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We assess the performance of two iterative mesh optimization algorithms for generating
high-order, metric-conforming meshes appropriate for use with high-order, finite-element
methods. The three key steps in these metric-based approaches are: 1) obtain the desired
high-order, Riemannian metric field, 2) generate a linear, metric-conforming mesh, and 3)
place the high-order geometry nodes such that the mesh-implied metric conforms to the
desired metric field. The procedure to obtain the desired high-order metric field is similar to
the Mesh Optimization via Error Sampling and Synthesis (MOESS) developed by Yano1 for
linear meshes. In this work, we consider two approaches to obtain the desired, higher-order
metric field: 1) performing MOESS on a refined mesh, and 2) extending native MOESS
to high-order MOESS (HOMES). The mesh regeneration procedures used to obtain the
metric-conforming property are also described in detail. The accuracy benefits offered by
these two proposed algorithms are presented for a series of one-dimensional problems. A
two-dimensional proof of concept is also provided to establish the value of extending the
proposed metric-based optimization algorithm to higher dimensions and to demonstrate
the feasibility of the proposed mesh regeneration procedure in higher dimensions.

I. Introduction

The rapid advance and the growing accessibility of affordable high-performance computing systems to
the computational fluid dynamics (CFD) community during the last several decades have motivated several
research projects that are aimed to improve the accuracy of CFD simulations. Indeed, the additional accuracy
is becoming more important for increasingly many engineering applications. While improvement in numerical
schemes and physical models yield in higher accuracy, improvement in these aspects of CFD alone is not
suffice. Higher-quality meshes are required to get the best performance of these numerical schemes and
physical models.2 The work presented here focuses on generating optimal high-order meshes suitable for use
with high-order, finite-element methods. The optimal placement of mesh resolution (i.e., the shape and size
of a mesh element) is guided by a desired, higher-order metric field and a posteriori error estimates.

Encoding mesh resolution information into a metric field has been done in several previous works.3,4 In
the context of mesh adaptation and generation, the metric information can be derived through heuristic,5–7

semi-heuristic,8–11 and more recently, rigorous1,12 ways. These methods have been successfully applied to
generate meshes that minimize error or computational cost, and are known as metric-based mesh adaptation
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approaches. Another approach to improve the approximation power of a given mesh is to increase the
approximation power of mesh elements. This is usually done by refining the mesh (h adaptation), increasing
the polynomial order for solution approximation or output prediction (p adaptation), or combining the two
(hp adaptation).13–15 More accurate solution approximation or output prediction can also be obtained by
optimizing the test space.16–19 Yet, another option is to tailor finite-element basis functions to the problem
of interest. Several methods, such as the partition of unity method,20 the extended finite-element method,21

isogeometric analysis,22 and the discontinuous enrichment method,23 tailors the basis functions a priori.
Though it is possible for some problems, it is generally hard, especially for complex flows in which the
locations of features such as shocks and shear layers are not known ahead of time. Tailoring basis functions
a posteriori is a more robust alternative. Previous work by Sanjaya and Fidkowski24 shows that tailoring
basis functions a posteriori can be done by finding the optimal locations of the high-order geometry nodes
within a mesh element.

The high-order, metric-based optimization algorithms presented in this paper combine the key ideas
from previous works by Yano1 and Sanjaya and Fidkowski.24,25 Specifically, the procedures to obtain the
desired, higher-order metric field in the proposed optimization algorithms follow similar steps as the one
developed by Yano for linear mesh elements (i.e., MOESS) with some changes to incorporate the high-order
geometry information. The fundamental concepts pertaining to extending key ideas of MOESS for high-order
mesh elements will be discussed in details. Once we obtain the desired, high-order metric field, we solve
a metric-based optimization problem to optimally place the vertices and high-order geometry nodes. This
step essentially tailors the basis functions a posteriori on each element and generates warped mesh elements,
which is the key idea of the warped-element refinement method developed by Sanjaya and Fidkwoski.24,25

We refer to the resulting mesh as a high-order, metric-conforming mesh. Our eventual goal is to implement
this algorithm as part of a mesh generation procedure to be used with a very high-order finite-element
method (e.g., up to 16th order).

The remainder of this paper is outlined as follows. In Section II, we give a brief review on our chosen
discretization, a high-order, discontinuous-Galerkin method. In Section III, we present the mechanisms and
benefits of warped-element refinement method. In Section IV, we describe the iterative mesh optimization
algorithms used to determine the desired, high-order metric field. In Section V, we detail our approach
for placing the geometry nodes such that the metric-conforming property is obtained. In Section VI, we
showcase the accuracy benefits of high-order, metric-conforming meshes in one and two dimensions. Finally,
we conclude with a summary and our plans for future work in Section VII.

II. Discretization

Our focus for the development of the high-order, metric-based mesh optimization algorithms is on the
discontinuous-Galerkin (DG) method, mainly because we have experience with it, and because it is a rela-
tively mature high-order method suitable for convection-dominated flows that are prevalent in aerospace en-
gineering. DG,26–28 as a finite-element method, approximates the state u(~x) ∈ Rs, where s is the state rank,
in functional form using linear combinations of basis functions on each element. No continuity constraints

Ωe

element edomain Ω

Figure 1. A partition of a square domain into
triangular elements.

are imposed between adjacent elements. Denoting by Th the set
of Ne elements in a non-overlapping tessellation of the domain
Ω, the state on element e, Ωe, is approximated as

uh(~x(~ξ))
∣∣∣
Ωe

=

Np∑
n=1

Uenφ
glob
en (~x(~ξ)). (1)

In this equation, Np is the number of basis functions per element,
Uen is the vector of s coefficients for the nth basis function on
element e: φglob

en (~x(~ξ)). ~x denotes the global coordinates, and
~ξ denotes the reference-space coordinates in a master element.
Formally, we write uh ∈ Vh = [Vh]s, where, if the elements are
not curved,

Vh = {u ∈ L2(Ω) : u|Ωe ∈ Pp ∀Ωe ∈ Th} ,

and Pp denotes polynomials of order p on the element. The reference-to-global mapping, ~x(~ξ), is polynomials
of order q (Pq), where q is the geometry order of the element. A caveat here is that for warped (curved)
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elements, the polynomial approximation is usually performed on a master reference element, so that following
the reference-to-global mapping, the state approximation on curved elements is not strictly of order p in global
space. In this work, we take advantage of this observation by placing the high-order geometry nodes at their
optimal locations based on the desired metric field. Of course, this advantage can only be obtained if we
properly encode the high-order geometry information into the desired metric field.

III. Warped-Element Refinement Method

Today, curving of mesh elements is mainly performed out of necessity in obtaining accurate boundary
representation and/or in maintaining the validity of the mesh. That is, we usually only pay attention to the
precise locations of the high-order geometry nodes that lie on the boundary. Heuristics, such as avoiding
clustering of the nodes to maximize the validity of the elements, are also often used to determine the location
of these high-order geometry nodes. Recently, Sanjaya and Fidkowski24,25 investigated the importance of
the precise location these high-order nodes for better solution approximation and output prediction. To
obtain such benefits, some clustering of the high-order nodes within an element is allowed as long as the
validity of the element is maintained. The resulting mesh will contain warped (curved) mesh elements in
the regions where complex geometries and/or important flow features are present. This process is known as
warped-element refinement (q adaptation) since we are only changing the inner shape of the mesh elements.
Unlike the previous work,24 where the warping of the mesh elements is performed by directly minimizing the
solution or output error, we now use the desired, high-order metric field to guide the element warping process.
Later, we will see that warping of mesh elements is indeed vital to obtaining the desired metric-conforming
property. The duality between metric-based and solution-based optimization was previously observed in the
work done by Sanjaya et al.29

Similar to solution approximation, a different set of basis functions is used to approximate the geometry.
In this work, we choose to use a polynomial mapping from the reference element to the global element, as
this allows us to take advantage of the existing infrastructure that is already available in most high-order
codes. The formula for the mapping function is given in Figure 2, where q is the order of this polynomial,
Nq = (q+ 1)(q+ 2)/2 is the total number of degrees of freedom in the mapping, ~ξ = [ξ, η]T is the coordinate
in reference space, and ~x = [x, y]T is the coordinate in global space. Some results presented in this paper

~x(~ξ) =
Nq∑
i=1

~xiφi(~ξ)

J = ∂~x

∂~ξ
=

Nq∑
i=1

~xi
∂φi
∂~ξ

(~ξ)
T

~ξ1 ~ξ2 ~ξ3 ~ξ4

~ξ5 ~ξ6 ~ξ7

~ξ8 ~ξ9

~ξ10

reference space:

0 1

1

η

ξ

y

x

Ωe

~x1

~x2

~x3
~x4~x5

~x6

~x7
~x8

~x9~x10

global space:

Figure 2. Example of a mapping from a unit reference triangle to a curved-element in global space. The mapping
functions for the global coordinates x, y (rolled into ~x) are polynomials of order q = 3 in this case, for a total of Nq = 10
geometry nodes.

are generated using Lagrange basis functions with uniform node distribution in reference space since they
allow for an intuitive specification of the high-order element. We also explore the benefits of using Bernstein
basis functions, which are commonly used for computer-aided design (CAD), with Gauss-Legendre-Lobato
(GLL) node distribution in reference space. Other basis functions could also be used to define the element
geometry, as long as the resulting mapped elements constitute a complete, non-overlapping tessellation of
the domain.

The coordinates ~xi should be chosen consistently with the corresponding reference-space nodes, ~ξi, which
are equally spaced on the reference element. For example, in Figure 2, ~ξ6 is the centroid of the reference
triangle, so ~x6 should be located somewhere in the middle of the curved element. On edges/faces that are
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on domain boundaries, these nodes are typically on the geometry. However, these requirements do not pin
down their locations, and heuristics or quality metrics such as maximizing the Jacobian determinant are
often used in high-order node placement.

In general, for arbitrary curved elements, a function that is an order p polynomial in reference space does
not remain an order p polynomial, or even a polynomial at all, in the global space coordinates. Specifically,
a polynomial basis function in reference space, φref(~ξ), maps to a global basis function according to

φglob(~x(~ξ)) = φref(~ξ), (2)

where ~x(~ξ) is the geometry mapping given in Figure 2. Thus, by moving an element’s high-order geometry
nodes, we distort this mapping and gain control over the appearance of the high-order basis functions.
The proposed mesh optimization algorithms take advantage of this observation by incorporating the high-
order geometry information into the desired metric field and placing all geometry nodes (i.e., vertices and
high-order geometry nodes) according to this desired, high-order metric field.

IV. Iterative Metric-Based Mesh Optimization Algorithm

In this section, we provide a brief review of MOESS introduced by Yano1 for linear meshes, and detail
the required modifications to this approach in order to obtain the desired metric field suitable for high-order
meshes. Two approaches for obtaining the desired, high-order metric field are considered: 1) performing
MOESS on a refined mesh, and 2) natively extending MOESS to higher order (HOMES). For our first pro-
posed approach, no modification is made to the MOESS algorithm, and the high-order geometry information
is obtained by simply performing the original MOESS on a refined mesh. In one dimension, for example,
the refined mesh will have q times the number of mesh elements of the original mesh of interest. For our
second proposed approach, the high-order geometry information is directly incorporated into the desired
metric field through a procedure that follows similar steps as in MOESS. The main modifications occur in
the error model and the use a set of basis functions to construct a continuous approximation of the metric
field. These basis functions are fitted through the metric at the vertices and the high-order geometry nodes.
With these modifications, HOMES generates a more accurate high-order metric field than MOESS on a
refined mesh, though the accuracy comes with a higher computational cost. Regardless of their differences,
both optimization algorithms considered here are designed to iteratively determine the optimal change in
the metric field given prescribed cost and error models. Additional details can also be found in our previous
works.12,25

IV.A. Metric-Based Meshing

A Riemannian metric field, M(~x), is a field of symmetric positive definite (SPD) tensors that functions
as a directional “yardstick” for measuring distances. In multiple dimensions, the metric distance of points
separated by δ~x is measured as

δ` =
√
δ~xTMδ~x. (3)

By definition, each edge of the elements in a metric-conforming mesh has approximately the same metric
length, i.e., Equation 3 integrated along the edge.

The success of metric-based meshing algorithm relies on its ability to extract the mesh-implied metric
information from the reference-to-global mapping Jacobian on each element, and to accurately determine
the optimal changes to this mesh-implied metric, M0(~x), for the problem at hand. The metric field is then
modified by applying affine-invariant changes4 via a symmetric step matrix, S ∈ Rd×d, according to:

M =M
1
2
0 exp(S)M

1
2
0 . (4)

This relation tells us that S = 0 leaves the metric unchanged, while diagonal values in S of ±2 log 2
halve/double the metric stretching sizes. In MOESS and MOESS on a refined mesh, transfers of metrics
between elements and nodes involve an averaging process. In HOMES, we have a continuous approximation
of the metric field, and the sensitivities are computed with respect to the coefficients of the basis functions
used to approximate the step matrix field. Although having a continuous representation of the metric field
eliminates the need for averaging of the metric, we will see later that averaging of the mesh-implied metric
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at the shared nodes can eliminate the undesirable oscillations present in the continuous representation of the
desired metric field.

IV.B. Error Convergence Model

A metric-based mesh optimization algorithm requires an error model that accurately describes the error
changes as the metric changes. In a practical setting, an error model involves refinement and sampling
procedures. However, for our test cases, we choose to simply use the least-squares error between the approx-
imated and exact solutions, or in the case of output predictions, we use the approximated and exact outputs.
Since no sampling is performed, the convergence rate, Re, is determined by the asymptotic convergence rate
based on the solution approximation order, p.

IV.B.1. MOESS on a Refined Mesh

For an element, Ωe, with a current error Ee0 and a proposed metric step matrix of Se, the general elemental
error model can be written as:

Ee = Ee0 exp [tr(ReSe)] ⇒ ∂Ee
∂Se

= EeRe. (5)

The total error over the mesh is the sum of the elemental errors, E =
∑Ne
e=1 Ee. During optimization, we

will be able to change the step matrices at the mesh vertices, Sv, which will map to the step matrices at the
elements, Se.

IV.B.2. HOMES

In order to directly encode the high-order geometry information into the metric field, the error model for
HOMES must be able to accurately model the error changes within an element. We do so by tracking the
error kernel ESM0

. Thus, the current error on element e (Ee0) and the general elemental error model (Ee) can
be written as:

Ee0 =

∫
ESM0

d~x, (6)

Ee =

∫
ESM0

exp [tr(ReSe)]d~x. (7)

This error model can be derived from Theorem D.3 in Yano’s thesis.1 In one dimension, the error kernel
simplifies to

ESM0
=

[
∂p+1u

∂xp+1

]2

︸ ︷︷ ︸
f(x)

M−(p+1)
0 . (8)

In practice, the error kernel is computed through a sampling procedure. The goal of this sampling procedure
is to solve for f(x). The sampling procedure consists of two steps. First, we split each element into sub-
elements, and for each sub-element i, we have

Ee0i =

∫
e0i

f(x)M−(p+1)
0 dx ≈ f(xi)

∫
e0i

M−(p+1)
0 dx (9)

⇒ f(xi) =
Ee0i∫

e0i
M−(p+1)

0 dx
.

Second, we interpolate linearly between the data points obtained in the first step.
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IV.C. Cost Model

We base our cost model on degrees of freedom, dof, which on each element simply depends on the approxi-
mation order p, assumed constant over the elements. In one dimension, this cost is (p+ 1) dof per element.
By Equation 4 and properties of the metric tensor, when the step matrix Se is applied to the metric of
element e, the area of the element decreases by exp

[
1
2 tr(Se)

]
. Equivalently, the number of new elements,

and hence degrees of freedom, occupying the original area Ωe increases by this factor. So, the elemental cost
model is

Ce = Ce0 exp

[
1

2
tr(Se)

]
⇒ ∂Ce

∂Se
= Ce

1

2
I, (10)

where Ce0 = dofe0 is the current number of degrees of freedom on element e, and I is the identity tensor.
The total cost over the mesh is the sum of the elemental costs, C =

∑Ne
e=1 Ce. Note that we use the same

cost model for MOESS and HOMES.

IV.D. Metric Optimization Algorithm

As previously mentioned, both MOESS and HOMES follow a similar procedure. Thus, to avoid repetition,
we start with a review of the MOESS algorithm and simply point out the modifications that are required
for HOMES.

IV.D.1. MOESS on a Refined Mesh

Given a refined mesh with its mesh-implied metricM0(~x), elemental error indicators Ee0, and elemental rate
tensor estimates, Re, the goal of the metric optimization algorithm is to determine the step matrix field,
S(~x), that minimizes the error at a fixed cost. The step matrix field is approximated by values at the mesh
vertices, Sv, which are arithmetically-averaged to adjacent elements,

Se =
1

|Ve|
∑
v∈Ve

Sv, (11)

where Ve is the set of vertices (|Ve| is the number of them) adjacent to element e. At the end of the
optimization, we will obtain the required Sv that gives us the minimum total error E at a targeted total cost
C. For MOESS is a gradient-based optimization algorithm, it requires derivatives of the error and cost with
respect to Sv, which are computed using the chain rule and Equation 11. And since the cost only depends
on the trace of the step matrix, we can separate the vertex step matrices into trace (svI) and trace-free (S̃v)
parts,

Sv = svI + S̃v. (12)

The derivatives of the error with respect to sv and S̃v are

∂E
∂sv

= tr

(
∂E
∂Sv

)
,

∂E
∂S̃v

=
∂E
∂Sv

− ∂E
∂sv

I
d
. (13)

The MOESS algorithm1 is as follows:

1. Given a mesh, solution, and adjoint, calculate Ee, Ce,Re for each element e.

2. Set δs = δsmax/nstep, Sv = 0.

3. Begin iteration: i = 1 . . . nstep

(a) Calculate Se from Equation 11, ∂Ee
∂Se from Equation 5, and ∂Ce

∂Se from Equation 10.

(b) Calculate derivatives of E and C with respect to sv and S̃v using Equation 13.

(c) At each vertex form the ratio λv = ∂E/∂sv
∂C/∂sv and

• Refine the metric for 30% of the vertices with the largest |λv|: Sv = Sv + δsI
• Coarsen the metric for 30% of the vertices with the smallest |λv|: Sv = Sv − δsI

(d) Update the trace-free part of Sv to enforce stationarity with respect to shape changes at fixed

area: Sv = Sv + δs(∂E/∂S̃v)/(∂E/∂sv). Note that we skip this step in one dimension.
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(e) Rescale Sv → Sv + βI, where β is a global constant calculated from Equation 10 to constrain the

total cost to the desired dof value: β = 2
d log

Ctarget
C , where Ctarget is the target cost.

Note that λv is a Lagrange multiplier in the optimization, which is the ratio of the marginal error to marginal
cost of a step matrix trace increase. The above algorithm iteratively equidistributes λv globally so that, at
optimum, all elements have the same marginal error to cost ratio.

IV.D.2. HOMES

The HOMES algorithm follows the similar steps as the MOESS algorithm with some fundamental modifi-
cations. The first modification is to create continuous representations of the metric and step matrix fields
using two different sets of basis functions, one set for each field. With these continuous representations, the
metric and step matrix can now be computed at any points in the computational domain. Furthermore,
all sensitivities in the HOMES algorithm are now computed with respect to the coefficients of the basis
functions used to approximate the step matrix field. The second modification is to formulate the error model
such that it also models the sub-element error behavior. We do so by tracking the error kernel, as previously
described in Section IV.B.2.

V. Mesh Regeneration Procedure

So far, we have introduced the idea of element warping to improve the approximation power of mesh
elements and the ease of using metric fields to store the mesh resolution information. In this section, we
describe our mesh regeneration approach that combines these two concepts. We are now exploring two mesh
regeneration procedures to place all geometry nodes at their optimal locations without solving any global
optimization problems and compromising greatly on the accuracy benefits.

V.A. MOESS on a Refined Mesh

The mesh regeneration procedure that is coupled with MOESS on a refined mesh does not require us to solve
any post-processs optimization problems. Since the desired, high-order metric field obtained from MOESS
on a refined mesh is merely a crude approximation, we believe that a simple, less precise mesh generation
algorithm is sufficient to obtain the benefits that MOESS on a refined mesh can offer.

The refined mesh on which we perform MOESS is generated by splitting each edge of the original mesh
elements q times. This means, in one dimension, the refined mesh is a linear mesh that has q times the
number of mesh elements of our original mesh. Referring back to the basic idea of the metric-based meshing,
we place all geometry nodes on the refined mesh such that

√
∆~xTM∆~x = 1. In one dimension, this simplifies

to
∫ √
Mdx = 1. The last step in the mesh regeneration process is then to take some of the geometry nodes

in the refined mesh as high-order geometry nodes in the original mesh of the interest. For example, for a
q = 2 mesh, every other nodes in the refined mesh are q = 2 nodes in the mesh of interest. Here, we want
to note that this mesh regeneration process indeed does not guarantee to produce a valid mesh, and as we
will see in Section VI, that this approach is not as robust as our second approach, especially for q > 2.
Furthermore, we want to note that this method cannot be directly extended to higher dimensions.

V.B. HOMES

Our main purpose of extending native MOESS to higher order is to obtain a more accurate high-order metric
field. To achieve this goal, we use a more sophisticated mesh regeneration procedure for HOMES. Here, the
mesh regeneration procedure is done in two steps. At the first step, the vertices (q = 1) nodes are placed
such that each edge length of mesh elements has approximately the same metric length. This results in a
linear, metric-conforming mesh. At the second step, the high-order geometry nodes are placed such that
the mesh-implied metric conforms to the desired metric field. This step requires us to solve an optimization
problem locally on each mesh element. The optimization problem formulation is detailed as follows.

V.B.1. Design Variables

Our design variables are the locations of the high-order geometry nodes (δδδ) within an element. For our
one-dimensional tests, we have relatively small to moderate number of design variables. So far, we have not
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observed any difficulty in finding the optimum solution. However, in two dimensions, finding the optimum
solution for large number of design variables might be a challenge, though, we expect to observe some
benefits.

V.B.2. Objective Function

Our goal is to place the high-order geometry nodes at their optimal location such that the high-order mesh
is metric conforming. To do so, the objective function is computed based on the least-squares error in the
metric approximation on each element (εM,e):

(εM,e)
2 =

∫
Ωe

∣∣J(δδδ)−TJ(δδδ)−1 −Mdesired(δδδ)
∣∣ dAe. (14)

The desired metric is obtained through HOMES, while the approximated metric is calculated based on the
reference-to-global mapping Jacobian matrix (defined in Figure 2).

V.B.3. Constraints

The proposed optimization problem involves a volume constraint:

ce ≡
min(|J(~ξint)|)

V0
− ηV > 0 (15)

The volume constraint is set by enforcing a limit in how small the Jacobian determinant can be as a fraction
(ηV ) of initial element volume (V0). The Jacobian determinant is calculated at interrogation points in the

reference space (~ξint), which consist of a large number of equally-spaced points within the element. Note
that a non-negative Jacobian determinant is needed to ensure that all mesh elements are valid so that we
obtain physical solution. The more interrogation points that are used, the better the chances are that the
element is valid everywhere, although this is not guaranteed for for a finite number of points.

V.C. Optimization Problem Formulation

We formulate our constrained optimization problem as follows:

minimize

∫
Ωe

∣∣J(δδδ)−TJ(δδδ)−1 −Mv,desired(δδδ)
∣∣ dAe, w.r.t. δδδ,

subject to ce ≡
min(|J(~ξint)|)

V0
− ηV > 0

(16)

For our one-dimensional test cases, we solve the constrained optimization problem using Matlab’s fmincon

function with the sequential quadratic programming (SQP) algorithm. An automatic tuning procedure is
implemented to determine ηV for each element. Currently, gradient calculations are performed using finite
differences.

VI. Results

The test cases presented here are formulated to demonstrate the benefits of high-order mesh elements and
to give us a deeper understanding of important concepts pertaining to high-order, metric-conforming mesh
optimization. We will start with a series of one-dimensional test cases to thoroughly assess the performance
of MOESS on a refined mesh and high-order MOESS (HOMES) in terms of numerical benefits, robustness,
convergence, and automation. Due to the simplicity of one-dimensional problems, we are able to observe
and analyze some behaviors that otherwise would be hard to see in higher dimensions. We then present a
two-dimensional proof of concept that further emphasizes the benefits high-order, metric-conforming meshes
and demonstrates the feasibility and benefits of extending one of the proposed metric-based approaches to
higher dimensions.

8 of 32

American Institute of Aeronautics and Astronautics



VI.A. Reproducing MOESS with q = 1 HOMES

The first test case is a benchmark test case to ensure that HOMES with q = 1 can reproduce MOESS. Two
exact solutions are considered. First, we consider a smoothly varying exponential function,

uexact
smooth = exp(−5x).

This function is chosen to simulate a “boundary layer”-type feature, which must be well approximated in
order to obtain an accurate output prediction in flows governed by the compressible Navier-Stokes equations.
Furthermore, the smoothness and the monotonic behavior of the function allow us to have an educated guess
on what the optimal node distribution would be. In this case, we expect the geometry nodes to be moved
toward the left domain with monotonically increasing spacings between the nodes as we move towards the
right domain. Second, we consider a smooth function with rapid changes (shown in Figure 3),

uexact
rapid changes =

cosh(πx)

(1 + 0.75 cos(2πx))
.

This function is chosen to test the ability of our proposed optimization algorithms to capture sharp solution
gradients and to recover the symmetry of the problem.
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u
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Figure 3. Exact solution with rapid changes
(
uexact
rapid changes

)

The metric fields obtained from MOESS and HOMES with q = 1 for these exact solutions are shown in
Figures 4 and 5, respectively. Here, we can see that both methods produce similar metric fields, and hence,
converge to similar meshes, as expected.

VI.B. Higher-Order Metric Representation with HOMES

Now that we have seen the performance of q = 1 HOMES, we are in a position to assess the performance of
HOMES in obtaining the desired, higher-order metric field. Figure 6 shows the p = 4 metric for uexact

rapid changes

with q = [1, 2, 3]. These metrics are generated based on geometry and metric approximations using Lagrange
basis functions with uniform node distributions in the reference space. First, notice that all metrics shown
in Figure 6 have the same baseline shape and preserve the symmetry of the solution despite the minor
differences. Second, increasing q gives us better resolution around the two peaks, and this results in lower
solution error (ε) for higher q.
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Figure 4. p = 1 metric comparison for uexact
smooth on two linear mesh elements. The metric generated using MOESS is

plotted based on the metric at vertices. For ease of reading, the geometry nodes are shown as black dots on the x-axis.
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Figure 5. p = 4 metric comparison for uexact
rapid changes on seven linear mesh elements. The metric generated using MOESS

is plotted based on the metric at vertices. For ease of reading, the geometry nodes are shown as black dots on the
x-axis.
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(c) q = 3 (ε = 6.428 × 10−3)

Figure 6. p = 4 metric for uexact
rapid changes on seven mesh elements with q = [1, 2, 3]. For ease of reading, the geometry

nodes are shown as black dots on the x-axis.
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VI.C. MOESS on a Refined Mesh vs. HOMES

The goal of this test case is to compare the accuracy benefits obtained from MOESS on a refined mesh and
HOMES for increasing p and/or q. This study is conducted using Lagrange basis functions with uniform
node distribution in the reference space for geometry and metric approximations. To provide a baseline
comparison for our proposed approaches, we provide comparison with results obtained on uniform meshes
and on meshes that are optimized by directly minimizing the least-squares error between the approximated
and exact solutions. This solution-based optimization is performed globally (i.e., all geometry nodes are
movable, except the boundary nodes).

Figure 7 shows the least-squares error in approximating uexact
smooth with two linear mesh elements. As

expected, we observe lower error as p increases. Furthermore, notice that HOMES gives us slightly lower error
than MOESS. Finally, the global solution-based optimization gives us the lowest error. This is not surprising
since our metric-based optimization is performed locally on each element. Although global optimization will
give us lower error, the cost of solving the optimization problem globally might be too large for practical
engineering purposes.

Figure 7. Least-squares error between the approximated and exact solutions (uexact
smooth) with q = 1 and 2 mesh elements.

The blue line is obtained using a uniform mesh and the black line is obtained by performing global solution-based
optimization.

Figure 8 shows the least-squares solution error in approximating uexact
smooth on a single element and two

mesh elements with q = [2, 3, 4]. The single-element cases are used to assess the robustness of HOMES and
MOESS on a refined mesh. For q = 2, we see that MOESS on a refined mesh and HOMES have comparable
performance, but as q increases, the performance of MOESS on a refined mesh deteriorates. In fact, for
p = 1 and q = 4 on a single mesh element, MOESS on a refined mesh failed to converge to a valid mesh.
This is not surprising since MOESS on a refined mesh produces a crude approximation of the metric field,
which might not be sufficiently accurate for higher q. Figure 9 shows sample p = [2, 3] approximations of
uexact

smooth obtained on a single element mesh with q = [2, 3]. For p = 2, HOMES performs better than MOESS
on a refined mesh. However, for p = 3, both methods converge to similar meshes.

Figure 10 compares the least-squares error in approximating uexact
rapid changes on uniform meshes and on

meshes generated using MOESS on a refined mesh, HOMES, and global solution-based optimization. For
this, we consider q = [1, 2, 3] and seven mesh elements. Although we observe similar error trend as our test
cases with uexact

smooth, here the metric-based optimization gives us noticeably less accuracy benefits compared
to the solution-based optimization. Furthermore, notice that MOESS on a refined mesh does not guarantee
lower error for increasing q. Finally, we find that increasing q does not change the convergence rate, but it
does give us more accurate solution approximation.

In summary, while MOESS on a refined mesh is significantly less expensive than HOMES and requires
minimal development time, the current formulation of MOESS on a refined mesh does not extend well
beyond q = 2. For q = 2, using MOESS on a refined mesh can be beneficial, especially considering the cost
of HOMES. Although more expensive, HOMES gives us the extra robustness and accuracy that MOESS
on a refined mesh lacks of. In particular, HOMES continues to offer some accuracy benefits for higher q.
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Figure 8. Least-squares error between the approximated and exact solutions for (uexact
smooth) with q = [2, 3, 4]. The blue

line is obtained using a uniform mesh and the black line is obtained by performing global solution-based optimization.
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Figure 9. Sample approximated solutions for (uexact
smooth) on a single mesh element with q = [2, 3]. The blue line is

obtained by performing global solution-based optimization. For ease of reading, the geometry nodes are shown as dots
on the horizontal black line near the x-axis. The solution curves for q = 3 overlay on top of each other.
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(a) MOESS on a refined mesh
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(c) Global solution-based optimization

Figure 10. Least-squares error between the approximated and exact solutions for uexact
rapid changes and q = [1, 2, 3] on seven

mesh elements.
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Nevertheless, the current formulation of HOMES can benefit from more research.

VI.D. The Power of a Single, High-Order Mesh Element

Next, we want to test HOMES performance for higher p and/or q orders. For this, we introduce a “shock”-
like feature into the exact solution. Furthermore, in order to demonstrate the approximation power of a
high-order mesh element when its high-order geometry nodes are placed optimally, we approximate this
function on a single mesh element. The exact solution considered here is

uexact
shock = (1 + sin(0.8πx)) tanh(15− 30π(x+ 0.24)).

Figure 11 shows that the approximated solution becomes a better representation of the exact solution when
the high-order geometry nodes are placed at their optimal locations. Moreover, we see that the accuracy
of the approximated solution improves as we increase p and/or q, as expected. Finally, we want to point
out that this observation is analogous to the ability of the warped-element refinement method to better
approximate the shock location due to the slight change in the angle of attack.

VI.E. Improving Robustness, Convergence, and Automation of HOMES

So far, we have established the need for a desired, higher-order metric representation and observed the
superior performance of HOMES in terms of accuracy benefits. With this, we will now shift our focus solely
on HOMES. In particular, we aim to improve its robustness, convergence, and automation.

VI.E.1. Metric at Shared Geometry Nodes

Extracting mesh-implied metric information and constructing a high-quality, desired metric field are key
steps in the metric-based mesh optimization algorithm. Thus, it is important for HOMES to have the ability
to build a continuous metric approximation that is free from noise and undesirable oscillations. To do so,
we implement a simple average of the metric at shared nodes. Although having a continuous representation
of the metric field eliminates the need for averaging (i.e., such as one that is implemented in MOESS),
moving the high-order geometry nodes within an element can cause discontinuities in the reference-to-
global mapping Jacobian at the shared nodes, and these discontinuities can greatly affect the quality of the
continuous metric representation. Indeed, we find that a least-squares fit (with logarithm barrier) through
these discontinuous Jacobian does not work well since it allows for undesirable oscillations in the continuous
metric approximation. By averaging the metric at these shared nodes, HOMES can produce higher-quality
metric field.

VI.E.2. Choice of Basis Functions and Node Distribution for Geometry and Metric Approximations

The geometry and metric approximations in the previous sections are computed using Lagrange basis func-
tions with uniform node distribution in reference space. While this combination of basis functions and node
distribution shows promise in terms of accuracy, it does not give us the necessary robustness, convergence,
and automation for applying HOMES to one-dimensional output predictions on high-order meshes. This
finding motivates the study on how the combination of basis functions and node distribution for geometry
and metric approximations affects HOMES performance in terms of accuracy benefits, quality of desired
metric field, and sensitivity to initial mesh and optimization parameters. For this purpose, we test four
possible basis functions and node distribution pairs, involving Lagrange basis functions, Bernstein basis
functions, uniform node distribution, and GLL node distribution. This study shows that the use of uniform
node distribution causes the lack of robustness and convergence, and that Bernstein basis functions possess
desirable properties that are needed for generating higher-quality, desired metric field.

Figure 12 shows that the combination of Bernstein basis functions and GLL node distribution further
improve upon the previously observed accuracy benefits. These additional accuracy benefits can also be
obtained at lower computational cost. We suspect that the higher-quality, desired metric field contributes
greatly in reducing the time spent in the mesh regeneration process and in allowing for the use of larger δs
and smaller nstep, resulting in lower overall runtime. The change in the choice of basis functions and node
distribution also reduces HOMES sensitivity to initial mesh and optimization parameters. With this, we
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Figure 11. Approximated solution (shown in red) to the “shock”-like function (shown in black) for different p and q
combinations. The desired metric field is obtained using HOMES. The geometry nodes are shown as red dots on the
x-axis.
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Figure 12. Comparison of least-squares error between the approximated and exact solutions for (uexact
smooth) with p =

[1, 2, 3, 4] and q = [1, 2, 3, 4] on different meshes and two different pairs of basis functions and node distribution. The test
cases on four mesh elements are strictly performed with the combination of Bernstein basis functions and GLL node
distribution in order to further test its benefits.
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decided to run the solution approximation test case on a finer mesh (i.e., 4 mesh elements), and we continued
to observe this improvement.

Figures 13 to 15 further highlight the benefits of the combination of Bernstein basis functions and GLL
node distribution. In particular, these figures visually show higher-quality, desired metric field compared to
the ones shown in Figure 6. Notice how the change in the choice of basis functions and node distribution
reduces the undesirable oscillations and better preserves the symmetry of the problem. As expected, the
improvement in the quality of the desired metric field leads to better accuracy in solution approximation.
Lastly, these figures confirm the possibility of using larger δs, smaller nstep, and a generalized set of opti-
mization parameters, showing promise for cost reduction and automation. Note that the results in previous
sections are obtained with small δs and large nstep.
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Figure 13. Updated p = 4 metric for uexact
rapid changes on seven, q = 1 mesh elements due to the change in the choice of

basis functions and node distribution for geometry and metric approximations. Blue curve: ε = 1.966 × 10−2 and red
curve: ε = 1.718× 10−2. The red curve is generated using the same settings as in Figure 6(a).

VI.F. Predicting an Output of Interest in One Dimension

For our last one-dimensional test case, we consider a one-dimensional, advection-diffusion equation,

a
∂u

∂x
− ν ∂

2u

∂x2
= 0, x ∈ [0, L], u(0) = 0, u(L) = 1, (17)

where a = 1, L = 1, and the Peclet number is Pe ≡ aL/ν = 1. Our output of interest is the viscous flux on

the right boundary, J = ν ∂u∂x

∣∣∣
x=L

. Three meshes with 8, 16, and 32 elements are optimized using HOMES

with Bernstein basis functions and GLL node distribution for geometry and metric approximations. The
step metric approximation order is set to one.

Figure 16 shows significant improvement in the accuracy of the output prediction (at least a factor of
two) compared to the uniform mesh. In general, we also see the expected error trend in that finer mesh,
higher p, and/or higher q result in more accurate output prediction, though this is not always guaranteed.
The underlying problem lies in the failure of HOMES to produce a high-quality, desired metric field due to its
sensitivity to the noise in the error kernel sampling procedure. Figure 17 shows a sample desired metric field
and the mesh-implied metric of the final mesh along with the optimal geometry node distributions. Here,
we can see the degradation of the quality of the desired metric field as the mesh gets finer, which greatly
affects the accuracy of the output prediction. Nevertheless, our mesh regeneration procedure performs well
in creating a mesh that conforms to a desired metric field. Finally, we note that the geometry nodes are
shifted towards the right boundary, as expected.
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(a) starting mesh: optimal q = 1 mesh
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(b) starting mesh: uniform q = 1 mesh
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(c) δs = 2 log(2)/80, nstep = 200
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Figure 14. Updated p = 4 metric for uexact
rapid changes on seven, q = 2 mesh elements due to the change in the choice of

basis functions and node distribution for geometry and metric approximations. Green curve: ε = 1.047 × 10−2, black
curve: ε = 1.046 × 10−2, blue curve: ε = 1.067 × 10−2, and red curve: ε = 1.064 × 10−2. The red curve is generated using
the same settings as in Figure 6(b).
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(a) starting mesh: optimal q = 1 mesh
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(b) starting mesh: uniform q = 1 mesh
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Figure 15. Updated p = 4 metric for uexact
rapid changes on seven, q = 3 mesh elements due to the change in the choice of

basis functions and node distribution for geometry and metric approximations. Green curve: ε = 5.344 × 10−3, black
curve: ε = 4.464 × 10−3, blue curve: ε = 4.820 × 10−3, and red curve: ε = 4.536 × 10−3. The red curve is generated using
the same settings as in Figure 6(c).
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Figure 16. Output error in predicting the viscous flux on the right boundary on q = [1, 2, 3] meshes. The current
version of HOMES has potential in improving the accuracy of output prediction, but further development is necessary
to continue observing the accuracy benefits for finer meshes, higher p, and/or higher q.
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Figure 17. p = 3 approximated metric (shown in red) and the corresponding desired metric (shown in black) on q = 2
meshes. The geometry nodes are shown as red dots on the x-axis. The noise in the desired metric is responsible for
lower accuracy benefits observed on finer meshes, higher p, and/or higher q.
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VI.G. Two-Dimensional Proof of Concept

Our focus here is on quantifying the benefits of q = 2, metric conforming meshes for solution approximation in
two dimensions, establishing the importance of extending one-dimensional HOMES to higher dimensions, and
demonstrating the feasibility of implementing our mesh regeneration procedure in two dimensions. As in one
dimension, the q = 2 geometry nodes will be placed such that the mesh-implied metric conforms to a desired
Riemannian metric field, and the q = 2, metric-conforming mesh will be generated by staggering linear,
metric-conforming, mesh generation (i.e., via Bi-dimensional Anisotropic Mesh Generator (BAMG)3,30,31)
with a post-process, metric-based optimization for placing the q = 2 geometry nodes. However, unlike in
one dimension, the desired metric field here will be specified analytically.

VI.G.1. Obtaining the Desired Metric Field

Extending the one-dimensional HOMES to two dimensions is not trivial. For this reason, we opt to use the
analytical metric field derived by Loseille and Alauzet.32 Of particular interest is the continuous metric field
given by

M1,α = F (x, y)

[
α2h−2

1 (x, y) 0

0 αh−2
2 (x, y)

]
F (x, y)T, (18)

where

F (x, y) =
1√

x2 + y2

[
x −y
y x

]
, h−2

1 (x, y) = 4(x2 + y2), h−2
2 (x, y) =

1

2
√
x2 + y2

.

The parameter α in the equation above is user-specified and controls the coarseness and anisotropy of the
mesh.

VI.G.2. Optimal Placement of the q = 2 Geometry Nodes

The placement of q = 2 nodes within an element is obtained by solving a metric-based optimization problem.
Since a q = 2 element has exactly one q = 2 node on each edge, the metric-based optimization problem can
be reduced to one dimension. The following unconstrained optimization problem is solved independently on
each internal edge (∂Ωe\∂Ω):

minimize

∫
∂Ωe\∂Ω

√
d~xT

edgeMd~xedge,

w.r.t. δδδ,

(19)

where the locations of the geometry nodes on the edge can be approximated using one-dimensional basis
functions:

~xedge(σ) =

Nq∑
i=1

~xiφ
1D
i (σ),

σ ∈ [0, 1] is the reference node coordinates along the edge, M is the analytical metric field, and δδδ is the
location of the q = 2 nodes on that edge. This optimization problem is solved using Matlab’s fmincon with
the sequential quadratic programming (SQP) algorithm. Once all internal edges are optimized, we check
for the validity of the mesh elements by ensuring that all Jacobian determinants at interrogation points are
non negative. The interrogation points are defined in the reference space, which consist of a large number
of equally-spaced points within the element. In the case where q = 2 node placement fails to maintain the
validity of the element, the node displacements are adjusted by a certain factor, η. For our test cases, we
find that η retains about 80-90% of the optimal displacements of the q = 2 nodes.

The initial input meshes to the metric-based optimization problem shown in Equation 19 are linear,
metric-conforming meshes generated via BAMG. Here, we consider a square domain Ω = [−1, 1]2 with
α = [5, 10, 20]. The first mesh (mesh A) does not split all internal edges with two boundary vertices in
two, while the second (mesh B) does; this can be done using -splitpbedge option in BAMG.30 We also
want to note that the analytical metric defined in Equation 18 is undefined at (x, y) = (0, 0). Although
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this might affect the node placement around the center of the square domain, a valid mesh can still be
generated. Figures 18 and 19 respectively show meshes A and B. In comparison to the linear, metric-
conforming meshes, we can visually see that the high-order, metric-conforming meshes have smoother circular
patterns, as dictated by the analytical metric field. Next, we will see that better conformity to the metric
field corresponds to more accurate solution approximation for functions with circular contour.

VI.G.3. Numerical Benefits

We quantify the approximation power of high-order, metric-conforming meshes by measuring the least-
squares error in the solution approximation. The exact functions are shown in Figure 20. The parabolic
and the parabolic hyperbolic tangent functions are chosen based on the fact that the analytical metric field
places the mesh elements to form circular patterns.

We consider the p = 1 solution approximation of the parabolic and parabolic hyperbolic tangent functions.
Figure 21 shows the least-squares error in the solution approximation of these functions. Here, we can
immediately see that the solution errors are consitently lower on the high-order (q = 2) meshes than on the
linear (q = 1) meshes. In fact, the convergence rate is slightly higher on the q = 2 meshes. Also, notice that
meshes A and B have similar solution approximation power for these two solutions. The solution error is
reduced by a factor of 2 for α = 5, by a factor of 3 for α = 10, and by a factor of 4 for α = 20. Furthermore,
the accuracy in the solution approximation improves as the mesh gets finer (i.e., larger α), as expected.
These observations are indeed consistent with our one-dimensional results. Sample approximated parabolic
solutions on meshes A and B with α = 5 and α = 20 are shown in Figures 22 and 23, respectively. As one
can expect, refining the mesh results in a higher quality of solution approximation. But more importantly,
these figures show that approximating the solution on high-order, metric-conforming meshes significantly
improves the quality of the approximated solution. That is, the discontinuity in the solution approximation
is less pronounced on the higher-order meshes and/or on finer meshes.

VII. Conclusions and Future Work

In this paper, we present two mesh optimization algorithms, called MOESS on a refined mesh and high-
order MOESS (HOMES), for generating optimal high-order, metric-conforming meshes to better improve the
accuracy of high-order, finite-element methods. The success of these metric-based optimization algorithms
greatly relies on their ability to extract the mesh-implied metric information and construct a desired metric
field. Our one-dimensional results highlight the superior potential of HOMES in this aspect, which is reflected
in the larger error reduction in solution approximation and output prediction. Some suggestions to improve
the overall robustness, convergence, and automation of HOMES are also provided in details. Furthermore,
we demonstrate the benefits of extending the one-dimensional HOMES to two dimensions. Finally, an
affordable metric-based mesh regeneration procedure to place the vertices and high-order geometry nodes
according to a desired metric field is formulated. The feasibility of this mesh regeneration procedure is also
demonstrated in two dimensions. Future work includes finalizing the HOMES algorithm, reducing the cost,
and extending the one-dimensional HOMES to two dimensions. Our long-term goal is to include HOMES
as part of high-order mesh generation process for use with very high-order, finite-element methods (e.g., up
to 16th order).
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(a) q = 1, α = 5, 176 mesh elements

-1 -0.5 0 0.5 1
x

-1

-0.5

0

0.5

1

y

(b) q = 2, α = 5, 176 mesh elements

-1 -0.5 0 0.5 1
x

-1

-0.5

0

0.5

1

y
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Figure 18. Meshes conforming to the metric field M1,α with -splitpbedge option turned off. We refer to these meshes
as meshes of type A.
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(a) q = 1, α = 5, 214 mesh elements
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Figure 19. Meshes conforming to the metric field M1,α with -splitpbedge option turned on. We refer to these meshes
as meshes of type B.
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(a) parabolic: u(x, y) = x2 + y2 (b) parabolic tanh: u(x, y) = tanh(−x2 − y2)

Figure 20. Exact solutions approximated on meshes conforming to the metric field M1,α.
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Figure 21. Least-squares error in the p = 1 solution approximation of the parabolic and parabolic hyperbolic tangent
functions on meshes conforming to the metric field M1,α, where α = [5, 10, 20]. Lower solution errors are obtained on
the q = 2, metric-conforming meshes.
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(a) q = 1, α = 5, 176 mesh elements (b) q = 2, α = 5, 176 mesh elements

(c) q = 1, α = 20, 1252 mesh elements (d) q = 2, α = 20, 1252 mesh elements

Figure 22. Sample p = 1 approximated solution of the parabolic function on meshes of type A conforming to the metric
field M1,α. The quality of solution approximation improves as we increase the q order and/or refine the mesh. Darker
shades of gray correspond to higher solution error. The discontinuity in the solution approximation appears in white.
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(a) q = 1, α = 5, 214 mesh elements (b) q = 2, α = 5, 214 mesh elements

(c) q = 1, α = 20, 1390 mesh elements (d) q = 2, α = 20, 1390 mesh elements

Figure 23. Sample p = 1 approximated solution of the parabolic function on meshes of type B conforming to the metric
field M1,α. The quality of solution approximation improves as we increase the q order and/or refine the mesh. Darker
shades of gray correspond to higher solution error. The discontinuity in the solution approximation appears in white.
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