme.

un,j = un−1 +

j−1∑
p=1

âjpk̂n,p +

j∑
p=1

ajpkn,p (13)

Mk̂n,j = ∆tnf(un,j , tn−1 + ĉj∆tn) (14)

Mkn,j = ∆tng(un,j , tn−1 + cj∆tn) (15)

un = un−1 +

s∑
p=1

b̂pk̂n,p +

s∑
p=1

bpkn,p (16)

The IMEX scheme considered in this paper consists of an explicit Runge-Kutta (ERK) and a stiffly-accurate
explicit, first stage, singly-diagonally implicit Runge-Kutta (ESDIRK) scheme.

III.D. Temporal Coupling

The coupled FSI problem can be represented in the semi-discrete form as

Mu̇ = r(u), (17)

u =

[
uf

us

]
, r =

[
rf (uf ; z(us))

rs(us; t(uf ))

]
, M =

[
Mf 0

0 Ms

]
, (18)

where u is a combined vector of the fluid and structural states, and z and t denote the terms in the residual
responsible for the coupling of the two subsystems. From Eq. 11, the residual of the structural subsystem
may be separated as

rs(us; t(uf )) = rss(us) + rsf (t(uf )) (19)
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The first term represents the effect of the current structural state, while the second term represents the
effect of the traction from the fluid. Since the second term is linear in t, a predicted value of the traction is
introduced, t̃, as presented in Froehle and Persson.12 Thus, the residual can be re-written as

rs(us; t(us)) = rs(us; t̃) + rsf (t(uf )− t̃). (20)

Using the above formulation, Eq. 8 can be split as

M
du

dt
=

[
0

rsf (t(uf )− t̃)

]
+

[
rf (uf ; z(us))

rs(us; t̃)

]
. (21)

With the introduction of a predictor, the coupled problem has been suitably modified into a form where the
high-order IMEX scheme can be applied. As already mentioned, in the IMEX scheme the stiff (first) term
is integrated explicitly and the non-stiff (second) term is integrated implicitly in time. However, the scheme
differs slightly from IMEX as the evaluation of the explicit terms rsf is avoided and instead the stage flux is
updated for the structure equation using the corrected value of the coupling t(uf ). To solve the subsystems
implicitly, ESDIRK4, is employed. An explicit traction predictor, proposed by Van Zuijlen et al,4 for the
structural subsystem, at an implicit stage i is given by

t̃ =

i−1∑
j=1

âij − aij
aii

tj , (22)

where âij and ai,j are the coefficients of the explicit and implicit Runge-Kutta integration schemes.

Figure 1 summarizes a single time step of the coupled solver. The coupled FSI problem uses a block
Gauss-Seidel partitioning, where the structural subsystem uses the explicit traction predictor (Step 1) and
is integrated first, in an implicit manner (Step 2) . The spatial coupling algorithms transfer the predicted
interface data to the fluid subsystem (Step 3) which is then implicitly integrated (Step 4). Corrected traction
obtained from the fluid solve is lastly used to correct the structural subsystem (Steps 5 and 6).

IV. Output-Based Mesh Adaptation

In the coupled FSI problem, the numerical error in the output results from discretization errors generated
in both the fluid and structural subsystems. For this study, the errors generated in the structural subsystem
are neglected and only the errors from the fluid discretization drive the adaptation process. To adapt the
mesh, spatially discrete but continuous in time adjoints are used to estimate the error in the output of
interest.13

Figure 1. IMEX algorithm for one coupled time step.
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IV.A. Continuous-in-Time Adjoint Evaluation

Consider an unsteady output of the form

J̄ =

T∫
0

J(Uf ,Us, t) dt, (23)

where J is a spatial functional of the fluid, Uf , and structural, Us, state. The continuous adjoints, Ψf and

Ψs, represent the sensitivity of the output to perturbations in the unsteady residuals R̄
f

(Eq. 8) and R̄
s

(Eq. 11), respectively. To derive the adjoint equations, a Lagrangian is defined as

L = J̄ +

T∫
0

ΨT
f R̄

f
dt+

T∫
0

ΨT
s R̄

s
dt. (24)

As the focus of this work is on the errors in the fluid discretization and thus the fluid adjoint, perturbations
in the structural state are ignored and assumed to be independent of the perturbation in the fluid state.
Substituting Eq. 23 into Eq. 24, integrating the second term by parts, and requiring stationarity of the
Lagrangian with respect to the permissible state variations, which in this particular work is only in the fluid
state, δUf , gives

ΨT
f MfδUf

∣∣∣
t=T
−ΨT

f MfδUf
∣∣∣
t=0

+

T∫
0

[
∂J

∂Uf
−

dΨT
f

dt
Mf −ΨT

f

∂rf

∂Uf

]
δUfdt = 0. (25)

The middle term at t = 0 drops out since the initial condition on the primal fully constrains the state there,
so δUf = 0 at t = 0. The remaining terms yield the adjoint differential equation (from the time integrand,
transposed),

−Mf dΨf

dt
− ∂rf T

∂Uf
Ψf +

∂JT

∂Uf
= 0, (26)

and the terminal condition
Ψf (T ) = 0. (27)

Due to the terminal condition, the adjoint equation is solved backward in time. The time integration scheme
used for both the primal and the adjoint equation for this study is ESDIRK4 but other time schemes can be
used as well.

IV.B. Error Estimation

The unsteady adjoint can be used to evaluate the error in the output of interest through the adjoint-weighted
residual.14 Let Uf

H be the approximate fluid solution obtained from the current space-time approximation
space denoted by subscript H and ΨT

f,h be the fluid adjoint in the fine space denoted by h. The error in the
output is defined as:

δJ = JH(Uf
H)− Jh(Uf

h) ≈ ∂Jh

∂Uf
h

δUf
h ≈ −

T∫
0

ΨT
f,hR̄

f
h(Uf

H)dt, (28)

where δUf
h = Uf,H

h −Uf
h is the primal error in the fluid state and Uf,H

h is the injected solution from space
H to h. The exact unsteady adjoint, which is unavailable, is approximated in a finer space grid by increasing
the degrees of freedom in the spatial discretization.

IV.C. Mesh Adaptation

Unsteady error estimates in the space-time fluid mesh guide the adaptation process. Space-time elements
selected for refinement or coarsening are decided by two factors: 1) estimated error in the space-time element,
2) computational cost of refinement. These two aspects are combined into an adaptive indicator called the
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“figure of merit” which is the element error eliminated by refinement divided by the degrees of freedom
introduced by the refinement. The cost is defined by the total degrees of freedom,

C ≡ CspaceCtime , Cspace ≡
Ne∑
e=1

n(pe) , Ctime ≡ Ntnr, (29)

where n(pe) is the number of spatial degrees for an element of order pe, and nr is the number of temporal
degrees of freedom, i.e. system solves, per time step. For example, ESDIRK4 has nr = 5. In this work
the adaptive strategy refines in space by hanging node refinement (h-adaptation) or spatial order refinement
(p-adaptation) and in time by reducing the uniform time step.

V. Results

In this section, the high-order coupled solver is validated and the effectivity of the error estimate and the
efficiency of the adapted space-time meshes are demonstrated. The two test cases chosen to showcase the
benefits of adaptivity in aeroelastic problems are accurate drag estimation on a cantilevered beam subjected
to a low Reynolds number flow, and accurate flutter prediction on a pitching-plunging airfoil in a high
Reynolds number flow.

V.A. Cantilevered beam

Consider the flow around an Euler-Bernoulli beam cantilevered at the leading edge. At the undeformed
strain-free position, the beam makes an angle of attack of 5 degrees to the flow. The actual beam is consid-
ered two dimensional when represented in the fluid mesh, with a length of 1 and a thickness of 0.005. The
fluid mesh uses a structured grid consisting of 1954 nodes and 1840 quadrilateral elements. The domain
consists of a rectangular box , [0,9]×[0,8] where the beam is cantilevered at the center of the domain and
the fluid enters the domain from the left. Symmetry boundary conditions at the top and bottom of the
domain and a static pressure boundary condition at the outlet are used. Figure 2 shows the computational
fluid mesh. The one-dimensional beam is represented by 8 beam elements of uniform size in the structures
solver. The fluid and structural meshes are constructed such that the interface nodes coincide, thus reducing
the error in the structural coupling of the two subsystems. After adaptation, cubic splines are used as the
spatial coupling algorithm to transfer data between the subsystems.

The fluid flow properties are Mach number M = 0.2 and Reynolds number Re = 2000, and the beam
has an elastic modulus E = 0.2, area moment of inertia I = 1, ρ = 1, cross section area A = 1, and
Rayleigh damping parameters, α = 1 and β = 1. At time t = 0, the structure is at rest and the fluid state
is obtained from a steady solve for the steady state solution of the fluid. p = 1 order polynomials have

Figure 2. The reference fluid mesh for the cantilevered beam test case.
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(a) x momentum at final time, T=15
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(b) At steady state the beam develops a negative camber

Figure 3. Time evolution of the motion of the beam.

been used for the fluid spatial discretization and the time scheme for both subsystems is ESDIRK4. The
two subsystems are coupled temporally using the IMEX scheme. For this flow condition, a convex nature
in the beam shape is expected at steady state, which is corroborated by Figure 3a, where the final time is
T = 15. Figure 3b presents the evolution of the angle of attack on the beam over time for this flow condition.

To validate the temporal convergence of the high-order coupled solver, the relative error in the lift coef-
ficient and non-dimensionalized tip displacement are measured at the final time, T = 4. A plot of the
observed relative error as a function of timestep for the ESDIRK4 scheme is shown in Figure 4. Note that in
each case, the scheme exhibits convergence at the designed rate. The plot demonstrates that this partitioned
approach attains up to 4th order accuracy in time with the IMEX coupling scheme. The output of interest
for mesh adaptation is the time-integral of the drag force on the beam,

J̄ =

T∫
0

D(t)dt. (30)

Figure 5 shows the adjoint solution at the initial time of the simulation. The adjoint solution shows the
sensitivity of the output to the perturbation in x-momentum and energy conservation equations. Using the
drag adjoint, an unsteady error estimate on the output was evaluated and used to adapt the fluid mesh.
Figure 6 compares the output convergence of the drag, using the current adjoint-based approach, to uniform
refinement. At every stage of uniform refinement, the spatial degrees of freedom of the fluid computational
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(b) Tip displacement

Figure 4. Convergence study for the IMEX scheme.
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(a) x-momentum adjoint (b) Energy adjoint

Figure 5. Uncoupled drag adjoint solution for the beam test case at initial time.

mesh and the number of time steps are doubled. The growth factor for the total number of space-time
degrees of freedom per adaptive iteration is set to ftot= 2. The initial solution, on which adaptation takes
place, is obtained with p = 1 order polynomial, 40 time steps, and a final time of T = 4. The plot shows
effectiveness of the drag adjoint relative to uniform refinement. The adapted meshes converge to a lower
error with fewer degrees of freedom, thereby increasing accuracy and reducing computational cost. Figure
15 shows the adapted fluid mesh after each successive adaptive iteration. The adaptive iterations refine
the regions close to the interface of the beam, where the drag adjoint is high, thereby reducing the spatial
discretization error in the fluid mesh on the output.

V.B. Two-dimensional pitching plunging NACA 0012 airfoil

A two-dimensional pitching plunging airfoil is a common aeroelastic model which has been studied exten-
sively.15 The two degree-of-freedom system, when exposed to an airstream of Mach number Mf , exhibits a
dynamic instability known as flutter where the two structural modes, pitch and plunge, coalesce, resulting
in a sustained simple harmonic motion of the structure. The Mach number Mf , represents the neutral
boundary for the system, above which the oscillations became unstable.

To study the phenomenon of flutter, consider a NACA 0012 airfoil pinned at the elastic axis in a free-
stream flow of Mach number M∞ as shown in Figure 7. The two degrees of freedom of the airfoil are the
plunge h, which is taken to be positive in the downward direction, and the pitch angle α, which is considered
positive clockwise (pitch up). The geometric properties of the airfoil are the chord c and semi-chord b.
Measured from the nose of the airfoil, the center of mass and the elastic axis are located at xcg and xf

0 0.5 1 1.5 2 2.5

Degrees of Freedom 10 7

0.033

0.034

0.035

0.036

0.037

0.038

0.039

D
ra

g

Drag Adjoint

Uniform Refinement

Figure 6. Comparison of output-based adaption to uniform refinement.
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Figure 7. Model of a two-degree-of-freedom pitching-plunging airfoil

respectively. The inertia properties of the airfoil are the mass, m, and the moment of inertia about the
elastic axis, If . The airfoil is connected to two springs at the elastic axis where the plunge spring represents
the bending stiffness, Kh, of the structure, and the torsional spring represents the torsional stiffness, Kα.
The equations of motion of the pitching-plunging airfoil are given as:

mḧ + Sα̈ +Khh = −L, (31)

Sḧ + If α̈ +Kαα = M, (32)

where S is the static unbalance defined by the product between (xcg − xf ) and the mass of the airfoil, L
is the total lift acting on the airfoil and M is the net moment on the airfoil about the elastic axis. The
non-dimensional parameters used to describe the model are defined as:

µ =
m

πρ∞b2
, ω̄ =

ωh
ωα

, rα =

√
If
mb2

, χ =
S

mb
, (33)

where µ is the mass ratio, ω̄ is the ratio of the uncoupled natural frequencies, and rα and χ are the non-
dimensional inertia and static balance, respectively. The natural pitching and plunging frequency are defined
as ωh =

√
Kh/m and ωα =

√
Kα/If . The case setup has been taken from Sanchez et al.16 where the non-

dimensional parameters are set as µ = 100, ω̄ = 0.3185, rα = 0.5 and χ = 0.25, to ensure a subsonic flutter.
The pitching frequency is set to be ωα = 45rad/s and the elastic axis is located at the quarter chord of the

(a) (b)

Figure 8. Unstructured viscous mesh for the pitching plunging airfoil,
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Figure 9. Aeroelastic response of the airfoil in the subcritical regime as a function of the non-dimensional time (τ).

airfoil. The Reynolds number is set to Re = 4 × 106 and the chord is, c=1. The airfoil is set at an initial
angle of attack of five degrees to the flow.

A coarse, unstructured, triangular, viscous mesh of 2766 elements is generated for the coupled simula-
tion, as shown in Figure 8. The airfoil is located centrally in the domain, the boundary of which consists of
a square box which spans from [-100c, 100c] in both dimensions. The fluid flow is simulated using a RANS
solver with the SA turbulence model.17 The coupled system uses the fourth-order time scheme, ESDIRK4,
introduced in the section III, to march forward in time. A steady-state flow solution is used as the initial
condition for the simulation. A mesh motion algorithm is applied to handle the deformations occurring in
the fluid subsystem due to the moving airfoil. The mesh motion algorithm divides the spatial domain into
two sub-domains. The region extending up to a radial distance of one chord away from the elastic axis
is deformed rigidly according to the deformation provided by the structures solver. Following the region
of rigid deformation, a septic polynomial blends the deformation smoothly in the region extending between
a radial distance of one chord and ten chords resulting in zero deformation at a radial distance of ten chords .

Using the parameters defined above, the aeroelastic response of the coupled system is verified by con-
ducting a simulation at a subcritical Mach number, M∞ = 0.1. The simulation is performed with p = 3
order polynomials for the fluid spatial discretization and 60 time steps per oscillation of the plunge mode of
the airfoil. The response of the coupled system is compared against Wagner’s incompressible aerodynamic
model. Figure 9 shows the non-dimensionalized unsteady pitch and plunge displacements as functions of
the non-dimensional time, τ = ωαt. The unsteady pitch and plunge displacements are consistent with the
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-0.15

-0.1

-0.05
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(a) Non-dimensional plunge displacement
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(b) Pitch angle

Figure 10. Aeroelastic response of the airfoil near the flutter boundary as a function of the non-dimensional time (τ).
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(a) Conservation of the x-momentum adjoint (b) Conservation of the y-momentum adjoint

Figure 11. Uncoupled lift adjoint solution for the airfoil at the initial time.

theoretical aerodynamics model at the subcritical Mach number as well as other CFD solvers as shown in
Sanchez et al.16 To determine the flutter boundary of the system, the aeroelastic response is recorded for
varying Mach numbers. The damping coefficient of the plunge displacement in each run is evaluated by the
logarithmic decrement approach and fitted by a quadratic polynomial to estimate the actual flutter Mach
number. Figure 10 shows the aeroelastic response at three different Mach numbers close to flutter using
p = 3 order polynomials for the spatial discretization. The responses at M∞=0.345 and M∞=0.348 lie in
the sub-critical regime while the response at M∞=0.352 is past the flutter boundary as the states grow
without bound over time. The flutter Mach number is estimated to be at Mf=0.351 by interpolating using
the damping evaluated at these Mach numbers.

The errors in the flutter boundary evaluation arise due to the spatial discretization errors in the fluid
subsystem and the temporal discretization in both the fluid and the structural subsystem. A p-refinement
study of the coupled simulation corroborated the effects of spatial discretization on the flutter boundary for
the two-degree of freedom system. An equivalent time-refinement study did not result in a significant change
in the flutter boundary due to the fourth-order order time scheme, ESDIRK4, and a small time step used in
the coupled simulation. Therefore, the spatial discretization errors dominate the flutter boundary evaluation
and an adaptive procedure is used to obtain an optimized fluid mesh.

The current implementation of the adaptation process allows for adaptation in the spatial order of ele-

(a) (b)

Figure 12. Element order distribution at the end of the adaptation process on the pitching-plunging airfoil. The elements
colored dark blue denote p = 1, light blue denote p = 2, green denote p = 3, orange denote p = 4, and dark red denote
p = 5 order elements.
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Figure 13. Spatial distribution of the element spatial order at the end of the adaptation process

ments i.e, p-adaptation for unstructured triangular meshes. The adaptation process begins with a coarse
viscous mesh with p = 1 order elements in the entire domain. The adaptation process is not directly adapting
on the flutter Mach number as the quantity is dependent on the both subsystems and requires the evaluation
of the coupled adjoint. However, as the current implementation of the coupled solver provides the fluid
adjoint only, the adaptation is based on the time-integrated lift.

J̄ =

T∫
0

L(t)dt. (34)

The accurate estimation of the flutter Mach number and the unsteady lift are both affected by the spatial
errors in the fluid subsystem. As the governing equation of the structural subsystem is dependent on the
lift, adapting on the unsteady lift will directly affect the flutter Mach number evaluation as well. The Mach
number chosen for the adaptation cycle is, M∞ = 0.345, which lies in the subcritical regime. The final time
chosen for each adaptation iteration is at the end of the first cycle of oscillation in the plunge displacement
of the airfoil. Figure 11 shows the conservation of the x-momentum and y-momentum components of the
lift adjoint at initial time. The magnitude of the lift adjoint decreases away from the airfoil showing that
the output is most sensitive to the residuals on the elements close to the airfoil. Using the lift adjoint, an
unsteady error estimate for the output is evaluated and used to adapt the fluid mesh. The total number
of degrees of freedom introduced after each adaptive iteration is set by the growth factor which is set to,
ftot=1.2. The optimized mesh is obtained by subjecting the coarse mesh to four cycles of adaption.

Figure 12 shows the spatial order of interpolation after each adaptive iteration. The higher order ele-
ments (p = 4 and p = 5) introduced in the adaptation process target the elements with the highest error
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Figure 14. Comparison of the flutter boundaries for output-based adaptation to uniform p-refinement.
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estimates and lie primarily in the vicinity of the airfoil and inside the blending region, as shown in Figure
13. Adaptation occurring in the blending region seems counter-intuitive as the adjoints on these elements is
not as large in magnitude as on the elements inside the rigid deformation region, as seen in Figure 11. The
reason behind elements in the blending region being chosen for adaptation also goes back to the definition of
the adaptive indicator which is a function of the adjoint and the residual evaluated by projecting the coarse
space solution into the fine space. The elements inside the blending region, despite having a lower adjoint
magnitude suffer from the errors originating from mesh motion algorithm. This results in a larger residual
term in the adaptive indicator. The mesh motion errors become smaller with higher-order approximation7

but are dominant at lower order approximation of the state, where the adaptation begins. Similar adaptation
is not observed in the cantilevered beam case, as the amount of structural displacement is smaller due to
the high structural stiffness and added damping.

Figure 14a compares the convergence of the flutter boundary Mach number for the adapted meshes against
uniform p-refinement. At every stage of uniform refinement, the spatial order of the elements in the entire
domain is increased by one. The reference/truth flutter Mach number, Mf = 0.3498 is evaluated on a highly
refined viscous mesh with 10492 elements with p = 4 elements in the entire spatial domain. The fine mesh
is generated by refining the coarse mesh anisotropically. A metric is introduced for the size of each element
which is scaled by a factor to obtain the refined mesh. The plot shows the effectiveness of the adaptation
process relative to uniform refinement. Figure 14b compares the error in flutter Mach number for the adapted
meshes against uniform p refinement. The adapted meshes converge at a faster rate with fewer degrees of
freedom, thereby increasing accuracy and reducing computational cost.

VI. Conclusions

In the paper, the concepts of a high-order partitioned approach are combined with output-based adap-
tation to provide high-fidelity solutions for fluid-structure interaction problems. The one-dimensional can-
tilevered beam test case verifies the high-order coupling scheme, IMEX, by demonstrating the expected order
of convergence. The two dimensional pitching-plunging NACA 0012 airfoil is also simulated using the high-
order coupled solver for which the aeroelastic response is verified at low Mach numbers against Wagner’s
incompressible aerodynamic model. An adaptive meshing procedure is applied to obtain an accurate drag
prediction for the beam case and flutter boundary for the two degree-of-freedom case. The adaptive meshing
procedure increases the total computational time of the coupled simulations due to the additional adjoint
evaluation by a approximate factor of two. However, the significant benefit of higher accuracy at lower
degrees of freedom outweighs the increase in the computational expense. The impact of the mesh motion
errors is highlighted significantly in the adapted meshes and a better understanding of the error generated
by the mesh motion algorithms is the subject of ongoing research. Overall, the adaptive meshing procedure
provides significant increase in the accuracy of unsteady outputs for aeroelastic problems compared to more
common adaptation methods, such as uniform refinement.
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