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This paper introduces an adaptive mesh refinement approach for solving fluid-structure
interaction problems. A high-order partitioned approach is applied to couple the fluid and
the structural subsystems, where the fluid subsystem is discretized using a discontinuous
Galerkin finite-element method, while the structural solver uses a continuous Galerkin
discretization. The space-time mesh of the fluid subsystem is adapted using a goal-oriented
approach based on the coupled adjoint. Error estimates for unsteady outputs are evaluated
using an adjoint-weighted residual after calculating the unsteady adjoint of the coupled
system. The benefits of adaptive meshing are demonstrated on fluid and structural outputs
of interest evaluated for a two-dimensional pitching-plunging airfoil in a high-Reynolds
number flow and a cantilever beam in a laminar flow.

I. Introduction

The interaction between a movable or deformable structure with an internal or surrounding fluid flow,
generally referred to as fluid-structure interaction (FSI), finds relevance across various disciplines of engi-
neering. The field of aeroelasticity is one such field where FSI plays a crucial role. Accurate numerical
simulation of the interaction between the elastic wing of an airplane and the incoming flow is important
for understanding, for example, performance and aeroservoelastic stability and response predictions. High-
fidelity computational aeroelasticity (CAE) solves the complete Navier-Stokes equations using computational
fluid dynamics (CFD) coupled with the finite element modeling of the structure using computational struc-
tural dynamics (CSD). These high-fidelity models have the capability to capture nonlinearities in the flow
as well as in the structure. High fidelity is also critical in the transonic regime where complex phenomena
exist such as buffeting, buzz, and flutter “transonic dip”.1 The interaction between the fluid and structural
subsystems involves multiple scales, thereby making the coupled system challenging to solve. Many numer-
ical approaches have been suggested for simulating fluid-structure interaction2 and these can be broadly
divided into two categories: monolithic and partitioned. The monolithic approach3 is a fully-coupled ap-
proach where the two systems are solved simultaneously. This approach combines both systems into one
large system of equations and solves them simultaneously, which often leads to accurate results but requires
significant implementation effort and uses less efficient solvers. The second approach, generally referred to as
the partitioned approach, uses two separate solvers to solve the subsystems and then couples them by com-
munication between the solvers. This method facilitates software modularity and mathematical modeling.
The present work implements a high-order partitioned approach based on the implicit explicit Runge Kutta
scheme (IMEX) presented in the work of Van Zuijlen et al.,4 which couples the two subsystems without
sub-iterations.

Accurate evaluation of functional outputs of interest in high-fidelity aeroelasticity is challenging because of
the substantial computational effort involved. Increasing the accuracy of outputs from coupled simulations
using heuristic approaches such as uniform space-time mesh refinement makes the simulation computation-
ally expensive and inefficient. Finite-element techniques employing goal-oriented adaptive strategies can offer
significant efficiency improvements. They offer a systematic approach for identifying regions of the domain
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that require more resolution for the prediction of outputs of interest.5

Goal-oriented mesh adaptation techniques rely on local error indicators. These indicators depend on the
sensitivity information which is obtained in the form of solutions to the adjoint problem. A comprehensive
analysis of the linearized adjoint formulation for coupled FSI problems is given by van der Zee et al.6 In that
work, the domain-map linearization approach is used to obtain the adjoint, where the fluid sub-problem is
first transformed to a fixed reference domain, after which one linearizes with respect to the domain trans-
formation map.

In this paper, a coupled adjoint is developed for a high-order FSI solver. Further, goal-oriented mesh
adaption in the fluid subsystem is developed using the coupled adjoint and is applied to two-dimensional
FSI cases to demonstrate a benefit in accuracy and a reduction in computational cost. The outline of the
remainder of the paper is as follows. Section II reviews the governing equations of the fluid and structural
subsystems. Section III reviews the spatial and temporal coupling algorithm for the partitioned approach.
Section IV reviews the error estimation and mesh adaptation strategies used in this work. Finally, Section
V outlines the results generated using these methods.

II. Governing Equations

II.A. Fluid Subsystem

The fluid subsystem is governed by the Navier-Stokes equations, given by

∂u

∂t

∣∣∣
x

+∇ · ~F(u,∇u) = 0, ~F = ~F
i
(u)− ~F

v
(u,∇u), (1)

where u(~x, t) ∈ Rŝ is the conservative state vector, ~x ∈ Rd is the spatial coordinate, t ∈ R, d is the number

of space dimensions, and ~F
i

and ~F
v

are the inviscid and viscous fluxes, respectively. In the case of a non-
deformable domain, the fluid equations are solved numerically in the Eulerian reference frame, where the
computational grid is fixed and the fluid moves with respect to the grid. However, numerical simulation of
fluid dynamics involving a deforming domain, such as in the case of FSI, faces issues due to the lack of a
precise interface definition and under-resolved flow features when solved in the Eulerian frame of reference.
Alternatively, the Lagrangian approach, in which each node in the fluid mesh follows the material particle
during motion, faces problems dealing with large distortions of the computational domain. To resolve these
issues, an alternate method, the Arbitrary Lagrangian Eulerian approach, is employed in the present work.

II.B. Arbitrary Lagrangian-Eulerian Formulation

The Arbitrary Lagrangian-Eulerian (ALE) formulation combines advantages of both the Eulerian and La-
grangian approaches. In this method, the deformable physical domain is mapped to a fixed referenced domain
by a time-dependent mapping. A simple and effective ALE method for DG was introduced by Persson et
al.7 and a similar approach is followed in this work.8

Let ~x = G ( ~X, t) represent the one-to-one time-dependent mapping between the physical volume and the

reference volume. Each point ~X in the static reference domain is mapped to a corresponding point ~x in
the physical domain, based on the desired deformation of the mesh. The spatial Jacobian of the mapping,
represented by the d×d matrix G, and the mapping velocity, ~vX , are given by

G = ∇XG , ~vX =
∂G

∂t

∣∣∣
X
. (2)

Let g=det(G). The corresponding Navier-Stokes equations in the reference frame can be written as

∂uX
∂t

∣∣∣
X

+∇X · ~FX(uX ,∇XuX) = 0, ~FX = ~F
i

X(uX)− ~F
ν

X(uX ,∇XuX), (3)

where the transformed vectors, derivatives, and fluxes in the reference frame are given by:

uX = gu, (4)
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∇xu = ∇X(g−1uX)G−T = (g−1∇XuX − uX∇X(g−1))G−T , (5)

~F
i

X = gG−1~F
i
− uXG

−1~vX , ~F
ν

X = gG−1~F
ν
. (6)

II.C. Spatial Discretization

To discretize the state equations (Eq. 1), a discontinuous Galerkin finite-element method is used in space.9–11

DG, as a finite-element method, approximates the state u in functional form using linear combinations of
basis functions on each element. No continuity constraints are imposed between adjacent elements. Denoting
by Th the set of Ne elements in a non-overlapping tessellation of the domain Ω, the state on element e, Ωe,
is approximated as

uh(~x(~ξ))
∣∣∣
Ωe

=

Np∑
n=1

Uenφen(~x(~ξ)). (7)

In this equation, Np is the number of basis functions per element, Uen is the vector of s coefficients for the

nth basis function on element e: φen(~x(~ξ)), and s is the state rank. ~x denotes the global coordinates, and
~ξ denotes the reference-space coordinates in a master element. Formally, uh ∈ Vh = [Vh]s, where, if the
elements are not curved, Vh = {u ∈ L2(Ω) : u|Ωe

∈ Pp ∀Ωe ∈ Th} , and Pp denotes polynomials of order p
on the element. With the spatial discretization described above, the governing equations can written in an
abbreviated form as:

R̄
f

= Mf dUf

dt
− rf = 0, (8)

where rf is the discrete spatial residual vector, Mf is the fluid mass matrix, R̄
f

is the temporally strong-form
unsteady residual, and the f superscript denotes that these equations apply to the fluids subsystem.

II.D. Structural Subsystem

The structural dynamics are governed by a set of partial differential equations with an arbitrary constitutive
law. For the initial development of the coupled solver, a linear structural model is assumed. Discretizing the
governing equations in space using a (continuous) finite-element method, the equations are given by:

M̄üs + Cu̇s + Kus = F, (9)

where us represents the vector of displacements, M̄ is the mass matrix, and K is the stiffness matrix. C
denotes the damping in the structure, and F represents the vector of external forces acting on the structure.
The second-order form of the equilibrium equations, Eq. 9, can be re-written in first order as:[

M̄ 0

0 1

]
U̇
s

+

[
C K

-1 0

]
Us =

[
0
]
, where Us =

[
u̇s

us

]
, (10)

and 1 denotes the identity matrix. Finally, the governing equations can be written in an abbreviated form
as:

R̄
s

= Ms dUs

dt
− rs = 0, (11)

where rs is the discrete spatial residual vector, Ms is the augmented mass matrix, and R̄
s

is the strong-form
unsteady residual. The superscript s denotes that these equations apply to the structures subsystem.

III. Fluid-Structure Coupling

III.A. Spatial Coupling

The partitioned approach for FSI allows to use a separate mesh discretization for each subsystem, which
offers the advantage of resolving regions of complex flow in the fluids or large displacement in the structures.
This may result in meshes for the coupled problem which may not share coincident node locations at the
interface. Thus, a spatial coupling algorithm is required to interpolate interface displacement and velocities
from the structural mesh to the fluids, and loads from the fluid mesh to the structures. Radial basis functions
(RBF) provide high accuracy for interpolation and have been used for the spatial coupling in this work.12
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Figure 1: Example of inner and outer radius of the blending region for the explicit mapping mesh motion.

III.B. Mesh Deformation

For deforming domains, the ALE formulation of the Navier-Stokes equations requires a mapping between
the reference and the deformed physical mesh. The mapping interpolates the boundary displacements to
the interior of the fluid mesh. The explicit mapping presented by Persson et al.13 does not require solving
a system of equations for deforming the volume. It uses explicit expressions for the mapping that blend
the motion, smoothly reducing it to the identity mapping away from the boundary. For any rigid body
deformation, the mesh motion algorithm divides the entire spatial domain into two regions based on inner
and outer radii of the blending region. The region extending up to the inner radius from the center of the
deformation marks the region of rigid deformation. Within this region, any deformation provided by the
user is applied to all of the mesh elements without any blending. The presence of the rigid region prevents
errors such as mesh element inversion in highly-stretched elements, which face such errors when placed in a
blending region. The blending region, which exists between the inner and outer radii from the center of the
motion, uses a polynomial function to blend the deformation radially such that the deformation goes to zero
at the outer radius. To achieve blending of the motion, septic polynomial blending functions,

P (r) = −20r7 + 70r6 − 84r5 + 35r4, (12)

are used, where r is the normalized radial distance from the inner radius. Figure 1 shows the deformed mesh
for an airfoil undergoing rigid-body pitch motion. The inner and outer radii are placed at one and ten chords
away, respectively, from the center of motion, which is at the quarter chord of the airfoil. For the cantilever
beam considered in the later part of this work, RBFs are used to deform the fluid mesh. In this work, a
compact C0 continuous basis function based on a polynomials with a support radius of one chord is used.14

III.C. IMEX

The coupled FSI problem can be represented in semi-discrete form as

Mu̇ = r(u), (13)

u =

[
uf

us

]
, r =

[
rf (uf ; z(us))

rs(us; t(uf ))

]
, M =

[
Mf 0

0 Ms

]
, (14)

where u is a combined vector of the fluid and structural states, and z and t denote the terms in the residual
responsible for the coupling of the two subsystems. From Eq. 11, the residual of the structural subsystem
may be separated as

rs(us; t(uf )) = rss(us) + rsf (t(uf )). (15)
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The first term represents the effect of the current structural state, while the second term represents the effect
of the traction, t, from the fluid. Since the second term is linear in t, a predicted value of the traction is
introduced, t̃, as presented in Froehle and Persson.15 Thus, the residual can be re-written as

rs(us; t(us)) = rs(us; t̃) + rsf (t(uf )− t̃). (16)

Using the above formulation, Eq. 13 can be split as

M
du

dt
=

[
0

rsf (t(uf )− t̃)

]
+

[
rf (uf ; z(us))

rs(us; t̃)

]
. (17)

With the introduction of a predictor, the coupled problem has been suitably modified into a form where the
high-order IMEX scheme can be applied. As already mentioned, in the IMEX scheme the non-stiff (first)
term is integrated explicitly and the stiff (second) term is integrated implicitly in time. However, the scheme
differs slightly from IMEX as the evaluation of the explicit terms rsf is avoided and instead the stage flux is
updated for the structure equation using the corrected value of the coupling t(uf ). To solve the subsystems
implicitly, ESDIRK4, is employed. An explicit traction predictor, proposed by Van Zuijlen et al.,4 for the
structural subsystem, at an implicit stage i is given by

t̃ =

i−1∑
j=1

âij − aij
aii

tj , (18)

where tj is the traction at an intermediate stage j and âij and aij are the coefficients of the explicit and
implicit Runge-Kutta integration schemes, respectively.

IV. Output-Based Mesh Adaptation

In the coupled FSI problem, the numerical error in the output results from discretization errors generated
in both the fluid and structural subsystems. These errors are estimated and are used to drive the adaptation
process. In this work, the primary focus of the adaptation will be on the fluid mesh. To adapt the mesh,
spatially discrete but continuous in time adjoints are used to estimate the error in the output of interest.16

IV.A. Continuous-in-Time Adjoint Evaluation

Consider an unsteady output of the form

J̄ =

T∫
0

J(Uf ,Us, t) dt+ JT (Uf ,Us), (19)

where J and JT are spatial functionals of the fluid, Uf , and structural, Us, states. Note that JT is a
function of only the final-time (T ) state. The continuous adjoints, Ψf and Ψs, represent the sensitivities of

the output to perturbations in the unsteady residuals R̄
f

(Eq. 8) and R̄
s

(Eq. 11), respectively. To derive
the adjoint equations, a Lagrangian is defined as

L = J̄ +

T∫
0

Ψf,T R̄
f
dt+

T∫
0

Ψs,T R̄
s
dt. (20)

Substituting Eq. 19 into Eq. 20, integrating the second and third term by parts, and requiring stationarity
of the Lagrangian with respect to the fluid state variations gives

∂JT

∂Uf
δUf

∣∣∣
t=T

+Ψf,TMfδUf
∣∣∣
t=T
−Ψf,TMfδUf

∣∣∣
t=0

+

T∫
0

[
∂J

∂Uf
−dΨf,T

dt
Mf−Ψf,T ∂rf

∂Uf
−Ψs,T ∂rs

∂Uf

]
δUfdt = 0.

(21)
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The middle term at t = 0 drops out since the initial condition on the primal fully constrains the state there,
so δUf = 0 at t = 0. The remaining terms yield the fluid adjoint differential equation (from the time
integrand, transposed),

Mf dΨf

dt
+
∂rf,T

∂Uf
Ψf +

∂rs,T

∂Uf
Ψs =

∂JT

∂Uf
, (22)

and the terminal condition

Ψf (T ) = −[Mf ]−1 ∂JT

∂Uf

∣∣∣
t=T

. (23)

The governing equations for the structural adjoint can be obtained in a similar fashion as well. As both the
adjoint equations of the individual subsystems are coupled, they can be written in a matrix form as

Mf 0

0 Ms

Ψ̇f

Ψ̇s

+


∂rf,T

∂Uf

∂rs,T

∂Uf

∂rf,T

∂Us

∂rs,T

∂Us


[
Ψf

Ψs

]
=


∂JT

∂Uf

∂JT

∂Us

 . (24)

The off-diagonal terms ∂rs,T /∂Uf and ∂rf,T /∂Us, which represent the change in the structural residual due
to perturbation in the fluid state and the change in the fluid residual due to perturbation in the structural
state, are evaluated using finite differences in this work. Due to the terminal condition, the adjoint equations
are solved backward in time. The time integration scheme used for both the primal and the adjoint equation
for this study is ESDIRK4 but other time schemes can be used as well.

IV.B. Error Estimation

The unsteady adjoint can be used to evaluate the error in the output of interest through the adjoint-weighted
residual.17 Let Uf

H be the approximate fluid solution obtained from the current space-time approximation
space denoted by subscript H, and ΨT

f,h be the fluid adjoint in the fine space denoted by h. The error in
the output is defined as:

δJ = JH(Uf
H)− Jh(Uf

h) ≈ ∂Jh

∂Uf
h

δUf
h ≈ −

T∫
0

Ψf,T
h R̄

f
h(Uf

H)dt, (25)

where δUf
h = Uf,H

h −Uf
h is the primal error in the fluid state and Uf,H

h is the injected solution from space
H to h. The exact unsteady adjoint, which is unavailable, is approximated in a finer space grid by increasing
the degrees of freedom in the spatial discretization. The finer space grid is obtained by increasing the spatial
order of the elements by one in the fluid mesh.

IV.C. Fluid Mesh Adaptation

Unsteady error estimates in the space-time fluid mesh guide the adaptation process. Space-time elements
selected for refinement or coarsening are chosed based on two factors: 1) estimated error in the space-time
element, 2) computational cost of refinement. These two factors are combined into an adaptive indicator
called the “figure of merit” which is the element error eliminated by refinement divided by the degrees of
freedom introduced by the refinement. The cost, C, is defined by the total degrees of freedom,

C ≡ CspaceCtime , Cspace ≡
Ne∑
e=1

n(pe) , Ctime ≡ Ntnr, (26)

where n(pe) is the number of spatial degrees for an element of order pe, and nr is the number of temporal
degrees of freedom, i.e. system solves, per time step. For example, ESDIRK4 has nr = 5. In this work the
adaptive strategy refines in space by spatial order refinement (p-adaptation), and in time by reducing the
uniform time step.
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V. Numerical Results

In this section, the coupled adjoint is verified for two-dimensional FSI problems for varying outputs of
interest. Using error estimates based the coupled adjoint, the efficiency of the adapted space-time meshes
is demonstrated for fluid and structural outputs of interest. A pitching-plunging airfoil subjected to a high
Reynolds number flow and a cantilever beam subjected to a laminar flow are the test cases of varying
structural and fluid complexity, chosen to illustrate the benefits of mesh adaptivity in aeroelastic problems.

V.A. Pitching-plunging NACA 0012 airfoil

A two-dimensional pitching-plunging airfoil is a common aeroelastic model which has been studied exten-
sively.18 Consider a NACA 0012 airfoil pinned at the elastic axis in a free-stream flow of Mach number M∞
as shown in Figure 2. The two degrees of freedom of the airfoil are the plunge h, which is taken to be positive
in the downward direction, and the pitch angle α, which is considered positive clockwise (pitch up). The
geometric properties of the airfoil are the chord c and semi-chord b. Measured from the nose of the airfoil,
the center of mass and the elastic axis are located at xcg and xf , respectively. The inertia properties of the
airfoil are the mass, m, and the moment of inertia about the elastic axis, If . The airfoil is connected to two
springs at the elastic axis where the plunge spring represents the bending stiffness, Kh, of the structure, and
the torsional spring represents the torsional stiffness, Kα. The equations of motion of the pitching-plunging
airfoil are given as:

mḧ+ Sα̈+Khh = −L, (27)

Sḧ+ If α̈+Kαα = M̃, (28)

where S is the static unbalance defined by the product between (xcg − xf ) and the mass of the airfoil, L

is the total lift acting on the airfoil, and M̃ is the net aerodynamic moment on the airfoil about the elastic
axis. The non-dimensional parameters used to describe the model are defined as:

µ =
m

πρ∞b2
, ω̄ =

ωh
ωα

, rα =

√
If
mb2

, χ =
S

mb
, (29)

where µ is the mass ratio, ω̄ is the ratio of the uncoupled natural frequencies, and rα and χ are the non-
dimensional inertia and static balance, respectively. The natural pitching and plunging frequencies are
defined as ωh =

√
Kh/m and ωα =

√
Kα/If . The case setup has been taken from Sanchez et al.19 where

the non-dimensional parameters are set as µ = 100, ω̄ = 0.3185, rα = 0.5 and χ = 0.25, to ensure a subsonic
flutter. The pitching frequency is set to be ωα = 45 rad/s and the elastic axis is located at the quarter chord
of the airfoil. The Mach number is M∞ = 0.345, and the chord is c = 1. The airfoil is set at an initial angle
of attack of five degrees to the flow.

A coarse, unstructured, triangular, viscous fluid mesh with 2766 elements is generated for the coupled
simulation, as shown in Figure 3. The airfoil is located in the center of the domain, the boundary of which
consists of a square box which spans from [−100c, 100c] in both dimensions. The fluid flow is simulated using
a RANS solver with the SA turbulence model.20 The coupled system uses the fourth-order time scheme,

Figure 2: Model of a two-degree-of-freedom pitching-plunging airfoil.
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(a) (b)

Figure 3: Unstructured viscous mesh for the pitching-plunging airfoil test.

ESDIRK4, introduced in Section III, to march forward in time. A steady-state flow solution is used as the
initial condition for the simulation. A mesh motion algorithm is applied to handle the deformations occurring
in the fluid subsystem due to the moving airfoil. The mesh motion algorithm divides the spatial domain
into two sub-domains. The region extending up to a radial distance of one chord away from the elastic axis
is deformed rigidly according to the deformation provided by the structures solver. Following the region
of rigid deformation, a septic polynomial blends the deformation smoothly in the region extending between
a radial distance of one chord and two chords resulting in zero deformation at a radial distance of two chords.

The aeroelastic response of this coupled solver has been verified previously in Ojha et al.21 To verify
the coupled adjoint, a smooth laminar flow with a Reynolds number of Re = 1000 is simulated for five time
steps with a final time of 0.005. The unsteady simulation is only run for a few such time steps to reduce
the error arising from the temporal discretization. With this case setup, the unsteady coupled adjoint is
verified by comparing the sensitivities of the outputs of interest against finite differences. Two outputs of
interest from both the fluid and the structural subsystem are chosen: the time integrated lift and the pitch
displacement and the final time lift and the pitch displacement. Using the adjoint formulation, the sensitives
of the outputs of interest are evaluated with respect to the initial pitch angle of attack, which is set at time
t = 0,

∂J

∂Us

∣∣∣
t=0

= Ψs,TMs
∣∣∣
t=0

. (30)

To evaluate the sensitivities from finite differences, a perturbation is given to the initial pitch angle of at-
tack and the four outputs of interest are then evaluated again. The differences between the outputs in the
perturbed condition and the original condition are used to evaluate the sensitivities. For the chosen outputs
of interest, the agreement is excellent for small perturbations, as shown in Figure 4. The spatial order of
interpolation is taken to be one for verification; however, similar agreement is obtained for higher spatial
orders of interpolation as well. This verifies the implementation of the coupled adjoint in the FSI solver.

The verified coupled adjoint can be used in adapting the fluid and structural meshes for various outputs
of interest, as shown in Section IV. In this work, the focus is on adapting fluid meshes for both fluid and
structural outputs of interest. For mesh adaptation, the case setup is slightly changed, and a turbulent flow
at a Reynolds number of Re = 4 × 106 is used. At this flow condition, the Mach number of M = 0.345 is
slightly below the flutter boundary of the structure and large oscillations are observed in the structure which
damp in time. The fluid mesh is adapted for the time-integrated lift coefficient and time-averaged pitch
displacement from time t = 0 to t = 30, during which the airfoil undergoes one complete pitch oscillation.
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Figure 4: Verification of the coupled adjoint using a parameter sensitivity test.

Figure 5 shows the conservation of the x-momentum and y-momentum components of the fluid adjoint at
the initial time. The magnitude of the fluid adjoint decreases away from the airfoil, showing that the output
is most sensitive to the residuals on the elements above and below the airfoil, especially close to the trailing
edge. The coupled adjoint detects the streamlines enveloping the structure as well as the regions in the
mesh which are affected by the motion of the airfoil. Using the coupled adjoint, an unsteady error estimate
for the output is evaluated and used to adapt the fluid mesh. The errors in the coupled output arise due
to the spatial discretization errors in the fluid subsystem and the temporal discretization in both the fluid
and the structural subsystem. A p-refinement study of the coupled simulation corroborated the effects of
spatial discretization on the output for the two-degree of freedom system. An equivalent time-refinement
study did not result in a significant change due to the fourth-order order time scheme, ESDIRK4, and a
small time step used in the coupled simulation. Therefore, the spatial discretization errors dominate the
output evaluation and an adaptive procedure is used to obtain an optimized fluid mesh. The total number
of degrees of freedom introduced after each adaptive iteration is set by the growth factor which is ftot = 1.2.
The optimized mesh is obtained by subjecting the coarse mesh to four cycles of p-adaptation.

(a) Conservation of the x-momentum adjoint (b) Conservation of the y-momentum adjoint

Figure 5: Coupled adjoint solution for time-averaged pitch displacement output at the initial time.
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Figure 6: Comparison of the time-averaged pitch for output-based adaptation to uniform-refinement.

Figure 7 shows the spatial order of interpolation post-adaptation. The higher order elements (p = 4 and
p = 5) introduced in the adaptation process are those with the highest error estimates and lie primarily in
the vicinity of the airfoil and inside the blending region. Goal-oriented adaptation using an uncoupled fluid
adjoint for FSI problems is unable to capture the elements directly above and below the airfoil,21 which are
important for the structural subsystem, thus showcasing the importance of using the coupled adjoint for
goal-oriented adaptation in FSI simulations. Figure 6 compares the convergence of the time-averaged pitch
displacement for the adapted meshes against uniform p-refinement. At every stage of uniform refinement,
the spatial order of the elements in the entire domain is increased by one. The reference/truth output, is
evaluated with p = 6 elements in the entire spatial domain. The plot shows the effectiveness of the adap-
tation process relative to uniform refinement. Figure 6 also compares the error in pitch displacement for
the adapted meshes against uniform p-refinement. The adapted meshes converge at a faster rate with fewer
degrees of freedom, thereby increasing accuracy and reducing computational cost. These advantages can also
be seen when a similar mesh adaptation study conducted is for a fluid output of interest, the time averaged

(a) (b)

Figure 7: Element order distribution at the end of the adaptation process for the pitching-plunging airfoil.
Dark blue denotes p = 1, light blue denotes p = 2, green denotes p = 3, oranges denote p = 4, and dark red
denotes p = 5 order elements.
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Figure 8: Comparison of the time-averaged lift coefficient for output-based adaptation to uniform-refinement.

lift coefficient as shown in Figure 8.

V.B. Cantilever Beam

Consider the flow around an Euler-Bernoulli beam cantilevered at the leading edge. At the undeformed
strain-free position, the beam makes an angle of attack of 5 degrees to the flow. The actual beam is
considered two dimensional when represented in the fluid mesh, with a length of 1 and a thickness of 0.005.
The fluid mesh is represented by an unstructured square grid consisting of 758 nodes and 871 triangular
elements. The domain extends up to a distance of 100 chords from the beam, which is cantilevered at the
center of the domain. Free-stream boundary conditions are applied at the outer boundary of the mesh. The
planar beam is represented by 16 beam finite elements of uniform size in the structural solver. The cantilever
beam is subjected to a uniform fluid flow with a Mach number of M∞ = 0.345 and Reynolds number of
Re = 1000. The Euler-Bernoulli beam has a bending stiffness EI = 0.2 and mass per unit length m = 1.
The beam element has two nodes with two degrees of freedom per node. Proportional damping in the form
of Rayleigh damping with parameters, α = 1 and β = 1 is used to model the structure. The equations of
motion for the cantilever beam are given as

M̄üs + Cu̇s + Kus = F, (31)

where us is the displacement at a particular node, M̄ is the mass matrix, K is the stiffness matrix, C is the
Rayleigh damping matrix and F is the force vector. At time t = 0, the structure is at rest and the fluid
state is obtained from a steady solve for the steady state solution of the fluid. p = 1 order polynomials have
been used for the fluid spatial discretization and the time scheme for both subsystems is ESDIRK4. The
two subsystems are coupled temporally using the IMEX scheme.

To verify the coupled adjoint, a smooth laminar flow with a Reynolds number of Re = 1000 is simulated for
a single time step with a final time T = 0.0001s. The unsteady coupled adjoint is verified by comparing the
sensitivities of the outputs of interest with respect to the initial shape of the beam against finite differences.
Two outputs of interest from both the fluid and the structural subsystem are chosen: (i) the time integrated
lift and the tip displacement, and (ii) the final time lift and the tip displacement. The initial shape of the
beam at t = 0 is given by

us
∣∣∣
t=0

= A sin(x), (32)

where the amplitude variable, A, is perturbed. Using the adjoint formulation, the sensitives of the outputs
of interest are evaluated with respect to the initial shape of the beam, set at time t = 0. Using the adjoints,
the sensitivities are given as

∂J

∂Us

∣∣∣
t=0

= Ψs,TM̄
∣∣∣
t=0
− Ψ̇s,TC

∣∣∣
t=0

. (33)
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Figure 9: Verification of the coupled adjoint using a parameter sensitivity test.

To evaluate the sensitivities from finite differences, a perturbation is given to the amplitude variable, A, and
the four outputs of interest are then evaluated again. The differences between the outputs in the perturbed
condition and the original condition are used to evaluate the sensitivities. For the chosen outputs of interest,
the agreement is excellent for small perturbations, as shown in Figure 9, and it verifies the implementation
of the beam coupled adjoint.

Having verified the coupled adjoint, an error estimate based on the coupled adjoint is used to adapt
the fluid meshes for coupled outputs of interest. For mesh adaptation, the case setup described above is
simulated for a longer duration, with a final time of 4 using 200 uniform timesteps. The fluid mesh is
firstly adapted for a time averaged lift coefficient. Figure 10 shows the conservation of x-momentum and
y-momentum components of the fluid adjoint at initial time. The sensitivity of the output by the flow at
the trailing edge of the beam is highlighted by the fluid adjoint. The structural adjoint, a one dimensional
field in this case, also showcases higher sensitivity of the output to the structural degrees of freedom at
the trailing edge. The trailing edge is important for defining the overall camber of the beam which in turn
dictates the total lift generated. Thus, the increased sensitivity of the output to the trailing edge is expected

(a) Conservation of the x-momentum adjoint (b) Conservation of the y-momentum adjoint

Figure 10: Coupled adjoint solution for time-averaged lift coefficient output at the initial time.
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Figure 11: Comparison of the time-averaged lift coefficient for output-based adaptation to uniform-
refinement.

and captured well by the coupled adjoint. The initial fluid mesh, with uniform p = 1 elements in the entire
domain, is subjected to five cycles of mesh adaptation, with a growth factor of ftot = 1.2. Figure 12 shows
the spatial order distribution post adaptation. The mesh adaptation targets elements in the fluid mesh
undergoing mesh deformation along with those elements highlighted by the adjoint, i.e above and below
the beam. A comparison of the output convergence between the adapted meshes against uniform p-refined
meshes is shown in Figure 11. The output evaluated for a uniform p = 6 mesh serves as the reference
output and is used for evaluating the errors. A similar output convergence study is also conducted for a
structural output, the time-integrated tip displacement, as shown in Figure 13. For the structural output of
interest, the previously-used growth factor of ftot = 1.2 was insufficient to reduce errors significantly and was
subsequently increased to ftot = 1.3. This delayed convergence for the tip displacement output of interest
can be attributed to the way mesh refinement and mesh adaption are executed in this study. For structural
outputs of interest, the discretization errors arising from the structural mesh could be more dominant than

(a) (b)

Figure 12: Element order distribution at the end of the adaptation process for the pitching-plunging airfoil.
Dark blue denotes p = 1, light blue denotes p = 2, green denotes p = 3, oranges denote p = 4, and dark red
denotes p = 5 order elements.
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(a) Displacement convergence
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Figure 13: Comparison of the time-integrated beam tip displacement for output-based adaptation to uniform-
refinement.

those arising from the fluid mesh, particularly at later stages of fluid mesh refinement. Without mesh
refinement or mesh adaption occurring in the structural subsystem, these errors arising from the structural
discretization persist and affect the outputs, leading to delayed convergence. Despite the source of dominant
error, the adapted meshes are able to reduce the error in a similar fashion as uniform p−refinement. The
advantages of adaptive meshing can be seen clearly for both outputs of interest where convergence is achieved
with fewer degrees of freedom. Mesh adaptation using the coupled adjoint on both subsystems is expected
to give even better convergence rates and more savings on computational cost.

VI. Concluding Remarks

In the paper, the concept of goal-oriented mesh adaptation is applied successfully using a coupled ad-
joint for fluid-structure interaction problems of varying complexity. The coupled adjoint is verified for a
two-dimensional pitching-plunging NACA 0012 airfoil subjected to a subsonic flow and a cantilever beam
subjected to a laminar flow. An adaptive meshing procedure based on the coupled adjoint is applied to the
fluid mesh to obtain accurate time-averaged coupled outputs. The adaptive meshing procedure adapts in
regions important to both subsystems and helps in obtaining accurate outputs at smaller number of degrees
of freedom. Overall, the adaptive meshing procedure provides a significant increase in the accuracy of un-
steady outputs for aeroelastic problems compared to more common adaptation methods, such as uniform
refinement. The development of the coupled adjoint extends the applicability of output-based mesh adap-
tation to both the fluid and structural subsystems. This extension of mesh-adaptation capability to adapt
in both subsystems is the subject of ongoing research. Future work will explore the most efficient way of
dividing the total degrees of freedom in the complete FSI system for accurate evaluation of coupled outputs.
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