As of: 16 December 2009
Many thanks to my students and others who have found these. If you find more, please send an email to lsander at umich.edu.
p 3. Before Eq. 1.9:
mass is is -> mass is
p 4 After Eq. 1.13 the Coulomb interaction :

$$
\mathrm{V}(\mathrm{r})=\mathrm{Zq}_{1} \mathrm{q}_{2} / \mathrm{r}->\mathrm{V}(\mathrm{r})=\mathrm{Z}_{1} \mathrm{Z}_{2} \mathrm{q}_{1} \mathrm{q}_{2} / \mathrm{r}
$$

p 14 Eq. 2.14, the denominator should be $4 \mathrm{k}_{\mathrm{B}}\left(\mathrm{T}-\mathrm{T}_{\mathrm{c}}\right)$
p 17 Figure caption
$\mathrm{V}_{\text {min }}=\varepsilon \rightarrow \mathrm{V}_{\text {min }}=-\varepsilon$
p 35 Last full line of text:
sum in Eq. (3.19) -> sum in Eq. (3.18)
p. 38 Huyghens should be Huygens
p. 39 Thompson should be Thomson
p. 48 We are in a homogeneous system, so assume $\mathrm{p}(\mathbf{r}, \mathbf{s})=\mathrm{p}(\mathbf{r}-\mathbf{s})$.
p. 56 Before Eq. (4.4) should be [010] surface
p. 62 Second line should be inverted, i.e.
$\mathrm{k}_{\mathrm{B}} \mathrm{T}_{\mathrm{R}} \sim \beta_{\mathrm{o}} \mathrm{a} / \log (\mathrm{z}-1)$
p. 63 After Eq. (4.19) the derivative should be partial, $\partial \mathrm{r} / \partial \theta$
p. 77 Eq. (5.14) last term should contain $\left(\mathrm{R}_{\mathrm{s}}-\mathrm{R}_{\mathrm{s}^{\prime}}\right)$
last subscript is s' not s"
p. 78 After Eq. 5.21

For example, if $\mathrm{B}=2$..
not b
p. 79 Eq. 5.24 should read $(\alpha / 2)\left[u_{s}-u_{s+1}\right]^{2}$
the bracket is squared
p. 79 Eq. 5.31 , left-hand side should be ω^{2} / α
i.e, no 2 on LHS
p. 81 Equations $5.32,5.33$ the summation variables should be $s^{\prime} 1$ '.
p. 82 Eq. 5.35 , the second term should be $-\mathrm{i} \mathbf{k} \cdot \mathbf{R}$.
p. 83 End of item (i): should read:

Define $\mathbf{k}=\Sigma_{\mathrm{j}} \mathrm{m}_{\mathrm{j}} \mathbf{b}_{\mathbf{j}}$; the \mathbf{b} 's were defined in Section 3.2.3. This gives
p. 88 Second line should be α_{i}
p. 92 First line of Eq. 5.67 missing right parenthesis.
p. 96 Right hand side of Eq. (5.89):
second line $\quad \sqrt{n_{\mathbf{k}, \lambda}+1}\left|\ldots, n_{\mathbf{k}, \lambda}+1, \ldots\right\rangle$
third line $\quad \sqrt{n_{\mathbf{k}, \lambda}}\left|\ldots, n_{\mathbf{k}, \lambda}-1, \ldots\right\rangle$
p. 97 Right hand side of Eq. (5.93) should be multiplied by m.
p. 100 First line of Eq. (5.104) should have $(2 \pi)^{3}$ in denominator.
p. 104 Subscript j missing in first line of Eq. (5.123)
p. 113 Problem 6 b) should read for $T \gg \Theta_{D} \ldots$
p. 119 Eq. 6.27 the denominator should be $\pi^{2} \hbar^{3}$
last power is 3 .'
p. 135 Problem 2, last line should contain $\sin \left(k_{F} R\right)-k_{F} R$
not lower case r.
p. 137 Problem 7 the integral is equal to $\pi^{2} / 6$.
p. 147 Eq. 7.22, first line p should be \mathbf{k}
p. 225 Problem 9.4, the equation for E_{o} should read:

$$
E_{\circ}=(3 / 5) N_{+} E_{F}^{+}-N_{+} \mu_{B} H+(3 / 5) N_{-} E_{F}^{+}+N_{-} \mu_{B} H
$$

