Entropy Profiles in Radio-Quiet Cluster Cores

Megan Donahue Michigan State University

Collaborators

- Mark Voit, MSU
- Ken Cavagnolo, MSU
- Steven Robinson, MSU
- Don Horner, GSFC
- Stefi Baum & Chris O'Dea (Rochester Inst. Technology, William Sparks (STScl)

Radio Sources & Cluster Cores

- Can AGN balance radiative cooling in cluster cores?
- Bubbles in the ICM: (McNamara, Sarazin, Blanton)
- Heating occurs, but it's not clear how the AGN compensates for radiative losses.
- AGN may be the primary culprit in quenching the cooling in cluster cores: but how to tell?

Radio-quiet cluster cores

Peres et al. 1998:

- 23 clusters with cooling rates > 100 solar masses/year
- 13: emission line nebulae & strong central radio source
- 2: strong central radio source but no optical line emission (A2029, A3112)
- 3: emission lines but weak central radio source. (A478, A496, A2142)
- 5: no emission lines and little or no radio activity. (A644, A1650, A1651, A1689, A2244)

Radio-quiet cluster cores

Peres et al. 1998:

- 23 clusters with cooling rates > 100 solar masses/year
- 13: emission line nebulae & strong central radio source
- 2: strong central radio source but no optical line emission (A2029, A3112)
- 3: emission lines but weak central radio source. (A478, A496, A2142)
- 5: no emission lines and little or no radio activity. (A644, A1650, A1651, A1689, A2244)

Chandra Observations

- Chose 2 symmetric, relaxed clusters without radio sources, A1650 and A2244.
- ACIS-S observations sufficient to obtain >150,000 counts for radial deprojection of spectra and surface brightness.
- Temperature and metallicity gradients measured at lower resolution than density gradient.

A2244 & A1650

- Feedback free?
- Radio quiet -- upper limits or detections a factor of 30 or more below the others
- Z = 0.095 and 0.085
- KT ~ 5-6 keV

What might have been:

- Fossil radio lobes and/or X-ray cavities suggestive of earlier radio activity.
- Temperature gradients sufficient to quench cooling via conduction.
- Very low central entropy values, suggesting that these clusters are on the verge of a heating episode.

What is

 No fossil lobes out to ~100 kpc

What is

• No temperature gradients: limited, if any, conduction. 8 Temperature (keV) 6 2 Ω

0.1

0.2

Mpc

0.3

0.4

0.0

Entropy Gradients

- Cool cores *with* feedback evidence show a remarkable consistency in their entropy profiles:
- $S(r) = S_0 + (r/r_1)^{\alpha}$
 - $-S_0 \sim 10 \text{ keV cm}^2$
 - $\alpha \sim 0.9 1.3$
- α is about what one expects as a result of structure formation *outside* the core (but not necessarily *inside* the core).
- Almost all have non-zero S₀.

Profile Consistency

- Quasi-steady configuration could be used to argue against episodic heating.
- No evidence for entropy inversions r > 10 kpc: suggests energy injection can't just happen at the center.
- Entropy floors and small entropy inversions, bubbles show current energy injection.

Iron Gradients

- Significant iron gradients, increasing toward the core measured in most of these systems.
- The presence of a gradient suggests lack of disturbance (e.g. major mergers.)

Quasi-stable core gas?

What do we see?

High central entropy! 35-50 keV cm²

Comparison

Significant Iron Gradients

What happened?

 These cluster cores have not yet cooled to low entropy, and will trigger an outburst in the future.

OR

 The AGN in these clusters have a very low duty cycle, requiring enormous energy injection by AGN in the past.

AGN heating?

- Yes!
- That these radio-quiet cooling cores do not require feedback strengthens the connection between radio sources and heat input.
- If the trend holds for the other radio quiet clusters with short central cooling times, then AGN are almost certainly the primary stabilizing mechanisms for cooling cores at z~0.

Next Work

- Complete entropy profile extraction on other radio quiet clusters (almost done).
- Test idea that cooling rates ~ star formation rates with RGS and Astro E-2 spectra (faint Fe XVII and O VII lines should be present.)
- Test deprojection assumptions with realistic hydro simulations.

Conclusions

- We observed that radio quiet clusters with short central cooling times have high central entropies and somewhat shallower entropy profiles than radio-loud clusters.
- We propose that these clusters will eventually look like the radio loud clusters.
- AGN are a significant source of feedback in gas surrounding galaxies and must be included in galaxy formation models: star formation in central galaxies may be regulated by the AGN.