Reproducing an E₆SSM from its Signatures

The LHC Inverse Problem:

Nima Arkani-Hamed Gordy Kane

•LHC-IA - What is the new physics?

•LHC-IB - What is the spectrum and effective Lagrangian of the new physics at the weak scale?

•LHC-IC - How can we begin to study what the underlying theory is, perhaps at a high scale and/or in extra dimensions?

In this talk we discuss the LHC Inverse problem from the perspective of an E₆ Supersymmetric Standard Model (shortly defined)

13/04/2006

The μ problem

•Although MSSM solves "technical hierarchy problem" (loops) it does not address "tree-level hierarchy problem" of why Higgs masses are low

•In particular no reason why μ parameter (which respects SUSY) should be same order as soft masses \rightarrow the " μ problem".

•In M-theory this cannot be resolved a la Guidice-Masiero using the Kahler term H_uH_d if H_u and H_d come from 27's of E_6 since 27×27 is not invariant

•In the NMSSM μ =0 but an effective μ -term is generated from a singlet: S Hu Hd \rightarrow <S> Hu Hd where singlet VEV <S> plays role of μ parameter

•A coupling S^3 is required to avoid a massless axion due to global U(1) PQ symmetry which broken at weak scale.

•With S^3 term the symmetry is reduced to Z_3 -- broken at the weak scale resulting in cosmological domain walls (or tadpoles if broken)

13/04/2006

The E₆SSM solution

•We would like to solve μ problem of MSSM using a singlet as in the NMSSM, but avoiding the domain wall/ tadpole problems of NMSSM

•The idea is to use the superpotential coupling $W=\lambda$ S Hu Hd (without the extra S³ term) and gauge the U(1) PQ symmetry so that the dangerous axion is eaten to form a massive Z' gauge boson \rightarrow U(1)' model

•Anomaly cancellation in low energy gauged U(1)' models always implies either extra low energy exotic matter or family-nonuniversal U(1)' charges

•The E_6SSM is an example of a U(1)' model with extra low energy exotic matter with anomalies are cancelled elegantly using complete 27's of E_6

13/04/2006

E₆SSM is discussed in SFK, Moretti and Nevzorov

Other related references (very incomplete – apologies)

Cvetic, Demir, Espinosa, Everett, Langacker; J.Wang;

Keith, Ma;

Daikoku, Suematsu;

Demir, Everett;

Hewett, Rizzo;

Demir, Kane, T.Wang;

Morrissey, Wells;

Barger, Langacker, Lee, Shaughnessy;

13/04/2006

Low energy matter content of E₆SSM

	Family	Universal	Anomaly	Free	Charges:
--	--------	-----------	---------	------	----------

	Q	u^c	d^c	L	e^{c}	N^c	S	H_2	H_1	D	\overline{D}	H'	$\overline{H'}$
$\sqrt{\frac{5}{3}}Q_i^Y$	$\frac{1}{6}$	$-\frac{2}{3}$	$\frac{1}{3}$	$-\frac{1}{2}$	1	0	0	$\frac{1}{2}$	$-\frac{1}{2}$	$-\frac{1}{3}$	$\frac{1}{3}$	$-\frac{1}{2}$	$\frac{1}{2}$
$\sqrt{40}Q_i^N$	1	1	2	2	1	0	5	-2	-3	-2	-3	2	-2

Most general E_6 allowed couplings from 27³:

 $W_{E_6} = W_0 + W_1 + W_2 \,,$

$$W_{0} = \lambda_{ijk}S_{i}(H_{1j}H_{2k}) + \kappa_{ijk}S_{i}(D_{j}\overline{D}_{k}) + h_{ijk}^{N}N_{i}^{c}(H_{2j}L_{k}) + h_{ijk}^{U}u_{i}^{c}(H_{2j}Q_{k}) + h_{ijk}^{D}d_{i}^{c}(H_{1j}Q_{k}) + h_{ijk}^{E}e_{i}^{c}(H_{1j}L_{k}),$$

$$W_{1} = g_{ijk}^{Q}D_{i}(Q_{j}Q_{k}) + g_{ijk}^{q}\overline{D}_{i}d_{j}^{c}u_{k}^{c},$$

 $W_2 = g_{ijk}^N N_i^c D_j d_k^c + g_{ijk}^E e_i^c D_j u_k^c + g_{ijk}^D (Q_i L_j) \overline{D}_k.$

- \rightarrow Rapid proton decay! Need generalization of R-parity \rightarrow two possibilities:
- I. Z_2^{L} under which leptons are odd \rightarrow forbids $W_2 \rightarrow$ exotic D,D-bar are diquarks
- II. Z_2^B with leptons & D,D-bar odd \rightarrow forbids $W_1 \rightarrow$ exotic D,D-bar are leptoquarks

13/04/2006

Including RH neutrino masses have two models:

$$W_{ESSMI} = \frac{1}{2} M_{ij} N_i^c N_j^c + W_0 + W_1,$$

$$W_{ESSMII} = \frac{1}{2} M_{ij} N_i^c N_j^c + W_0 + W_2.$$

To suppress FCNCs we further assume an approximate Z_2^H symmetry under which only $H_d = H_{1,3}$, $H_u = H_{2,3} S = S_3$ are even (all else=odd)

Suppresses W_1 , W_2 and restricts W_0 as follows (e.g. only one pair of Higgs doublets couple to quarks and leptons as in the MSSM and will get radiative VEVs):

$$W_{\text{ESSM I, II}} \longrightarrow \lambda_i S(H_{1i}H_{2i}) + \kappa_i S(D_i\overline{D}_i) + f_{\alpha\beta}S_{\alpha}(H_dH_{2\beta}) + \tilde{f}_{\alpha\beta}S_{\alpha}(H_{1\beta}H_u) + W_{\text{MSSM}}(\mu = 0)$$

In phenomenological studies we keep only terms with large Yukawa couplings:

 $W_{\text{ESSM I, II}} \approx \lambda S(H_d H_u) + \kappa_i S(D_i \overline{D}_i) + h_t (H_u Q) t^c + h_b (H_d Q) b^c + h_\tau (H_d L) \tau^c \,.$

However terms with small Yukawa couplings arising from W_1 or W_2 are required for exotic decays.

13/04/2006

The origin of bilinear masses

Right-handed neutrino masses arise from the coupling to the Higgs $27_{\rm H}$ which breaks E_6

$$\frac{\kappa_{ij}}{M_{Pl}} (\overline{27}_H \ 27_i) (\overline{27}_H \ 27_j) \qquad \Longrightarrow \qquad M_{ij} = \frac{2\kappa_{ij}}{M_{Pl}} < \overline{N}_H^c >^2$$

•We also need to generate a TeV mass term μ H' H'-bar

•The simplest possibility is to use the Guidice-Masiero mechanism

•The Kahler potential permits H' H'-bar since H' comes from 27' and H'-bar comes from 27'-bar

•Unlike $H_u H_d$ which is forbidden since 27×27 is not invariant

•Note that H',H'-bar are irrelevant for Higgs phenomenology since they do not develop VEVs – they are ``non-Higgs''

13/04/2006

Higgs Phenomenology of E₆SSM @ LHC

With Z_2^H only three Higgs multiplets H_u , H_d , S get VEVs W= $\lambda S H_d H_d$ as in the NMSSM but without the S^3 term (simpler!) This leads to the Higgs potential:

$$V = V_F + V_D + V_{soft} + \Delta V,$$

$$V_F = \lambda^2 |S|^2 (|H_d|^2 + |H_u|^2) + \lambda^2 |(H_dH_u)|^2,$$

$$V_D = \frac{g_2^2}{8} \left(H_d^+ \sigma_a H_d + H_u^+ \sigma_a H_u \right)^2 + \frac{g'^2}{8} \left(|H_d|^2 - |H_u|^2 \right)^2 + \frac{g'^2}{2} \left(\tilde{Q}_1 |H_d|^2 + \tilde{Q}_2 |H_u|^2 + \tilde{Q}_S |S|^2 \right)^2,$$

$$V_{soft} = m_S^2 |S|^2 + m_1^2 |H_d|^2 + m_2^2 |H_u|^2 + \frac{1}{2} \left(\lambda A_\lambda S(H_uH_d) + h.c. \right],$$

where $g' = \sqrt{3/5} \cdot g_1(M_Z)$; \tilde{Q}_1, \tilde{Q}_2 and \tilde{Q}_S are $U(1)_N$ charges of H_d , H_u and S.

13/04/2006

Thus the Higgs sector of the ESSM involves

$$- \underline{\text{one pseudoscalar}} \qquad m_A^2 = \frac{2\lambda^2 s^2 x}{\sin^2 2\beta} + O(M_Z^2), \qquad \begin{array}{l} \text{As in the MSSM (unlike the NMSSM since the axion is eaten by the Z')} \\ - \underline{\text{two charged states}} \qquad m_{H^\pm}^2 = m_A^2 + O(M_Z^2), \qquad \begin{array}{l} \text{As in the MSSM and } \\ \text{NMSSM} \end{array}$$

where $x = \frac{A_{\lambda}}{\sqrt{2\lambda s}} \sin 2\beta$. $\frac{g_1(M_Z)}{g'_1(M_Z)} \simeq 0.99$, $g_{11}(M_Z) \simeq 0.020$, $g_1(M_Z) \simeq 0.46$.

E₆SSM Higgs h₁ mass bound

$$m_{h}^{2} \leq \frac{\lambda^{2}}{2} v^{2} \sin^{2} 2\beta + M_{Z}^{2} \cos^{2} 2\beta + \frac{1}{4} M_{Z}^{2} \left(1 + \frac{1}{4} \cos 2\beta\right)^{2} + \Delta \leq \left(160 \, GeV\right)^{2}$$

Observing a heavy Higgs boson @ LHC is one way (only way!) to distinguish the E_6 SSM from the NMSSM or MSSM Higgs sectors

SFK.Moretti.Nevzorov

13/04/2006

Z' Phenomenology in E₆SSM

13/04/2006

Steve King, LHC Inverse Workshop, MCTP

SFK Moretti Nevzorov

Exotic D-quarks in E₆SSM @ LHC

The exotic quarks decay either via

$$\overline{D} \to t + \tilde{b}, \qquad \overline{D} \to b + \tilde{t}$$

if exotic quarks \overline{D}_i are diquarks or via

$D \to t + \tilde{\tau}$,	$D \to \tau + \tilde{t}$,
$D \to b + \tilde{\nu}_{\tau}$,	$D \rightarrow \nu_{\tau} + \tilde{b}$

if exotic quarks D_i are leptoquarks.

Since $\sigma(pp \to D\overline{D} + X)$ may be comparable with $\sigma(pp \rightarrow t\bar{t} + X)$ the presence of light exotic quark will result in appreciable enhancement of the cross section of either

$$pp \to t\bar{t}b\bar{b} + X$$
, $pp \to b\bar{b}b\bar{b} + X$

if exotic quarks are diquarks or

$$pp \to t\bar{t}l\bar{l} + X$$
, $pp \to b\bar{b}l\bar{l} + X$

if new quark states are leptoquarks.

Non-Higgsino discovery difficult due to small cross-section @ LHC

13/04/2006

Some E₆SSM Challenges for the LHC Inverse Problem

Discover:

• the Z', SUSY, the Higgs, the exotic D-quarks, the non-Higginos (Pythia needs to be extended -- Brent Nelson)

Measure:

- the Z' mass and width and show that it is from U(1)_N of the E_6SSM with g' $\approx g_1$
- the lightest Higgs boson mass and see if it exceeds the NMSSM limit
- the SUSY and exotic fermion spectrum

Deduce:

- the exotic couplings and SUSY soft masses at low energy
- the SUSY masses at the GUT scale

Running up

13/04/2006

Final remarks

Running up the soft scalar masses will be tricky due to:

- •Large exotic fermion masses which must be disentangled
- •Exotic thresholds in the TeV region
- •Extra $U(1)_N$ leading to additional D-term contribution to soft masses (see next talk by David Morrissey)

Such issues are presently under discussion at this workshop (with Gordy Kane, Lisa Everett,..)

13/04/2006