Basic Statistical and Modeling Procedures Using SAS

One-Sample Tests

The statistical procedures illustrated in this handout use two datasets. The first, Pulse, has information collected in a classroom setting, where students were asked to take their pulse two times. Half the class was asked to run in place between the two readings and the other group was asked to stay seated between the two readings. The raw data for this study are contained in a file called pulse.csv. The other dataset we use is a dataset called Employee.sas7bdat. It is a SAS dataset that contains information about salaries in a mythical company.

Read in the pulse data and create a temporary SAS dataset for the examples:

Create and assign formats to variables:

```
proc format;
    value sexfmt 1="Male" 2="Female";
    value yesnofmt 1="Yes" 2="No";
    value actfmt 1="Low" 2="Medium" 3="High";
run;
proc print data=pulse (obs=25) label;
format sex sexfmt. ran smokes yesnofmt. activity actfmt.;
run;
```

Descriptive Statistics:

```
proc means data=pulse;
run;
```

The MEANS Procedure

pulse2 Second pulse, rate per minute 92 80.0000000 17.0937943 50.0000000 140.0000000 ran 92 1.6195652 0.4881540 1.0000000 2.0000000 smokes 92 1.6956522 0.4626519 1.0000000 2.0000000 sex 92 1.3804348 0.4881540 1.0000000 2.0000000 height 92 68.7391304 3.6520943 61.0000000 75.0000000 weight 92 145.1521739 23.7393978 95.0000000 215.0000000	Variable	Label	Ν	Mean	Std Dev	Minimum	Maximum
	pulse2 ran smokes sex height		92 92 92 92 92 92	80.000000 1.6195652 1.6956522 1.3804348 68.7391304	17.0937943 0.4881540 0.4626519 0.4881540 3.6520943	50.0000000 1.0000000 1.0000000 1.0000000 61.0000000	100.000000 140.000000 2.000000 2.000000 2.000000 75.000000 215.000000 3.000000

Binomial Confidence Intervals and Tests for Binary Variables:

If you have a categorical variable with only two levels, you can use the **binomial** option to request a 95% confidence interval for the proportion in the first level of the variable. In the PULSE data set, SMOKES=1 indicates those who were smokers, and SMOKES=2 indicates non-smokers. Use the (p=) option to specify the null hypothesis proportion that you wish to test for the first level of the variable. In the commands below, we test hypotheses for the proportion of SMOKES=1 (i.e., proportion of smokers) in the population. By default SAS produces an asymptotic test of the null hypothesis:

```
H_0: proportion of smokers = 0.25
H<sub>A</sub>: proportion of smokers \neq 0.25
proc freq data = pulse;
   tables smokes / binomial(p=.25);
run;
                                       smokes
                                             Cumulative Cumulative
                smokes Frequency Percent Frequency
                                                            Percent
                -----
                    12830.432830.4326469.5792100.00
                                Binomial Proportion
                                   for smokes = 1
                            Proportion
                                                 0.3043
                            ASE
                                                 0.0480

        95% Lower Conf Limit
        0.2103

        95% Upper Conf Limit
        0.3984

                            Exact Conf Limits
                            95% Lower Conf Limit 0.2127
                            95% Upper Conf Limit
                                                 0.4090
                            Test of HO: Proportion = 0.25
                            ASE under HO
                                                  0.0451
                            Ζ
                                                  1.2039
                                                 0.1143
                            One-sided Pr > Z
                            Two-sided Pr > |Z| 0.2286
```

Sample Size = 92

If you wish to obtain an exact binomial test of the null hypothesis, use the exact statement. If you include the mc option for large datasets, you will get a Monte Carlo p-value.

```
proc freq data = pulse;
   tables smokes / binomial(p=.25);
   exact binomial / mc;
run;
```

This results in an exact test of the null hypothesis, in addition to the default asymptotic test, the exact test results for both a one-sided and two-sided alternative hypothesis are shown.

Binomial Proportion for smokes = 1 Proportion (P) 0.3043 ASE 0.0480 95% Lower Conf Limit 0.2103 95% Upper Conf Limit 0.3984 Exact Conf Limits 95% Lower Conf Limit 0.2127 95% Upper Conf Limit 0.2127 95% Upper Conf Limit 0.4090 Test of HO: Proportion = 0.25 ASE under HO 0.0451 Z 1.2039 One-sided Pr > Z 0.1143 Two-sided Pr > [Z] 0.2286 Exact Test One-sided Pr >= P 0.1399 Two-sided = 2 * One-sided 0.2797 Sample Size = 92

Chi-square Goodness of Fit Tests for Categorical Variables:

Use the chisq option in the tables statement to get a chi-square goodness of fit test, which can be used for categorical variables with two or more levels. By default SAS assumes that you wish to test the null hypothesis that the proportion of cases is equal in all categories. In the variable ACTIVITY, a value of 1 indicates a low level of activity, a value of 2 is a medium level of activity, and a value of 3 indicates a high level of activity.

```
proc freq data = pulse;
  tables activity / chisq;
run;
                         activity
                          Cumulative Cumulative
           activity Frequency Percent Frequency Percent
           -----
               11010.871010.8726166.307177.1732122.8392100.00
                         Chi-Square Test
                        for Equal Proportions
                        Chi-Square 46.9783
                        DF
                                2
                        Pr > ChiSq <.0001
                         Sample Size = 92
```

If you wish to specify your own proportions, use the testp = option in the tables statement. This option allows you to specify any proportions that you wish to test for each level of the variable in the tables statement, as long as the sum of the proportions equals 1.0. In the example below we test the null hypothesis:

 $H_0: P_1 = 0.20, P_2 = .50, P_3 = .30$

```
proc freq data = pulse;
   tables activity /chisq testp = ( .20 , .50, .30 );
run;
```

The FREQ Procedure activity

activity	Frequency	Percent	Test Percent	Cumulative Frequency	Cumulative Percent
1	10	10.87	20.00	10	10.87
2	61	66.30	50.00	71	77.17
3	21	22.83	30.00	92	100.00

Chi-Square Test						
for Specified Pro	oportions					
Chi-Square	10.3043					
DF	2					
Pr > ChiSq	0.0058					
Sample Size :	= 92					

You may also specify percentages to test, rather than proportions, as long as they add up to 100 percent:

```
proc freq data = pulse;
   tables activity /chisq testp = ( 20 , 50, 30 );
run;
```

One-Sample test for a continuous variable:

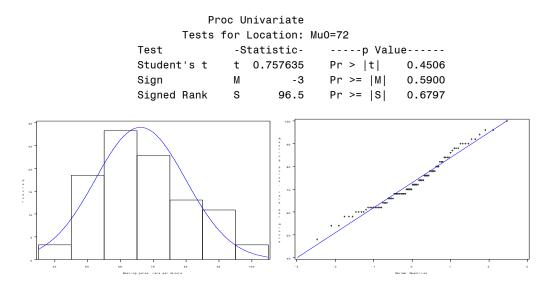
You can use Proc Univariate to carry out a one-sample t-test to test the population mean against any null hypothesis value you specify by using mu0= option. The default, if no value of mu0 is specified is that mu0 = 0. In the commands below, we test:

*H*₀: μ₀=72 *H*_A: μ₀≠72

Note that SAS also provides the non-parametric Sign test and Wilcoxon signed rank test.

```
proc univariate data=pulse mu0=72;
    var pulse1;
    histogram / normal (mu=est sigma=est);
    qqplot /normal (mu=est sigma=est);
run;
```

Selected output from Proc Univariate:



Equivalently, we can carry out a one-sample t-test in Proc Ttest by specifying the H0= option.:

```
proc ttest data=pulse H0=72 ;
  var pulse1;
run;
                     Variable: pulse1 (Resting pulse, rate per minute
                 Ν
                          Mean
                                   Std Dev
                                               Std Err
                                                           Minimum
                                                                       Maximum
                92
                                   11.0087
                                                                         100.0
                       72,8696
                                                1.1477
                                                           48,0000
                              95% CL Mean
                                                              95% CL Std Dev
                   Mean
                                                 Std Dev
                 72.8696
                             70.5897 75.1494
                                                  11.0087
                                                              9.6155 12.8779
                                    DF
                                          t Value
                                                     Pr > |t|
                                    91
                                             0.76
                                                       0.4506
```

Paired Samples t-test:

If you wish to compare the means of two variables that are paired (i.e. correlated), you can use a paired sample t-test for continuous variables. To do this use Proc ttest with a **paired** statement, to get a paired samples t-test:

```
proc ttest data=pulse;
  paired pulse2*pulse1;
run;
```

The TTEST Procedure Statistics								
	Lower	CL	Upper CL	Lower CL		Upper CL		
Difference	N Me	an Mean	Mean	Std Dev	Std Dev	Std Dev	Std Err	
pulse2 - pulse1	92 4.34	06 7.1304	9.9203	11.766	13.471	15.759	1.4045	
	T-Tests							
	Differe	ice	DF t	Value F	Pr > t			
	pulse2	pulse1	91	5.08	<.0001			

The paired t-test can be carried out for each level of RAN. The commands and results of these commands are shown below:

```
proc sort data=pulse;
  by ran;
run;
proc ttest data=pulse;
  paired pulse2*pulse1;
  by ran;
run;
```

```
------ ran=1 -----
```

The TTEST Procedure

Statistics

		Lower CL		Upper CL	Lower CL		Upper CL	
Difference	Ν	Mean	Mean	Mean	Std Dev	Std Dev	Std Dev	Std Err
pulse2 - pulse1	35	13.745	18.914	24.084	12.173	15.05	19.718	2.5439

	T-Tests		
Difference	DF	t Value	Pr > t
pulse2 - pulse1	34	7.44	<.0001

------ ran=2 ------

The TTEST Procedure

Statistics

		Lower CL		Upper CL	Lower CL		Upper CL	
Difference	Ν	Mean	Mean	Mean	Std Dev	Std Dev	Std Dev	Std Err
pulse2 - pulse1	57	-1.209	-0.105	0.9987	3.5126	4.1605	5.1039	0.5511

	T-Test:	S	
Difference	DF	t Value	Pr > t
<mark>pulse2 - pulse1</mark>	56	-0.19	0.8492

Independent samples t-tests

An independent samples t-test can be used to compare the means in two independent groups of observations.:

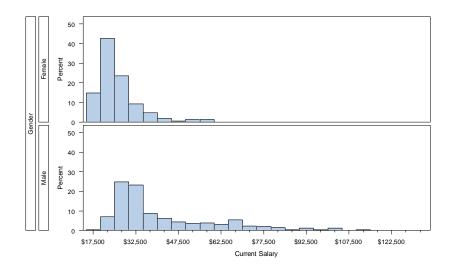
```
proc ttest data=sasdata2.employee2;
  class gender;
  var salary;
run;
```

The output from this procedure is shown below:

The TTEST Procedure								
			Variable: s	alary (Cui	rrent Salar	Ϋ́)		
gende f m Diff	er (1-2)	N 216 258	Mean 26031.9 41441.8 -15409.9	19499.2	514.3 1214.0	15750.0 19650.0	5812	5.0
gender f m	Method		41441.8	25018.3 39051.2	43832.4	7558.0 19499.2	17949.3	8346.8 21344.3
			-15409.9 -15409.9		-12643.3 -12816.7	15265.9	14351.1	16306.1
	Meth Pool Satt		1	47 344.2	72 -10. 26 -11.	ue Pr > 95 <.00 69 <.00	01	
			Equal	ity of Var	iances			
		Method Folded	Num DF F 257	Den DF 215	F Value 6.66			

If you want to check on the distribution of Salary for males and females, you can use Proc Univariate.

```
proc univariate data=sasdata2.employee2;
  var salary;
  class gender;
  histogram;
run;
```



Because it looks like salary is highly skewed, you might want to use a log transformation of salary to compare the two genders. Proc ttest has the **dist=lognormal** option to accompllish this:

```
proc ttest data=sasdata2.employee2 dist=lognormal;
    class gender;
    var salary ;
run;
```

The output from this procedure shows that the geometric mean and coefficient of variation are reported, rather than the arithmetic mean and standard deviation.

	V. gender	ariable: sal Geometr N Me	ic Coe	ent Salar fficient ariation	y) Minimum	Maximum	
		16 25146 58 37972 0.66	.2	0.2582 0.4149 0.3505	15750.0 19650.0	58125.0 135000	
gender	Method	Geometric Mean	95% CL	Mean	Coefficient of Variation	95% CI	_ CV
Female Male Ratio (1/2) Ratio (1/2)	·	25146.1 37972.2 0.6622 0.6622	24303.8 36161.3 0.6226 0.6240	26017.5 39873.8 0.7044 0.7028	0.2582 0.4149 0.3505	0.2353 0.3796 0.3284	0.2862 0.4579 0.3760
	Method Pooled Satterthwait	Coeffici of Varia Equal e Unequal	tion	DF t 472 42.4		t 2001 2001	

Equality of Variances

Method	Num DF	Den DF	F Value	Pr > F
Folded F	257	215	2.46	<.0001

To get an independent samples t-test within each job category, use a BY statement, after sorting by jobcat.

```
proc sort data=sasdata2.employee;
  by jobcat;
run;
proc ttest data=sasdata2.employee;
  by jobcat;
  class gender;
  var salary;
run;
```

Wilcoxon rank sum test:

If you are unwilling to assume normality for your continuous test variable or the sample size is too small for you to appeal to the central-limit-theorem, you may want to use non-parametric tests. The Wilcoxon rank sum test (also known as the Mann-Whitney test) is the non-parametric analog of the independent sample t test.

A Monte-Carlo approximation of the exact p-value can be obtained for the Wilcoxon test by using an exact statement, as shown below:

Correlation

Proc corr can be used to calculate correlations for several variables:

```
proc corr data=sasdata2.employee;
  var salary salbegin educ;
run;
```

		The CC	RR Procedur	e		
		3 Variables:	salary	salbegin educ		
		Si	mple Statis	tics		
Variable	N	Mean	Std Dev	Sum	Minimum	Maximum
salary	474	34420	17076	16314875	15750	135000
salbegin	474	17016	7871	8065625	9000	79980
educ	474	13.49156	2.88485	6395	8.00000	21.00000

Prob > |r| under H0: Rho=0

salary Current Salary	salary 1.00000	salbegin 0.88012 <.0001	educ 0.66056 <.0001
salbegin	0.88012	1.00000	0.63320
Beginning Salary	<.0001		<.0001
educ	0.66056	0.63320	1.00000
Educational Level (years)	<.0001	<.0001	

Linear regression

You can fit a linear regression model using Proc Reg:

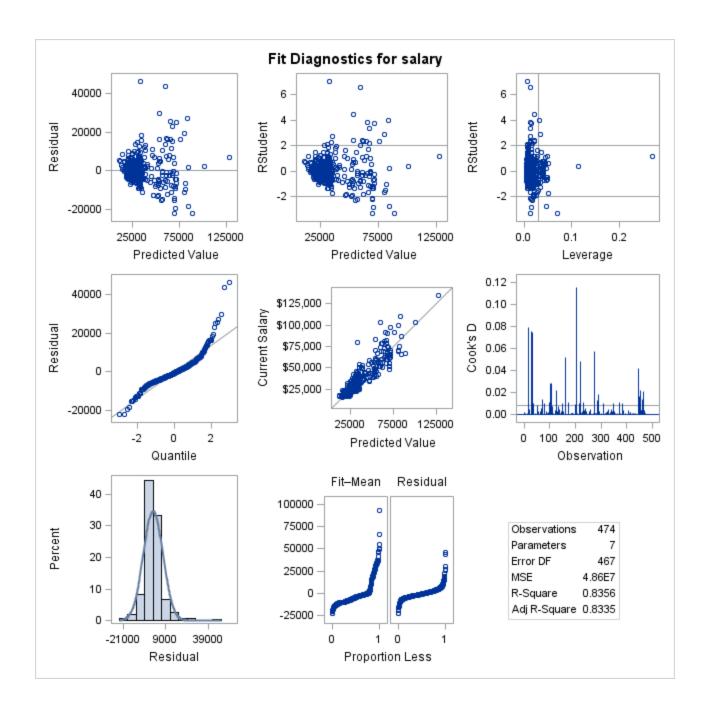
```
ods graphics on;
proc reg data=sasdata2.employee2;
  model salary = salbegin educ jobdum2 jobdum3 prevexp female;
run; quit;
ods graphics off;
```

Note that the output dataset that we created, REGDAT, has all the original observations and variables in it, plus the new variables Predict, Resid, and Rstudent. Output from the linear regression model is shown below:

	Dependent	The REG Procedur Model: MODEL Variable: salary	.1	У	
	Number of	Observations Re	ad 474		
	Number of	Observations Us	ed 474		
Source	DF	Analysis of Var Sum of Squares	Mean	F Value	Pr > F
Model Error Corrected To	6 467	1.15239E11 22677472676	19206503793		
	Root MSE Dependent Mean Coeff Var	6968.49328 34420 20.24573	R-Square Adj R-Sq	0.8356 0.8335	

Parameter Estimates

			Parameter	Standard		
Variable	Label	DF	Estimate	Error	t Value	Pr > t
Intercept	Intercept	1	5333.10875	2337.45787	2.28	0.0230
salbegin	Beginning Salary	1	1.31359	0.07433	17.67	<.0001
educ	Educational Level (years)	1	548.90277	163.27562	3.36	0.0008
jobdum2		1	6764.00748	1666.58592	4.06	<.0001
jobdum3		1	11389	1394.92854	8.16	<.0001
prevexp	Previous Experience (months)	1	-21.98825	3.64720	-6.03	<.0001
female		1	-2122.17197	775.86768	-2.74	0.0065



We note that the distribution of the residuals is highly skewed. This is an indication that we may want to use a transformation of the dependent variable.

The variance of the residuals is highly heteroskedastic; we note that there is much more variability of residuals for large predicted values, making a megaphone-like appearance in the graph.

We may want to transform salary using the natural log. The commands below show how Logsalary can be created to be used in the regression. Note that to create a new variable, we need to use a data step. Submit these commands and check the residuals from this new regression model.

```
data temp;
        set sasdata2.employee2;
        logsalary = log(salary);
run;
ods graphics on;
proc reg data=temp;
       model logsalary = salbegin educ jobdum2 jobdum3 prevexp female;
        output out=regdat2 p=predict r=resid rstudent=rstudent;
run; quit;
ods graphics off;
                                                                                                          The REG Procedure
                                                                                                            Model: MODEL1
                                                                                         Dependent Variable: logsalary
                                                                                                                                                                            474
                                                                           Number of Observations Read
                                                                           Number of Observations Used
                                                                                                                                                                            474
                                                                                                       Analysis of Variance
                                                                                                                        Sum of Mean
Squares Square
                                                                                                                                                                                         F Value Pr > F
                                                                                        DF
                       Source

        Model
        6
        61.64142
        10.27357
        368.12
        <.0001</th>

        Error
        467
        13.03320
        0.02791

        </t

        Root MSE
        0.16706
        R-Square
        0.8255

        Dependent Mean
        10.35679
        Adj R-Sq
        0.8232

        Coeff Var
        1.61303
        1.61303
        1.61303

                                                                                                       Parameter Estimates
                                                                                                                                       Parameter Standard
Estimate Error
Variable
                           Label
                                                                                                                        DF
                                                                                                                                                                                         Error t Value Pr > |t|

        1
        9.66675
        0.05604
        172.51
        <.0001</td>

        1
        0.00002304
        0.00000178
        12.93
        <.0001</td>

        1
        0.02592
        0.00391
        6.62
        <.0001</td>

Intercept Intercept
salbegin Beginning Salary

        salbegin
        Beginning Salary
        1
        0.00002004
        0.00001/0
        12.55
        0.0001

        educ
        Educational Level (years)
        1
        0.02592
        0.00391
        6.62
        <.0001</td>

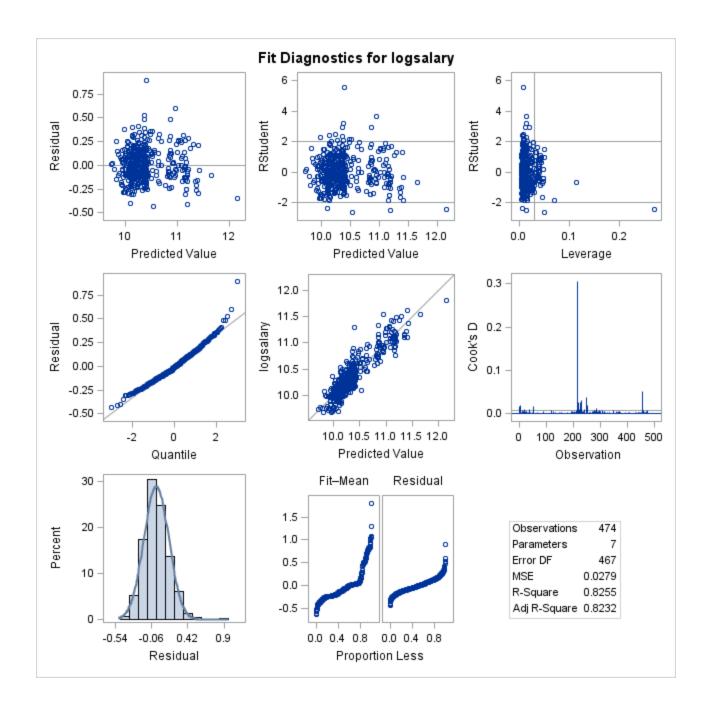
        jobdum2
        1
        0.24880
        0.03995
        6.23
        <.0001</td>

        jobdum3
        1
        0.28225
        0.03344
        8.44
        <.0001</td>

        prevexp
        Previous Experience (months)
        1
        -0.12070
        0.01860
        -6.49
        <.0001</td>
```

The distribution of the residuals appears to be much more normal after the log transformation was applied.

The variance of the residuals appears to be much more constant across all predicted values after applying the log transformation to the dependent variable. We no longer appear to have heteroskedasticity of the residuals.



Cross-tabulations

You can carry out a Pearson Chi-square test of independence using Proc Freq. This procedure is extremely versatile and flexible, and has many options available.

```
proc freq data=sasdata2.employee2;
    tables gender*jobcat / chisq;
run
```

The FREQ Procedure

Table of gender by jobcat gender(Gender) jobcat(Employment Category) Frequency Percent | Row Pct | 2 | Col Pct | 1| 3| Total | 206 | 0 | 10 | 216 | 43.46 | 0.00 | 2.11 | 45.57 | 95.37 | 0.00 | 4.63 | | 56.75 | 0.00 | 11.90 | f

 157
 27
 74
 258

 33.12
 5.70
 15.61
 54.43

 60.85
 10.47
 28.68
 1

 m | 43.25 | 100.00 | 88.10 | ----+ Total 363 27 84 474 76.58 5.70 17.72 100.00

Statistics for Table of gender by jobcat

Statistic		DF	Value	Prob
Chi-Square Likelihood Rati Mantel-Haenszel Phi Coefficient Contingency Coe Cramer's V	Chi-Square	2 2 1	79.2771 95.4629 67.4626 0.4090 0.3785 0.4090	<.0001 <.0001 <.0001

Sample Size = 474

You can get an exact test for this by using an Exact statement. In this case, we requested Fisher's exact test, but exact p-values for other statistics can be requested:

```
proc freq data=sasdata2.employee;
    tables gender*jobcat / chisq;
    exact fisher;
run;
```

In the output below, be sure to read the last p-value at the bottom of the output for Fisher's exact test.

	Fisher's E>	act Te	st
Table	Probability	(P)	2.854E-22
Pr <=	P		5.756E-21

Sample Size = 474

If your problem is large, you may wish to get a Monte Carlo simulation for the p-value, based on 10, 000 tables. To do this use the following syntax. Seed=0 will use a random seed for the process based on the clock time when you run the procedure.

```
proc freq data=sasdata2.employee;
tables gender*jobcat / chisq;
exact fisher / mc seed=0;
run;
```

Partial output from this procedure is shown below:

The FREQ Procedure Statistics for Table of gender by jobcat Fisher's Exact Test Table Probability (P) 2.854E-22 Monte Carlo Estimate for the Exact Test Pr <= P 0.0000 99% Lower Conf Limit 0.0000 99% Upper Conf Limit 4.604E-04 Number of Samples 10000 Initial Seed 445615001 Sample Size = 474

Each time the procedure is run using this syntax, you will get different answers. If you wish to get the same result, simply use the Initial Seed value reported by SAS in the output in your Exact statement.

```
proc freq data=sasdata2.employee;
    tables gender*jobcat / chisq;
    exact fisher / mc seed=445615001;
run;
```

McNemar's test for paired categorical data:

If you wish to compare the proportions in a 2 by 2 table for paired data, you can use McNemar's test, by specifying the **agree** option in Proc Freq. Before running the McNemar's test, we recode PULSE1 and PULSE2 into two categorical variables HIPULSE1 and HIPULSE2, as shown below:

```
data newpulse;
  set pulse;
  if pulse1 > 80 then hipulse1 = 1;
  if pulse1 > 0 and pulse1 <=89 then hipulse1=0;
  if pulse2 > 80 then hipulse2 = 1;
  if pulse2 > 0 and pulse2 <=89 then hipulse2=0;
run;
```

```
proc freq data=newpulse;
   tables hipulse1 hipulse2;
run;
```

	The	e FREQ Proce	dure	
			Cumulative	Cumulative
hipulse1	Frequency	Percent	Frequency	Percent
0	82	89.13	82	89.13
1	10	10.87	92	100.00
			Cumulative	Cumulative
hipulse2	Frequency	Percent	Frequency	Percent
0	71	77.17	71	77.17
1	21	22.83	92	100.00

We can now carry out McNemar's test of symmetry to see if the proportion of participants with a high value of PULSE1 is different than the proportion of participants with a high value of PULSE2.

```
proc freq data=newpulse;
   tables hipulse1*hipulse2/ agree;
run;
```

Table o hipulse1 Frequency Percent Row Pct	f hipulse hipuls	1 by hipu e2	lse2
Col Pct	0	1	Total
+	+	+	
0	69	13	82
ĺ	75.00	14.13	89.13
	84.15	15.85	
	97.18	61.90	
+	+	+	
1	2	8	10
	2.17	8.70	10.87
	20.00	80.00	
	2.82	38.10	
+	+	+	
Total	71	21	92
	77.17	22.83	100.00

Statistics for Table of hipulse1 by hipulse2

McNemar's Test

Statistic	(S)	8.0667
DF		1
Pr > S		0.0045

Sample Size = 92

Logistic regression

If the outcome is coded as 0,1 and you wish to predict the probability of a 1, use the descending option for Proc Logistic.

```
data afifi;
  set sasdata2.afifi;
  if survive=3 then died=1;
  if survive=1 then died=0;
run;
proc logistic data=afifi descending;
  model died = map1 shockdum sex / risklimits;
  units map1 = 1 10 shockdum = 1 sex=1;
run;
                        Data Set
                                                     WORK.AFIFI
                        Response Variable
                                                     died
                        Number of Response Levels
                                                     2
                        Model
                                                     binary logit
                        Optimization Technique
                                                     Fisher's scoring
                           Number of Observations Read
                                                             113
                           Number of Observations Used
                                                             113
                                      Response Profile
                              Ordered
                                                         Total
                               Value
                                             died
                                                     Frequency
                                               1
                                                            43
                                   1
                                                0
                                                            70
                                   2
                               Probability modeled is died=1.
                                  Model Convergence Status
                        Convergence criterion (GCONV=1E-8) satisfied.
                                    Model Fit Statistics
                                                       Intercept
                                         Intercept
                                                             and
                           Criterion
                                              Only
                                                      Covariates
                           ATC
                                           152.137
                                                         127.874
                           SC
                                           154.864
                                                         138.784
                            -2 Log L
                                           150.137
                                                         119.874
                           Testing Global Null Hypothesis: BETA=0
                   Test
                                       Chi-Square
                                                        DF
                                                              Pr > ChiSq
                                          30.2628
                                                                  <.0001
                   Likelihood Ratio
                                                        3
                                          26.1922
                                                                  <.0001
                   Score
                                                        3
                                          20.3328
                   Wald
                                                        3
                                                                  0.0001
```

Analysis of Maximum Likelihood Estimates

			Standard	Wald	
Parameter	DF	Estimate	Error	Chi-Square	Pr > ChiSq
Intercept	1	-0.9571	1.2827	0.5568	0.4556
MAP1	1	-0.0285	0.0114	6.2204	0.0126
SHOCKDUM	1	1.8999	0.6694	8.0540	0.0045
SEX	1	0.6760	0.4450	2.3082	0.1287

Association of Predicted Probabilities and Observed Responses

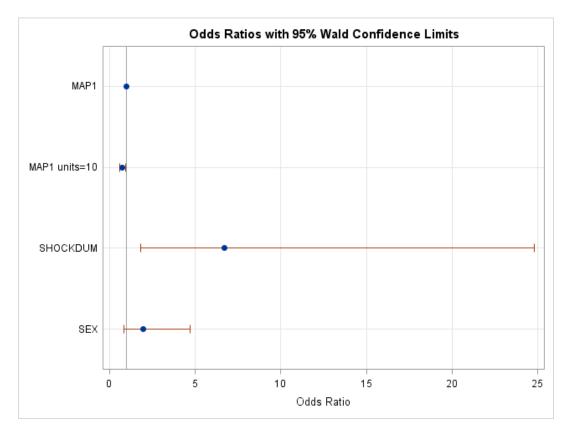
Percent Concordant	79.1	Somers' D	0.586
Percent Discordant	20.5	Gamma	0.588
Percent Tied	0.4	Tau-a	0.279
Pairs	3010	С	0.793

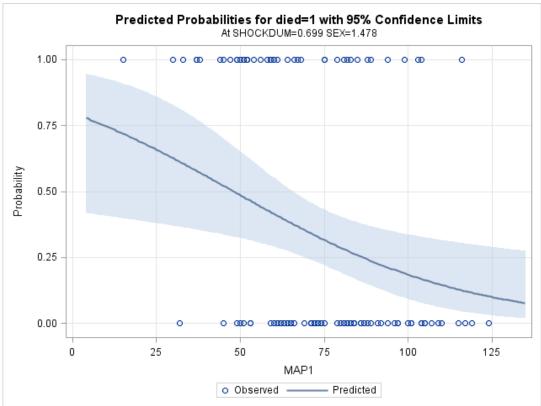
Odds Ratio Estimates and Wald Confidence Intervals

Effect	Unit	Estimate	95% Confiden	ce Limits
MAP1	1.0000	0.972	0.950	0.994
SHOCKDUM	1.0000	6.685	1.800	24.827
SEX	1.0000	1.966	0.822	4.703

To get graphical output, include the plots = option in the SAS code. We also request odds ratios for a 1-unit and for 10 units increase in MAP1. The oddsratio plot will not be produced unless the risklimits option is specified at the end of the model statement.

```
ods graphics on;
proc logistic data=afifi descending PLOTS(ONLY) = (effect oddsratio);
  model died = map1 shockdum sex / risklimits;
  units map1 = 1 10 shockdum = 1 sex=1;
run;
ods graphics off;
```





Generalized Linear Model for Count Data

If the outcome is a count variable, you may want to fit a generalized linear model using Proc Genmod. To use this procedure, you must include an option in the model statement specifying the distribution to use. In this example we are modeling the number of home runs that a major league baseball player will get in a season as a function of his salary. We first use a Poisson regression, in which we specify the log of the number of times at bat as the offset (so that we are really modeling the Poisson rate). In the Poisson distribution, the variance is equal to the mean. If we have an appropriate model, we expect the scaled deviance divided by the degrees of freedom to equal approximately 1.0, which is not the case in this example.

```
proc genmod data=baseball ;
  class league division;
  model no home = salary / dist=poisson offset=log atbat;
  estimate "Effect of 100k salary increase" salary 100 / est;
  output out=Pfitdata p=predict resraw=resraw reschi=reschi;
run;
                                 The GENMOD Procedure
                                   Model Information
                                       WORK.BASEBALL
                           Data Set
                                              Poisson
                           Link Function
                           Distribution
                                                        1 00
                           Link Function Log
Dependent Variable no_home
Offset Variable log_atbat
                         Number of Observations Read
                                                          322
                         Number of Observations Used
                                                          263
                         Missing Values
                                                           59
                                Class Level Information
                         Class
                                    Levels Values
```

league	2	American National
division	2	East West

Criteria For Assessing Goodness Of Fit

Criterion	DF	Value	Value/DF
Deviance	261	1187.5050	4.5498
Scaled Deviance	261	1187.5050	<mark>4.5498</mark>
Pearson Chi-Square	261	1074.2680	4.1160
Scaled Pearson X2	261	1074.2680	4.1160
Log Likelihood		4853.9066	
Full Log Likelihood		-1110.3858	
AIC (smaller is better)		2224.7716	
AICC (smaller is better)		2224.8178	
BIC (smaller is better)		2231.9159	

Algorithm converged.

		Analysis	Of Maximum	Likelihood Pa	rameter Esti	mates	
			Standard	Wald 95% (Confidence	Wald	
Parameter	DF	Estimate	Error	Lim	its	Chi-Square	Pr > ChiSq
Intercept	1	-3.6957	0.0291	-3.7527	-3.6387	16152.5	<.0001
salary	1	0.0002	0.0000	0.0002	0.0003	49.78	<.0001
Scale	0	1.0000	0.0000	1.0000	1.0000		

NOTE: The scale parameter was held fixed.

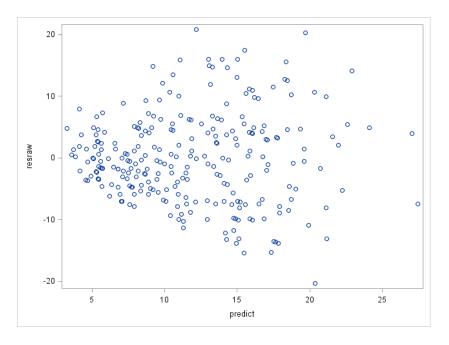
Contrast Estimate Results

	Mean	Mean	L'Beta	Standard	
Label	Estimate	Confidence Limi	ts Estimate	Error	Alpha
Effect of 100k salary increase	1.0244	1.0176 1.0	0.0241	0.0034	0.05

The effect of a 100k increase in salary is estimated to be about a 2.4% increase in home run production (95% CI = 1.8% to 3.1% increase).

We look at the distribution of the raw residuals vs. the predicted value. If the Poisson distribution is appropriate, we expect the spread of the residuals to be a function of the mean (which is approximated by the predicted value). This in fact seems to be true, as seen the the graph below:

```
proc sgplot data=fitdata;
   scatter y=resraw x=predict;
run;
```



Here, we use some SAS code to create groups based on the predicted value (i.e., an approximation to the mean of the conditional distribution). We then look at the distribution of the mean of the predicted value in each interval, and the variance of the raw residuals. We see that the mean of the distribution is in all cases less than the variance of the raw residuals. This is another indication that the Poisson distribution is not the best choice for this problem.

```
data Pfitdata2;
  set Pfitdata;
  if 0<= predict <5 then group=1;
  if 5<= predict <10 then group=2;
  if 10<= predict < 15 then group=3;
  if 15<= predict < 20 then group=4;
 if 20<= predict then group=5;
run;
proc format;
 value grpfmt 1="0 to 4.9" 2="5 to 9.9" 3="10 to 14.9"
               4="15 to 19.9" 5="20 to Max";
run;
proc means data=Pfitdata2 n min max mean std var;
 class group;
var predict resraw;
 format group grpfmt.;
run;
```

group	N Obs	Variable	Ν	Minimum	Maximum	Mean	Std Dev	Variance
0 to 4.9	13	predict	13	3.2578916	4.9212568	<mark>4.1868213</mark>	0.4976284	0.2476340
		resraw	13	-3.6719335	7.9021423	0.6593325	3.4251530	<mark>11.7316732</mark>
5 to 9.9	95	predict	95	5.0315488	9.9696055	<mark>7.4209071</mark>	1.4917644	2.2253609
		resraw	95	-7.9171285	14.8172419	-0.2209071	4.6511984	<mark>21.6336467</mark>
10 to 14.9	81	predict	81	10.1005542	14.9827472	<mark>12.5494485</mark>	1.5378169	2.3648810
		resraw	81	-13.9169213	20.8129702	0.1912922	8.1655403	<mark>66.6760486</mark>
15 to 19.9	60	predict	60	15.0114917	19.9416355	<mark>16.9885310</mark>	1.4100640	1.9882804
		resraw	60	-15.4846933	20.2883934	-0.0218643	9.1883062	<mark>84.4249700</mark>
20 to Max	14	predict	14	20.3345690	27.4575979	<mark>22.4834298</mark>	2.2746223	5.1739064
		resraw	14	-20.3773828	14.1047560	-0.1262870	9.7491252	<mark>95.0454412</mark>

We now change the distribution to a negative binomial.

```
ods graphics on;
proc genmod data=baseball plots = (predicted(clm));
    class league division;
    model no_home = salary / dist=negbin offset=log_atbat;
    output out=nbfitdata p=predict resraw=resraw reschi=reschi;
    estimate "Effect of 100k salary increase" salary 100 / est;
run;
ods graphics off;
```

Model Information

Data Set	WORK.BASEBALL
Distribution	Negative Binomial
Link Function	Log
Dependent Variable	no_home
Offset Variable	log_atbat

Number of Observations Read	322
Number of Observations Used	263
Missing Values	59

Class Level Information

Class	Levels	Values
league	2	American National
division	2	East West

Parameter Information

Parameter	Effect
Prm1	Intercept
Prm2	salary

Criteria For Assessing Goodness Of Fit

Criterion	DF	Value	Value/DF
Deviance	261	296.8518	1.1374
Scaled Deviance	261	296.8518	1.1374
Pearson Chi-Square	261	217.5268	0.8334
Scaled Pearson X2	261	217.5268	0.8334
Log Likelihood		5104.3910	
Full Log Likelihood		-859.9014	
AIC (smaller is better)		1725.8028	
AICC (smaller is better)		1725.8954	
BIC (smaller is better)		1736.5192	

Algorithm converged.

Analysis Of Maximum Likelihood Parameter Estimates

			Standard	Wald 95% (Confidence	Wald	
Parameter	DF	Estimate	Error	Lim	its	Chi-Square	Pr > ChiSq
Intercept	1	-3.7020	0.0650	-3.8294	-3.5745	3241.64	<.0001
salary	1	0.0003	0.0001	0.0001	0.0004	7.82	0.0052
Dispersion	1	0.3480	0.0407	0.2768	0.4375		

NOTE: The negative binomial dispersion parameter was estimated by maximum likelihood.

Contrast Estimate Results							
Mean Mean L'Beta Standard							
Label	Estimate	Confidence	Limits	Estimate	Error	Alpha	
Effect of 100k salary increase	1.0253	1.0075	1.0434	0.0250	0.0089	0.05	

We now see that the scaled deviance divided by df is approximately 1.0, which is an improvement over the previous model.

In this model, the predicted effect of a 100k increase in salary is predicted to be about a 2.5% increase in home run production, with a wider Confidence Interval (CI = 0.75% to 4.3%).

We also look at the predicted values and their respective 95% Confidence intervals. Notice that the smaller residuals have smaller estimated CI, as we expect when fitting this type of model.

