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In this work we present and compare deterministic and statistical algorithms for efficiently solving large-
scale contaminant source inversion problems. The underlying equations of contaminant transport are
assumed linear but unsteady and defined over complex geometries. The algorithms presented are accel-
erated through discrete adjoint solutions that are pre-computed efficiently in an offline stage, yielding
savings in the time-critical online stage of several orders of magnitude in computational time. In the
deterministic case, adjoints accelerate the application of the Hessian matrix, while in the statistical case,
adjoints are used to directly evaluate samples. To address deterioration of statistical sampling efficiency
for anisotropic posteriors, we present an application of a recently developed ensemble Markov chain
Monte Carlo method. Results for two- and three-dimensional problems demonstrate the feasibility of sta-
tistical inversion for large-scale problems and show the advantage of statistical results over single-point
deterministic results.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

Real-time modeling and inversion of contaminant release
events is crucial in applications ranging from environmental safety
monitoring to homeland security. Such events include uninten-
tional industrial or transport accidents, as well as intentional bio-
logical or chemical attacks in urban environments. A successful
response to these scenarios requires rapid and accurate identifica-
tion of the extent of the contamination, inversion of the data to
find the source of the release, and prediction of the subsequent
path of contamination for evacuation and countermeasures. In this
work we address the problem of inversion of the contaminant
source for large-scale calculations under some simplifying
assumptions.

The contaminant source inversion problem is inherently com-
plex: the geometry is often intricate, the flow conditions are uncer-
tain, and the available measurements are limited and noisy.
Computationally, the evolution of the contaminant spread is char-
acterized by a system of partial differential equations that must be
discretized on complex geometries, resulting in millions of
unknowns. Moreover, the problem is generally ill-conditioned in
the sense that small changes in the outputs can cause large
changes in the calculated inputs [1]. This ill-conditioning makes
single-point deterministic calculations, ones that seek the ‘‘best’’
possible answer, not robust, where robustness is measured by
the level of risk associated with using computation in a broader
context such as design or decision making. The lack of robustness
is due to the fact that the ‘‘best’’ input may be only one of many dif-
ferent inputs that produce nearly the same outputs, especially
when measurement error is taken into account.

A statistical approach to the inverse problem, in which proba-
bility distributions instead of single-point estimates are calculated
for the inputs, can be more robust. Probability distributions convey
much more information than a most likely value, and they allow
for informed decisions that make full use of the available data
and associated uncertainties. Statistical approaches often charac-
terize the probability distributions through sampling, which
requires numerous forward simulations. However, sampling can
be expensive, especially when each forward simulation already
taxes computational resources. Thus, for large-scale contaminant
inversions, sampling-based statistical approaches quickly become
prohibitively expensive.

Multiple previous studies have investigated large-scale inverse
problems [2,3], including the societally-relevant application of
contaminant transport [4–9]. The high computational cost of prac-
tical contaminant transport simulations prevents their direct use
for inversion calculations during real-time events. Reducing this
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cost has motivated research into inversion approaches that employ
approximate solution techniques, such as grid coarsening [2,10],
reduced-order modeling [9,11], and stochastic expansions [12],
but the utility and accuracy of these approaches for generating
real-time results in practical, large-scale simulations is yet to be
demonstrated.

To some extent, previous studies have also considered applying
adjoint solutions, or at least output gradients, to uncertainty quan-
tification algorithms. These include gradient-enhanced response
surface construction via least-squares [13] and gradient-enhanced
Kriging [14]; although presented in the context of optimization,
these ideas extend to propagation of input uncertainties [15]. For
statistical inverse problems, the use of output gradients has been
proposed to improve the acceptance ratio in Markov chain Monte
Carlo sampling of anisotropic posteriors [16]. In recent work, these
gradients are computed using finite differences based on the large-
scale model [11] and on cheaper coarse-scale models [17].

2. Forward problem

The forward problem consists of determining system output
quantities through the solution of governing equations given pre-
scribed inputs. In the present case of contaminant transport, the
inputs are parameters that describe the initial condition and the
outputs are contaminant concentration measurements at various
points in space and time.

2.1. Governing equations

Transport of the scalar contaminant field is assumed to be gov-
erned by a convection–diffusion equation,

@u
@t
þr � ð~VuÞ � mr2u ¼ 0; ð1Þ

uð~x;0Þ ¼ u0ð~xÞ; ð2Þ
yk ¼ uð~xk; tkÞ; 1 6 k 6 nout ð3Þ

where uð~x; tÞ is the contaminant concentration, ~Vð~x; tÞ is the velocity
field, m is the diffusion coefficient, t ¼ 0 is the time of release, u0ð~xÞ is
the initial condition, and yk are scalar outputs. The outputs are cal-
culated at spatial positions ~xk and times tk. We allow for multiple
sensors to be located at the same position ~xk and for multiple out-
puts to be recorded at the same time tk. In solving the forward prob-
lem, (1), ~V ; m, and u0ð~xÞ are assumed known, and of interest are the
outputs yk, which require the primal solution uð~x; tÞ for t > 0.

2.2. Discretization

We discretize (1) using a high-order discontinuous Galerkin
(DG) finite element method. DG is chosen for this problem because
it offers several attractive features including straightforward
extension to high order interpolation, a compact stencil, and stabil-
ity for convection-dominated flows. Details of the DG spatial dis-
cretization can be found in previous works [11,18], and here we
only mention that we use pure upwinding for the inviscid flux
and the second form of Bassi and Rebay (BR2) [19] for the viscous
flux. Order p polynomials are used for the spatial approximation on
each element, and in time we employ second-order backward dif-
ferencing (BDF2) with BDF1 on the first time step. Once discretized,
(1) takes the following form,

RiðujÞ �M
3
2

ujþ1 � 2uj þ 1
2

uj�1
� �

þ Rsðujþ1Þ ¼ 0; ð4Þ

where uj 2 RN is the discrete state vector at time tj;1 6 j 6 NT ;u0 is
the discrete initial condition, M 2 RN�N is the block-diagonal mass
matrix, Ri 2 RN is an unsteady residual vector at time
ti;1 6 i 6 NT ;Rs 2 RN is the spatial residual, and N is the number
of spatial degrees of freedom.

We denote by u, without any superscripts, all the unknowns in
the entire time history rolled into one vector, i.e. u 2 RN�Nt . The sys-
tem in (4) can then be written as

Au ¼ Fu0; ð5Þ

where F contains the dependence of the unsteady residual on the
initial condition, only nonzero for the first two unsteady residuals,
and A is a sparse constant matrix that contains the dependence of
the unsteady residual on the state. The outputs in (3) can also be
expressed in terms of the discrete state vector according to

y ¼ Cu ¼ CA�1Fu0; ð6Þ

where y 2 Rnout and where the matrix C consists of the spatial
approximation functions evaluated at the desired sensor locations
and time nodes.

2.3. Initial and boundary conditions

We assume a spatially-Gaussian distribution for the contami-
nant concentration at t ¼ 0;u0ð~xÞ. Thus the initial condition is
described by three parameters: the distribution center, the stan-
dard deviation, and the amplitude. These parameters are rolled
into one vector, l 2 Rnpar , where npar is at most 4 in two dimensions
and 5 in three dimensions. This simplified model is relevant for
many single-point release scenarios and allows us to compare sta-
tistical and deterministic inversion approaches.

No conditions are imposed at outflow boundaries of the
domain, while u ¼ 0 is imposed at inflow boundaries. Our cases
will include geometrical objects simulating buildings, and on their
boundaries a zero flux condition is imposed. Finally, we assume a
spatially-varying but temporally constant velocity field, V

!ð~xÞ,
derived from potential flow. Specifically, we solve Laplace’s equa-
tion for the velocity potential, /ð~xÞ, approximated with p ¼ 4 poly-
nomials in space on the same mesh. We then differentiate the
potential element-wise to obtain the velocity field, V

!¼ r/ on
each element.

3. Inverse problem

Whereas the forward problem concerns calculation of outputs
of a system for given inputs, the inverse problem reverses this rela-
tionship and seeks unknown inputs from measured outputs. In the
present contaminant transport problem, the inputs l are taken as
parameters that describe the initial contaminant distribution, and
the observed outputs �y consist of noisy contaminant concentration
measurements at a limited number of sensors. In this section we
present two approaches for obtaining l given �y: one deterministic
and one statistical.

3.1. Deterministic solution

The inverse problem can be formulated as a deterministic opti-
mization problem of minimizing a cost function that incorporates
the error between observed and simulated outputs along with a
regularization term that is chosen to penalize certain features of
the inputs:

l� ¼ arg min
l
J ðlÞ; J ðlÞ ¼ yðlÞ � �yð ÞT yðlÞ � �yð Þ þ Tðu0ðlÞÞ:

ð7Þ

The expression yðlÞ is shorthand for the chain of operations
expressed in (6). TðlÞ is a regularization term that alleviates ill-con-
ditioning of the inverse problem – the use of parametrized initial



(a) Domain, mesh, outputs, and initial condition (b) Sample adjoint solution

Fig. 1. Setup for the two-dimensional contaminant transport problem, showing the computational domain, mesh, sensor locations (red triangles), and contours of the initial
condition. The prevailing advection velocity is from left to right. Shown on the right is a sample t ¼ 0 adjoint solution for one of the outputs, indicated by the triangle in the
figure. The red contours represent areas for which the output is most sensitive to t ¼ 0 residual source perturbations, e.g. those arising from initial conditions. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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conditions alleviates but does not eliminate the possibility of (7)
being ill-posed. In this work we use continuous Tikhonov regulari-
zation, which effectively penalizes large amounts of initial
contaminant,

Tðu0Þ ¼ bM u0� �T
Mu0: ð8Þ

bM is a heuristic constant that we tuned for each case by choosing
the smallest value that still produced a well-conditioned system.

We solve (7) by seeking local optima of J ðlÞ via a Newton–
Raphson method starting from several initial guesses for l. We
note that the nonlinear nature of the optimization problem arises
here solely from the functional dependence of u0 on l. Differenti-
ating J ðlÞ with respect to l and setting the result equal to zero
yields,

Rl � @u0

@l
Hu0ðlÞ � FT A�T CT �y
h i

¼ 0; ð9Þ

where the Hessian matrix, H, is
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Fig. 2. Statistical inversion results for the two-dimension
H � FT A�T CT CA�1Fþ bMM: ð10Þ
H is not computed explicitly; rather only its action on a vector is
computed through forward and adjoint solves. The Newton–Raph-
son method is applied to (9). The required Jacobian matrix,
@Rl

@l
¼ @u0

@l

� �T

H
@u0

@l
;

is computed by applying the Hessian matrix to the npar vectors @u0

@l

and then taking inner products with these same vectors. For robust-
ness, Newton updates are limited to a fraction f update ¼ 0:2 of the a
priori parameter domain extent. Finally, to account for the possibil-
ity of local optima, we solve the deterministic optimization problem
a large number of times (500 in the results presented here) with
randomly chosen starting parameter guesses.
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Fig. 3. Statistical inversion results for the two-dimensional problem with an isotropic posterior, � ¼ 5� 10�2.
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3.2. Statistical solution

An important source of uncertainty in inverse calculations,
especially in contaminant source inversion, is the uncertainty in
the output measurements. Deterministic approaches that calculate
best-fit inputs, such as the optimization method of Section 3.1,
neglect this uncertainty. More robust in such situations are statis-
tical approaches, which provide a probabilistic description of the
inputs. The solution of the statistical inverse problem is a posterior
joint probability density of the inputs, which reflects the degree of
confidence in their values [20,21].

3.2.1. Posterior probability distribution
Statistical inversion relies on a known model for the measure-

ment error. In this work we assume an additive error, e,

�y ¼ yðleÞ þ e; ð11Þ

where le are the ‘‘exact’’ parameters that we could only hope to
identify if there were no measurement errors. Furthermore, we
assume that the errors are independent and normally distributed,
with each component of e being Nð0;r2Þ, where r ¼ �Cy and Cy is
a reference contaminant concentration, here taken as unity. Values
of � are given in the results. With this error model, the likelihood of
observing outputs �y given inputs l is

pð�yjlÞ / exp � 1
2r2 ðyðlÞ � �yÞTðyðlÞ � �yÞ

� �
:

The posterior probability distribution, pðlj�yÞ is then obtained by
Bayes’ theorem,

pðlj�yÞ¼pð�yjlÞpðlÞ
pð�yÞ/

exp � 1
2r2 ðyðlÞ��yÞTðyðlÞ��yÞ

h i
if l2D

0 otherwise

(

ð12Þ
where D is a parameter domain that is assumed a priori to contain
the desired l. Specifically, pðlÞ is a prior distribution given by
pðlÞ ¼ constant for l 2 D and 0 otherwise.
3.2.2. Markov chain Monte Carlo (MCMC)
For practical problems the desired probability distribution can-

not be found analytically, leaving numerical sampling as the next
best alternative. In this work we use Markov chain Monte Carlo
(MCMC) sampling, in which a chain of samples is constructed
through a likelihood-based random walk in input space [22].
Denote by fligNm

i¼1 a Markov chain of Nm parameter samples. Given
a parameter sample l ¼ li, the Metropolis–Hastings algorithm
generates a new sample liþ1 by the following two steps:

1. Generation Step: Sample l0 from a proposal distribution,
qðl0jlÞ. Also calculate qðljl0Þ.

2. Acceptance Step: With probability
aðl0jlÞ ¼min 1;
pðl0j�yÞqðl0jlÞ
pðlj�yÞqðljl0Þ

� �
; ð13Þ
accept the proposal (liþ1 ¼ l0). Otherwise, reject the proposal
(liþ1 ¼ l).

Note that if the proposal l0 falls outside the parameter domain,
pðl0j�yÞ ¼ 0, and l0 is immediately rejected. Otherwise, the calcula-
tion of the posterior pðl0j�yÞ requires a forward solve to determine
yðl0Þ. This forward solve at every step is the most expensive part of
the MCMC algorithm, often making MCMC impractical for prob-
lems governed by large-scale models.

In this work we use a hypercube of dimensions D 2 Rnpar to
define our proposal distribution: qðl0jlÞ is a constant for l0 inside
the hypercube centered around l and 0 otherwise. The hypercube
dimensions are taken simply as the parameter domain dimensions
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Fig. 4. Normalized autocovariance functions for mean and variance estimators of the X position for the two-dimensional problem with an isotropic posterior and
� ¼ 5� 10�2.
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scaled by a factor f prop < 1. In our results we tune f prop to yield an
MCMC acceptance ratio of approximately 30% [21].
3.2.3. Ensemble-walker MCMC
We refer to the algorithm presented in Section 3.2.2 as a ‘‘sin-

gle-walker’’ MCMC, as only one sample is generated per MCMC
iteration. One problem with this algorithm is that it can be very
inefficient when exploring posterior distributions that exhibit
anisotropy, i.e. that are stretched in parameter space, specifically
when using an isotropic proposal distribution. Prior work [11] pre-
sented an anisotropic proposal in the context of single-walker
Table 1
Comparison of deterministic and statistical inversion results for the two-dimensional probl
lX and lY are mean-values and rX and rY are standard deviations of X and Y.

� Value Deterministic

1� 10�2 lX 0.2041

rX –

lY 0.2956

rY –

Acceptance ratio

5� 10�2 lX 0.1775

rX –

lY 0.3443

rY –

Acceptance ratio
MCMC for addressing this problem. In this work we employ an
alternative method that we have observed to be more robust and
efficient for anisotropic and curved posterior distributions. This
method, introduced in [23], relies on an ensemble of walkers
exploring the parameters space in a coordinated fashion.

Specifically, we use an ensemble-MCMC algorithm with a
‘‘stretch’’ move. In this algorithm, L walkers, ll;1 6 l 6 L, explore
the parameter space. During each MCMC iteration one walker, lj

is the pivot and does not move. The other L� 1 walkers, indexed
by l – j, each consider the following proposed step about the pivot,

l0l ¼ lj þ Zlðll � ljÞ ð14Þ
em with an isotropic posterior. The true initial position is ðX;YÞ ¼ ð0:2;0:3Þ. Note that

Single walker Ensemble walkers

0:2041� 2:85� 10�5 0:2040� 9:96� 10�5

0:0022� 8:21� 10�8 0:0033� 4:46� 10�7

0:2958� 6:44� 10�5 0:2958� 1:62� 10�4

0:0037� 2:91� 10�7 0:0059� 1:24� 10�6

0.314 0.314

0:1748� 2:17� 10�4 0:1729� 6:67� 10�4

0:0137� 3:98� 10�6 0:0201� 1:54� 10�5

0:3459� 3:66� 10�4 0:3470� 2:33� 10�4

0:0200� 7:52� 10�6 0:0268� 2:20� 10�5

0.338 0.321



Table 2
Computational time consumed by different components of the solver for the two-
dimensional test case. The computational times have been normalized by the forward
solve time. We expect the forward and adjoint solve times to be comparable for this
linear problem – the larger forward solve time is due to overhead associated with a
solver that is generally-applicable to nonlinear problems.

Forward solve Adjoint solve Adjoint-accelerated

Output calculation Hessian application

1 0.36 3:7� 10�5 5:9� 10�4
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where Zl is a random number, independent for each walker, drawn
from the probability distribution

pzðzÞ /
1ffiffi
z
p if z 2 ½1=a; a�
0 otherwise

(
ð15Þ

Here, a is a constant that we tune to obtain approximately 30%
acceptance ratio. Each walker l accepts the proposal l0l with
probability

aðl0ljllÞ ¼min 1; Znpar�1
l

pðl0lj�yÞ
pðllj�yÞ

� �
: ð16Þ

We denote by Ne
m the number of iterations taken by the ensemble

MCMC algorithm. Note that the costs of the single and ensemble
MCMC algorithms are approximately the same when Nm ¼ LNe

m.

3.2.4. Sampling statistics
For a large number of samples, we expect the above MCMC

algorithms to converge to the underlying posterior probability dis-
tribution. In practice we will truncate the MCMC iterations at some
reasonable number and calculate estimators of statistical quanti-
ties according to
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Fig. 5. Statistical inversion results for the two-dimensiona
f̂ ¼ 1
Nm

XNm

i¼1

f ðliÞ ðsingle walkerÞ;

f̂ ¼ 1
Ne

m

XNe
m

i¼1

1
L

XL

l¼1
f ðli

lÞ|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
Fð~liÞ

ðensemble walkersÞ:

In these expressions f ðlÞ is the kernel of the estimator, e.g. f ðlÞ ¼ l
for the mean. Fð~liÞ is an estimator over the walkers at one MCMC
iteration, ~li ¼ fli

lg. One measure of whether f̂ is sufficiently con-
verged with respect to different MCMC realizations is the estimator
variance,

varðf̂ Þ ¼ sf varðf ðliÞÞ
Nm

ðsingle walkerÞ; ð17Þ

varðf̂ Þ ¼
se

f varðFð~liÞÞ
Ne

m

ðensemble walkersÞ; ð18Þ

where sf and se
f are integrated autocorrelation times,

sf ¼ 1þ 2
X1
s¼1

covðf ðliÞ; f ðliþsÞÞ
varðf ðliÞÞ ; ðsingle walkerÞ; ð19Þ

se
f ¼ 1þ 2

X1
s¼1

covðFð~liÞ; Fð~liþsÞÞ
varðFð~liÞÞ ; ðensemble walkersÞ: ð20Þ

In practice, we truncate the infinite sums to end at s ¼
ffiffiffiffiffiffiffi
Nm
p

, or

s ¼
ffiffiffiffiffiffiffi
Ne

m

q
in the ensemble case, to avoid noise in the covariance cal-

culations for large s.

4. Adjoint acceleration

The MCMC algorithms presented in Section 3.2 for statistical
inversion will require tens or hundreds of thousands of samples
for accurate statistics. Since the calculation of the acceptance ratio
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l problem with an anisotropic posterior, � ¼ 1� 10�2.
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Fig. 6. Statistical inversion results for the two-dimensional problem with an anisotropic posterior, � ¼ 5� 10�2.
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for a sample requires output values, and hence individual forward
solutions, the cost of performing MCMC directly will be prohibitive
for large-scale problems. Prior work has addressed this issue with
approximate output evaluations based on model reduction [11] or
forward problem emulators. In this work we take advantage of the
linearity of the forward problem to calculate the outputs exactly
and efficiently using adjoint solutions. We note that adjoint solu-
tions are already incorporated into the deterministic inversion
through the presence of A�T in the Hessian matrix.

Consider one of the outputs, yk, which is a scalar contaminant
measurement. Denoting by ck the kth row of C; yk is given by

yk ¼ ckA�1|fflffl{zfflffl}
wT

k

Fu0ðlÞ ¼ wT
k F|{z}

sT
k

u0ðlÞ ¼ sT
k u0ðlÞ: ð21Þ

wk is the unsteady adjoint solution corresponding to output yk, and
sk is the associated output sensitivity vector. From (21), the adjoint
is obtained by solving
Table 3
Comparison of integrated autocorrelation times for the two-di

� sf for Single walk

1� 10�2 lX Unconverge

r2
X

Unconverge
lY Unconverge

r2
Y

Unconverge
lA Unconverge

r2
A

Unconverge

5� 10�2 lX 1:2338� 10
r2

X
83.1260

lY 1:4241� 10
r2

Y
114.8945

lA 1:9566� 10
r2

A
827.6326
AT
wk ¼ cT

k ; ð22Þ
which is a linear, unsteady equation. Due to the presence of the
transpose on A, the solution strategy for the adjoint equation is to
march backwards in time. The forcing term, cT

k , is only nonzero at
the time of the measurement reading, tk, and hence the unsteady
adjoint solution is marched from t ¼ tk to t ¼ 0. As the problem is
linear, no state storage is required for the adjoint solution, which
means that the cost of the adjoint is about the same as that of the
forward solution. Finally, the initial-condition sensitivity vector
for yk is obtained by post-processing the adjoint according to
sk ¼ FT

wk.
Once the sensitivity vectors sk are calculated, the evaluation of

an output for a given l is trivial. From (21), we see that yk is just an
inner product between the sensitivity vector and the initial condi-
tion obtained from l, both of which are vectors of size N. By
pre-computing the sk for all outputs and using (21) for all output
mensional problem with an anisotropic posterior.

er Ensemble walkers

d 1:7303� 103

d 186.8158
d 1:8971� 103

d 198.0392
d 1:8492� 103

d 124.5625

3 312.9655

55.8530
3 475.0969

66.2328
3 329.9641

77.5918



Table 4
Comparison of deterministic and statistical results for the two-dimensional problem with an anisotropic posterior. The true parameter values are ðX;Y ;AÞ ¼ ð0:2; 0:3;1:0Þ.

� Parameter Deterministic Single walker Ensemble walkers

1� 10�2 lX 0.173 – 0:2181� 7:38� 10�4

rX – – 0:0106� 9:00� 10�6

lY 0.347 – 0:2613� 1:76� 10�3

rY – – 0:0239� 4:20� 10�5

lA 0.787 – 1:3854� 2:00� 10�2

rA – – 0:2750� 2:45� 10�3

Acceptance ratio 0.317 0.286

5� 10�2 lX 0.156 0:2049� 1:40� 10�3 0:1983� 7:61� 10�4

rX – 0:0229� 1:21� 10�5 0:0254� 1:90� 10�5

lY 0.341 0:2998� 2:70� 10�3 0:3104� 1:54� 10�3

rY – 0:0419� 3:79� 10�5 0:0419� 4:40� 10�5

lA 0.717 1:4021� 2:29� 10�2 1:3146� 7:91� 10�3

rA – 0:3057� 4:20� 10�3 0:2576� 1:63� 10�3

Acceptance ratio 0.294 0.304

(a) Domain, outputs, and initial condition (b) Sample adjoint solution

Fig. 7. Setup for the three-dimensional contaminant transport problem, showing the computational domain, mesh, sensor locations (red triangles), and an iso-surface (40% of
maximum value) of the initial condition. The prevailing velocity is to the up and right in the left diagram. Shown on the right is a t ¼ 0 adjoint solution for the sensor closest to
the main dome. The red contours represent areas for which the output is most sensitive to t ¼ 0 residual source perturbations, e.g. effected through initial conditions. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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evaluations, the MCMC algorithms become tractable for large-scale
problems.

Furthermore, in the deterministic case, the adjoint solutions
simplify the application of the Hessian matrix. Using (10) and
(21), we have

Hv ¼ FT A�T CT|fflfflfflfflffl{zfflfflfflfflffl}
W

CA�1F|fflfflffl{zfflfflffl}
ST

v þ bMMv ¼
X

k

wksT
kv þ bMMv; ð23Þ

where W is a matrix whose columns are wk, and S is a matrix whose
columns are sk. Therefore, application of the Hessian matrix reduces
to a mass matrix multiplication combined with a weighted sum of
adjoint vectors, where the weights are output values obtained with
v as the initial condition.

5. Kriging forward emulator

The adjoint acceleration of output calculations presented above
is just one of many methods that can be applied to this atmo-
spheric contaminant transport problem. Other methods, such as
output response surrogates or polynomial chaos expansions, can
also be used to solve the inverse problem. In this work, to provide
a comparison, we also create a Kriging forward emulator to calcu-
late the individual forward solutions during the MCMC process.
Consider a design matrix D 2 Rnd�npar and a test matrix
T 2 Rnt�npar . We denote the number of design points by nd and the
number of test points by nt . Here, we define a set of design points,
fld

i g to be those parameter vectors at which the forward solution is
accurately computed, and a set of test points, flt

ig, to be the
parameter vectors at which an approximate but quick forward
solution is desired. During the MCMC process, the test matrix only
consists of one test point since there is only one proposed point at
a time, nt ¼ 1. The Kriging emulator is obtained by solving the fol-
lowing system,

Gd Ud

Ud;T 0

" #
w
k

� �
¼

gðTÞ
/tðTÞ

� �
ð24Þ

where Gd
ik ¼ Covðld

i ;l
d
k ; ‘Þ is the design kernel with correlation

length ‘, Ud
ij ¼ /jðld

i Þ is the jth basis function evaluated at design

point i, gik ¼ Covðld
i ;l

t
k; lÞ is the test kernel with correlation length

‘, /t
ij ¼ /jðlt

i Þ is the jth basis function evaluated at test point i,
w 2 Rnd is the weight vector, k 2 Rnb is a vector of auxiliary variables
(Lagrange multipliers) and nb is the number of basis functions.

In this work, we apply Kriging to a problem with a two-dimen-
sional input space (npar ¼ 2), and we use tensor-product (bi-linear)
basis functions. In computing design and test kernels, we normal-
ized design and test points with respect to their domain, as shown
in (25) and (26). Note that in these equations we set the domain of
the design and test points to be the same.
Gd
ik ¼ exp

Pnpar

j¼1

ðld
ij
�ld

kj
Þ

ld
maxj
�ld

minj

 !2

‘

2
666664

3
777775 ð25Þ
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Fig. 8. Statistical inversion results for the three-dimensional problem, � ¼ 1� 10�2.
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gik ¼ exp

Pnpar

j¼1

ðld
ij
�lt

kj
Þ

ld
maxj
�ld

minj

 !2

‘

2
666664

3
777775 ð26Þ

Finally, we can calculate the expected forward solution and its
variance using (27) and (28), respectively.

E½y� ¼ wT yd ð27Þ

Var½y� ¼ 1� wT g þ kT/t� �
ð28Þ

Therefore, using the expected-value formula in (27), we can com-
pute approximate individual forward solutions for use in MCMC
without running full simulations. We note that a key difference
between an emulator such as Kriging and the adjoint acceleration
approach is that the adjoint approach yields exact outputs, whereas
the emulator yields approximate ones.
6. Implementation

The deterministic and statistical inversion algorithms are
implemented using the same software library as the forward code.
Both algorithms take advantage of distributed-memory paralleliza-
tion of the computational domain for large problems, which accel-
erates the application of the Hessian matrix in the deterministic
case and the computation of vector products in the statistical case.
Adjoint vectors required for the inversion acceleration are pre-
computed in parallel during an ‘‘offline’’ stage, as this calculation
does not require any information about the measured outputs.
These vectors are stored to disk and read during the ‘‘online’’ inver-
sion runs. All calculations are performed on dual quad-core
2.3 GHz nodes with 2 GB RAM per node.

Output measurements for the inversion runs are simulated by
running the forward code with the exact inputs to obtain yðleÞ,
and then adding an additive Gaussian error according to (11). � val-
ues of .01, .02 and .05 were considered, corresponding to between
1% and 5% measurement error.
7. Results

In this section, we present deterministic and statistical inver-
sion results for contaminant transport in two and three dimen-
sions. These results are obtained using the following three
inversion approaches: deterministic inversion, statistical inversion
with single-walker MCMC, and statistical inversion with ensem-
ble-walker MCMC. For each case we verified the discrete adjoint
implementation by comparing outputs computed using the
adjoint-based sensitivity vectors to the results of an actual forward
run for a single random initial condition. The agreement was
within residual tolerance (approximately 10�10) for all outputs.

The chosen test cases include both isotropic and anisotropic
posteriors. Metrics of comparison are accuracy and efficiency of
the inversion method in computing the unknown initial conditions
of the inverse problem. Accuracy is measured relative to the ‘‘true’’
input values, le, which are the initial conditions in solving the for-
ward problem. As the solver has not been optimized, efficiency is
measured in the number of outputs calculated instead of computa-
tional time; computing the outputs is the most expensive part of
the inversion process. All results generated by MCMC inversions
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Fig. 9. Statistical inversion results for the three-dimensional problem, � ¼ 2� 10�2.

Table 5
Comparison of integrated autocorrelation times for the three-dimensional problem.

� sf for Single walker Ensemble walkers

1� 10�2 lX 661.2314 237.0236
r2

X
50.4890 36.3050

lY 3101.0774 676.3711
r2

Y
533.0037 58.4876

lZ 31.6192 128.0236
r2

Z
9.6079 39.0362

lA 4073.9410 235.0992
r2

A
2559.8635 95.2444

2� 10�2 lX 594.7043 258.1075
r2

X
50.1377 25.1242

lY 1186.1198 289.3373
r2

Y
631.8149 47.5943

lZ 53.3130 114.1064
r2

Z
20.3977 22.5975

lA 1575.1466 307.8960
r2

A
945.0098 35.7277
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do not include the first 12.5% of the generated samples to remove
burn-in.
7.1. Contaminant transport in two dimensions

The computational domain for the two-dimensional example
consists of a cross-section of a city with buildings, as shown in
Fig. 1. Five sensor locations were chosen in a pseudorandom fash-
ion by a user without iteration or tuning. Each sensor took three
readings spaced equally in time, for a total of 15 outputs. A spatial
approximation order of p ¼ 2 was used to generate the baseline
output values yðleÞ. The Peclet number for the simulations, based
on the mean velocity and domain size in the x-direction, is
Pe ¼ 100.

7.1.1. Isotropic posterior
In this example, we fix the contaminant amplitude at unity and

the contaminant spread, i.e. standard deviation, at 1/8. The inverse
problem then consists of solving for the contaminant position
l ¼ ðX;YÞ. The ‘‘true’’ initial position is le ¼ ð0:2; 0:3Þ, and the
parameter domain is ½0;1�2, which defines the left half of the com-
putational domain. We use a chain of Nm ¼ 50;000 samples for the
single-walker MCMC inversion, and a chain of Ne

m ¼ 5;000 samples
for an ensemble-walker MCMC inversion with L ¼ 10 walkers.

Figs. 2 and 3 show sample scatter plots, histograms, and MCMC
updates of single and ensemble walkers for measurement errors of
� ¼ 1� 10�2 and 5� 10�2. ‘‘Fuzzy worms’’, one indication of chain
convergence, are formed with MCMC updates of both the single
and ensemble walker algorithms. As expected, the larger measure-
ment error yields a larger spread in the inverted parameters.

To further assess convergence of the MCMC chains, the inte-
grated autocorrelation times, sf and se

f , were calculated for mean
and variance estimators of both the X and Y positions. The values
of sf (single walker) were between 6 and 15, and the values of se

f

(ensemble walker) were between 3 and 49. These values are signif-
icantly smaller than the total number of samples. Since each itera-
tion of the ensemble MCMC algorithm is a factor of L ¼ 10 more
expensive than an iteration of a single walker MCMC, the fact that
se

f ranges from half to over three times as large as sf suggests that
the ensemble walker MCMC algorithm is not necessary for this iso-
tropic problem.
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Fig. 10. Normalized autocovariance functions for mean and variance estimators of the X position for the three-dimensional problem with � ¼ 2� 10�2.

Table 6
Comparison of statistical results for the three-dimensional problem. The true parameters are ðX;Y ; Z;AÞ ¼ ð1:7; 0:12;3:6;1:0Þ. Note that l and r refer to a parameter mean and
standard deviation.

� Parameter Deterministic Single walker Ensemble walkers

1� 10�2 lX 1.6972 1:6896� 2:10� 10�3 1:6657� 1:87� 10�3

rX – 0:0491� 3:96� 10�5 0:0720� 1:21� 10�4

lY 0.0859 0:0859� 5:60� 10�3 0:1401� 2:64� 10�3

rY – 0:0593� 1:54� 10�4 0:0601� 9:80� 10�5

lZ 3.5518 3:5517� 2:48� 10�4 3:5500� 8:49� 10�4

rZ – 0:0261� 5:07� 10�6 0:0444� 5:20� 10�5

lA 0.9584 1:1020� 2:39� 10�2 0:9881� 3:18� 10�3

rA – 0:2216� 6:60� 10�3 0:1226� 9:82� 10�4

Acceptance ratio 0.313 0.280

2� 10�2 lX Not converged 1:7466� 4:10� 10�3 1:6936� 3:78� 10�3

rX – 0:0987� 1:58� 10�4 0:1393� 4:59� 10�4

lY Not converged 0:1547� 5:70� 10�3 0:2230� 2:67� 10�3

rY – 0:0975� 4:39� 10�4 0:0929� 1:81� 10�4

lZ Not converged 3:6619� 7:47� 10�4 3:6652� 1:94� 10�3

rZ – 0:0606� 4:20� 10�5 0:1073� 3:77� 10�4

lA Not converged 1:3392� 1:61� 10�2 1:3126� 7:40� 10�3

rA – 0:2401� 4:20� 10�3 0:2493� 1:23� 10�3

Acceptance ratio 0.322 0.282
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Fig. 4 shows the normalized autocovariance functions versus
sample lag s for the mean and variance estimators of the X position
at � ¼ 5� 10�2. The autocovariance functions approach zero rap-
idly and then oscillate randomly due to noise, indicating adequate
mixing of the MCMC chains in both the single and ensemble walker
cases.

The inversion results obtained from all three methods are listed
in Table 1. The deterministic results consist of only single values



Table 7
Computational time consumed by different components of the solver for the three-
dimensional test case. The computational times have been normalized by the forward
solve time. Again, the larger forward solve time relative to the adjoint is due to
overhead associated with a solver that is generally-applicable to nonlinear problems.

Forward solve Adjoint solve Adjoint-accelerated

Output calculation Hessian application

1 0.30 3:9� 10�5 2:1� 10�3
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for X and Y, whereas for the statistical results we are able to show
both the mean and standard deviation estimators and their respec-
tive variances. From this table we see that as the measurement
error increases, the quality of the deterministic inversion deterio-
rates, as expected. While the mean estimates from the statistical
results move further from the true values as well, and interestingly
follow closely the single-point deterministic results, the standard
deviation estimators increase correspondingly, informing the user
that the precise location of the contaminant source is not well-
known. Ultimately, the histograms of X and Y in the statistical case
provide the most detailed information about the accuracy of the
source inversion.

Another important question is the efficiency of the methods in
obtaining these results. By design of the MCMC chains, the number
of outputs evaluated by the single and ensemble-walker algo-
rithms were roughly equal at 50,000 – in fact, slightly lower
Table 8
Comparison of deterministic and statistical results of the isotropic, two-dimensional probl
� ¼ 2� 10�2.

p;NT Parameter Deterministic

2200 lX 2.034

rX –

lY 0.3347

rY –

Acceptance ratio

3400 lX 2.014

rX –

lY 0.3358

rY –

Acceptance ratio

Table 9
Comparison of statistical results for the three-dimensional problem. True values of the pa

p;NT Parameter Deterministic

1200 lX 1.6972

rX –

lY 0.0859

rY –

lZ 3.5518

rZ –

lA 0.9584

rA –

Acceptance ratio

2400 lX 1.6940

rX –

lY 0.0866

rY –

lZ 3.5523

rZ –

lA 0.9564

rA –

Acceptance ratio
because some proposals fell outside the parameter domain and
were immediately rejected. The cost of the deterministic inversion
is more difficult to compare quantitatively given that the algorithm
is not based on sample evaluations. Here we refer to the computa-
tional times in our implementation, as presented in Table 2. Includ-
ing all restarts from different initial conditions, on the order of
2000 Hessian matrix applications were required for the determin-
istic results. In our implementation this made the computational
cost of the deterministic inversion approximately 20 times faster
than the statistical results. We expect the deterministic algorithm
to be faster, but we are cautious about generalizing conclusions
due to arbitrary choices (e.g., number of MCMC samples or the
number of deterministic restarts) in both algorithms.

In Table 2 we also see the effect of adjoint acceleration on the
output calculation. Accounting for the fact that a forward solve
yields multiple outputs (15 in this case), we see that the speedup
of the adjoint computation is still approximately 3.5 orders of mag-
nitude. A similar speedup occurs in the application of the Hessian
matrix, which would normally require one forward and one adjoint
solve. For larger cases, this acceleration is critical to enabling real-
time inversions.
7.1.2. Anisotropic posterior
In the next set of results we use the same two-dimensional

problem as before but add contaminant amplitude, A, to the list
of inversion parameters. This addition makes the posterior aniso-
em at increased numerical resolution. The true parameters are ðX;YÞ ¼ ð0:2;0:3Þ, and

Single walker Ensemble walkers

0:1995� 2:57� 10�4 0:1970� 3:42� 10�4

0:0083� 4:37� 10�6 0:0118� 6:27� 10�6

0:3428� 5:42� 10�4 0:3471� 6:10� 10�4

0:0164� 1:24� 10�5 0:0212� 1:41� 10�5

0.383 0.320

0:1971� 2:95� 10�4 0:1936� 4:08� 10�4

0:0090� 4:89� 10�6 0:0127� 8:40� 10�6

0:3444� 5:99� 10�4 0:3499� 7:68� 10�4

0:0171� 1:29� 10�5 0:0222� 1:37� 10�5

0.389 0.316

rameters are ðX;Y ; Z;AÞ ¼ ð1;7;0:12;3:6;1:0Þ, and � ¼ 1� 10�2.

Single walker Ensemble walkers

1:6896� 2:10� 10�3 1:6657� 1:87� 10�3

0:0491� 3:96� 10�5 0:0720� 1:21� 10�4

0:0859� 5:60� 10�3 0:1401� 2:64� 10�3

0:0593� 1:54� 10�4 0:0601� 9:80� 10�5

3:5517� 2:48� 10�4 3:5500� 8:49� 10�4

0:0261� 5:07� 10�6 0:0444� 5:20� 10�5

1:1020� 2:39� 10�2 0:9881� 3:18� 10�3

0:2216� 6:60� 10�3 0:1226� 9:82� 10�4

0.313 0.280

1:6895� 3:30� 10�3 1:6679� 1:72� 10�3

0:0486� 3:91� 10�5 0:0707� 1:40� 10�4

0:0813� 7:40� 10�3 0:1366� 2:66� 10�3

0:0590� 1:84� 10�4 0:0584� 8:70� 10�5

3:5525� 3:00� 10�4 3:5509� 1:12� 10�3

0:0260� 4:99� 10�6 0:0444� 5:30� 10�5

1:1247� 3:75� 10�2 0:9875� 3:16� 10�3

0:2469� 1:09� 10�2 0:1230� 8:07� 10�4

0.309 0.280



Table 10
Comparison of statistical results for the two-dimensional problem using Kriging with uniform grid. The true parameter values are ðX;Y ;AÞ ¼ ð0:2;0:3Þ.

� Parameter Single walker set 1 Single walker set 2 Ensemble walkers

1� 10�2 lX 0:2005� 8:69� 10�5 0:3286� 5:49� 10�5 0:2011� 2:38� 10�4

rX 0:0050� 5:61� 10�7 0:0041� 3:17� 10�7 0:0079� 4:82� 10�6

lY 0:2995� 8:03� 10�5 0:0041� 3:17� 10�7 0:2988� 2:22� 10�4

rY 0:0046� 4:86� 10�7 0:0048� 4:30� 10�7 0:0072� 2:09� 10�6

Acceptance ratio 0.323 0.327 0.316

5� 10�2 lX 0:2351� 3:24� 10�3 0:3552� 1:28� 10�2 0:2550� 2:78� 10�3

rX 0:0644� 3:92� 10�4 0:1117� 5:73� 10�3 0:0858� 3:90� 10�4

lY 0:2841� 8:04� 10�4 0:6712� 5:00� 10�3 0:2756� 8:63� 10�4

rY 0:0273� 1:54� 10�5 0:0573� 9:57� 10�5 0:0379� 3:79� 10�2

Acceptance ratio 0.340 0.331 0.319
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tropic, as there can now be a trade-off between position and ampli-
tude via diffusion. The same true X and Y values are used as in the
previous example, and the true amplitude is set to A ¼ 1:0 with an
amplitude domain of ½0:1;2:0�.

For the present anisotropic posterior, longer MCMC chains are
needed. We used Nm ¼ 400;000 samples for the single-walker
MCMC, and, to obtain a similar number of output evaluations,
Ne

m ¼ 20;000 steps of the ensemble-walker MCMC with L ¼ 20
walkers. The larger number of walkers for this case was needed
to efficiently sample the anisotropic posterior.

Figs. 5 and 6 show histograms, MCMC updates, and parameter
scatter plots for the single and ensemble walkers. We see that in
the ensemble-walker case, the MCMC updates form ‘‘fuzzy worms’’
indicative of well-mixed chains. On the other hand, the single-
walker MCMC chains do not appear to be well-mixed, especially
for � ¼ 1� 10�2.

Next, we calculate the integrated auto-correlation time sf for
the mean and variance of all initial conditions to assess the MCMC
convergence. Table 3 shows that MCMC inversion with ensemble
walkers generally has a lower autocorrelation time by at least a
factor of L ¼ 20, which means that MCMC inversion with the
ensemble-walker algorithm is more efficient in this case. Note that
we could not calculate sf of single walker for � ¼ 1� 10�2 due to
the lack of convergence in the MCMC chain.

Table 4 compares the results of the deterministic and statistical
inversion algorithms for this problem. We note that we were
unable to obtain data for single-walker MCMC inversion at
� ¼ 1� 10�2 due to the lack of convergence of the single walker
for such a highly-anisotropic posterior. At � ¼ 5� 10�2, both statis-
tical inversion algorithms yield comparable estimators. However,
the estimator variances are lower in the case of the ensemble walk-
ers, indicating that the chain is better-mixed in this case.
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Fig. 11. The posterior generated using Kriging (left) compared to the exact posterior (ri
Kriging. Anisotropy also occurs when Kriging is used.
The deterministic results only provide information about the
mean values of the parameters of interest, and these are of similar
accuracy as the statistical results. However, the deterministic
results do not provide information about the variance of the
inverted parameters, and hence no metric by which to judge the
quality of the inversion.

In order to assess the efficiency of the statistical inversions, we
calculate the number of output evaluations. The single-walker
MCMC runs required roughly Nm output evaluations, i.e. 400,000.
This is because few proposals fell outside the domain due to the
use of a small proposal hypercube required to keep the acceptance
ratio at the optimal 30%. In the ensemble-walker case, about 25% of
the proposals fell outside the parameter domain, so that the num-
ber of output evaluations was smaller, at approximately 300,000.
In this case, the deterministic results were obtained with roughly
the same number of Hessian matrix applications as in the previous
example, i.e. 2000. The computational time results for this case are
the same as given in Table 2. This makes the deterministic solve
about two orders of magnitude faster than the statistical methods.
However, we again stress the presence of multiple tunable param-
eters affecting the accuracy and robustness of the deterministic
approach, as well as the fact that the deterministic result provides
only a single-point answer, as opposed to the entire posterior dis-
tribution obtained from statistical methods.
7.2. Contaminant transport in three dimensions

For our three-dimensional test case, we simulate contaminant
transport in a realistic urban area. The domain, shown in Fig. 7,
is the same as in Lieberman et al. [24]: a rectangular prism of
dimensions 4:71� 4:13� 0:85, where one model unit corresponds
to 100 m in the physical domain. Outputs are obtained from 10
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sensors with locations as shown in Fig. 7. Each sensor provides 4
readings for a total of 40 outputs. The sensors were chosen in a
pseudorandom fashion by a user without iteration or tuning. The
Peclet number for the simulations, based on the mean velocity
and the domain extent in the direction of velocity, was Pe ¼ 50.
True output measurements were generated by running the forward
simulation with finite element order p ¼ 1 approximation and a
prescribed initial condition as shown in Fig. 7.

For this test case, we set the ‘‘true’’ input parameters to
ðX;Y ; Z;AÞ ¼ ð1:7;0:12;3:6;1:0Þ. We used Nm ¼ 400;000 samples
for the single walker, and Ne

m ¼ 20;000 samples of the ensemble-
walker with L ¼ 20 walkers. Again, we chose the number of walk-
ers to get good results, although we did not find a high degree of
sensitivity to the number of walkers, as long as this number was
sufficiently high. Figs. 8 and 9 show statistical inversion results
for � ¼ 1� 10�2 and 2� 10�2. Notice that while all MCMC chains
of ensemble walkers formed ‘‘fuzzy worms’’, this was not the case
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Fig. 12. Statistical inversion results for the two-dimensional prob
for the single walker (e.g., the MCMC chains for Y position and
Amplitude in Fig. 8). Note also the high degree of scatter for the
single-walker samples with � ¼ 2� 10�2.

Table 5 compares the integrated autocorrelation times for both
statistical inversions. The autocorrelation times of the ensemble
walker algorithm are generally lower than those of the single fac-
tor, in some cases by up to a factor of 20.

Fig. 10 shows the normalized autocovariance functions for
mean and variance estimators of the X position using
� ¼ 2� 10�2. The autocovariances for both the single and the
ensemble-walker cases are seen to approach zero rapidly and then
to oscillate randomly due to noise, indicating well-mixed chains.
We note that the oscillations in the ensemble-walker case are of
larger amplitude than in the single-walker case.

Table 6 show deterministic and statistical results for the three-
dimensional problem. Whereas the deterministic results provide
only one value for each parameter, the statistical results yield addi-
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lem generated using Kriging with uniform grid, � ¼ 1� 10�2.
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Fig. 13. Statistical inversion results for the two-dimensional problem generated using Kriging with uniform grid, � ¼ 5� 10�2.
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tional information through standard deviations and histograms.
Moreover, for � ¼ 2� 10�2, the deterministic inversion failed to
converge for any regularization parameter, bM , attempted. In other
words, at this level of noise, the output measurements yield a
problem that is not suitable for solving via the deterministic
approach. On the other hand, both the single-walker and the
ensemble-walker statistical approaches produce reasonable inver-
sions. We note that the estimator variances are more often lower
for the ensemble-walker algorithm compared to the single-walker
algorithm, indicating slightly better convergence of the ensemble-
walker MCMC chains.

To assess efficiency, we look at the number of output calcula-
tions required by the MCMC algorithms. For the single-walker case,
these were 392,798 and 393,041 for � ¼ 1� 10�2 and � ¼ 2� 10�2,
respectively. The ensemble-walker algorithm required fewer out-
put evaluations: 282,384 and 220,656 for � ¼ 1� 10�2 and
� ¼ 2� 10�2, respectively. The lower number of output evaluations
in the ensemble-walker case is caused by a greater percentage of
samples falling outside of the parameter domain due to a larger
allowable proposal. This effect was observed in the two-
dimensional anisotropic case, and it is indicative of better explora-
tion of the parameter space by the ensemble-walker algorithm.
Finally, the cost of a deterministic inversion was again approxi-
mately 2000 Hessian-matrix applications. Based on the data in
Table 7 this resulted in a time reduction of about two orders of
magnitude compared to the statistical inversion in our implemen-
tation. We stress again, however, that this timing comparison is
quite approximate and that the deterministic inversions can fail
to converge, and if they do converge, they provide only single-
point inversion results as opposed to complete histograms. Finally,
we note from Table 7 that while the adjoint-accelerated output cal-
culation consumes approximately the same relative time as in the
two-dimensional case, the Hessian application is more expensive
due to a larger number of input parameters.
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7.3. Numerical accuracy

In the two and three-dimensional cases, we set the finite ele-
ment order and number of time steps at reasonable values such
that numerical accuracy considerations did not significantly influ-
ence the results. To demonstrate the effect of numerical discretiza-
tion errors, in this section we repeat the inversion results with an
incremented spatial approximation order, p ¼ 2! 3 in two dimen-
sions and p ¼ 1! 2 in three dimensions, and with double the
number of time steps. For conciseness, we only present here the
mean values and standard deviations for the statistical inversions.
In addition, we simulate the exact outputs by perturbing the
lower-resolution exact data, yðleÞ; runs at both resolutions use
the same simulated output measurements.

7.3.1. Isotropic, two-dimensional problem
Inversions for the two-dimensional isotropic problem were per-

formed at both the original and augmented numerical resolutions
using a measurement error of � ¼ 2� 10�2. In the statistical inver-
sions, Nm ¼ 50;000 samples were used in the single-walker case,
and Ne

m ¼ 5000 samples were used in the L ¼ 10 ensemble-walker
case. Table 8 compares the deterministic and statistical inversion
results at the two levels of numerical resolution. As shown, the dif-
ferences in the results are all less than 5%, indicating that for the
discretization parameters chosen numerical resolution does not
have a strong effect on the observed results.

7.3.2. Three-dimensional problem
Finally, inversions were also repeated for the three-dimensional

problem at the original and augmented numerical resolutions
using a measurement error of � ¼ 1� 10�2. In the statistical inver-
sions, Nm ¼ 400;000 samples were used in the single-walker case,
and Ne

m ¼ 20;000 samples were used in the L ¼ 20 ensemble-
walker case. Table 9 compares the deterministic and statistical
inversion results at the two levels of numerical resolution. While
some differences are larger compared to the two-dimensional case
(the largest mean value difference is approximately 6%, and one
standard deviation difference is 11%) most of the values agree very
well. That is, numerical accuracy effects are unlikely to change any
of the conclusions in the three-dimensional case.

7.4. Comparison with MCMC chain driven by Kriging

In this section, we present the two-dimensional, isotropic result
using Kriging output calculations to drive the MCMC chain as com-
parison results. The set up of the problem is the same as the two-
dimensional, isotropic result as presented in section 7.1.1. Our
design points are chosen to form a uniform grid with 11 equally-
spaced points in each dimension. A uniform grid is used to
decrease the probability of facing a singularity problem in calculat-
ing the individual forward solutions during the MCMC process. The
test point is the proposed location during the MCMC process. We
set the kernel Gd and gðTÞ to be the covariance with correlation
length of ‘ ¼ 0:01.

For MCMC chain with single walker, we set the initial location
of the walker to be at (0.0258,0.0516) in the first set and at
(1.0,1.0) in the second set. As we can see in Table 10, the first
and second set of MCMC chain with single walker did not converge
to the same value. The reason is because when Kriging is used to
drive the MCMC chain, the number of local maxima and minima
in the posterior increases as compared to when adjoint accelera-
tion is used. The posterior generated using Kriging also introduces
anisotropy. Fig. 11 shows the posterior generated using adjoint
acceleration and Kriging. Therefore, as what we seen before, it is
expected that the MCMC chain with single walker might not con-
verge to the true value parameter values, while MCMC chain with
ensemble walkers will converge to the true parameter values.
Figs. 12 and 13 show the statistical inversion results for
� ¼ 1� 10�2 and � ¼ 5� 10�2, respectively.
8. Conclusions

We presented both deterministic and statistical algorithms for
solving linear but large-scale contaminant source inversion prob-
lems. At the heart of these algorithms is a separation of the inver-
sion into an offline and online stage. The offline stage requires
knowledge of the geometry, prevailing wind, and sensor locations,
but not of the sensor readings. The online stage takes as input sen-
sor readings and returns information about the initial location of
the contaminant. There is no approximation or associated loss of
accuracy in this separation since discrete adjoints are computed
in the offline stage; that is, the outputs computed during the online
stage via inner products with sensitivity vectors are exactly the
same as if the forward simulation were performed.

In the statistical case, an ensemble-walker variant of the Mar-
kov chain Monte Carlo method is demonstrated to be more effi-
cient at sampling anisotropic posterior distributions, which we
have found to occur often in contaminant source inversion prob-
lems. This method has the additional advantage in that it can be
parallelized across walkers as all but one walker move in each
MCMC step. For example, in the three-dimensional case, an online
inversion speedup of approximately 20 (the number of walkers)
could be attained. We did not employ this parallelization in the
present work, but ideal scaling is expected for this embarrass-
ingly-parallel portion of the algorithm.

The present work requires the initial contaminant distribution
to be parametrized by a small number of scalar inputs. This param-
etrization can be extended to initial conditions that are more com-
plicated than single Gaussians through the addition of more
parameters. The statistical inversion is expected to perform well
for a larger number of parameters due to favorable scaling of the
Markov chain Monte Carlo method. In addition, adjoint acceleration
is not expected to deteriorate since the cost of each adjoint solution
depends only on the number of outputs, not the number of inputs.

We expect tremendous benefits from the adjoint approach even
for a larger number of sensor readings, or outputs. Note that addi-
tional outputs increase primarily the cost of the offline stage, in
which an adjoint solution is calculated for each output. These can
be pre-computed for any number of outputs since the offline stage
is not time-critical. The online stage is affected to a lesser extent
through additional inner products, one for each output evaluation.
However, these calculations are trivially parallelizable over the
outputs, and hence the cost of additional outputs can be perfectly
compensated by additional compute cores.

We note also that the online stages of adjoint-accelerated deter-
ministic and statistical inversion algorithms are not independent of
the size of the large-scale problem. This contrasts with general
reduced-order models, in which the number of original degrees of
freedom no longer appears in the online stage. However, the adjoint
approach does not introduce any additional approximation errors
and still yields orders of magnitude speedup for an otherwise
intractable inversion problem. This speedup can produce real-time
inversion results on today’s commodity multi-core architectures.

Linearity of the transport equation is an intrinsic component of
the acceleration, and hence the approach would not apply directly
to problems with, for example, nonlinear reactions involving the
contaminant. Of course, this restriction does not preclude linear
transport with a velocity field obtained from a nonlinear flow solu-
tion. Future directions include extending the presented algorithms
to real-time-inferred velocity fields, multiple sources, and to
including release time as a parameter.
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