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• Strategy

• Masses as the key observables at LHC

• The need for precision and flexibility

• Tactics

• Differential equations method for multi-loop integrals

• TSIL (Two-loop Self-energy Integral Library), a computer

program for evaluating general two-loop self-energy and

vacuum integrals

• Results

• 2-loop, and partial 3-loop, gluino pole mass

• 2-loop squark pole masses



Recent history confirms that hadron colliders can and will succeed

at precision mass measurements:

Mtop = 172.5± 2.3 GeV

MW = 80.454± 0.059 GeV (pp data only)

This is encouraging, because masses are the most important
observables in new physics models, notably supersymmetry.



Masses are the key observables in SUSY

Most of what we do not already know about supersymmetric exte nsions of

the Standard Model involves the soft SUSY-breaking terms wi th positive

mass dimension.

Predictions of specific models (Minimal Supergravity, Gauge Mediation, Anomaly

Mediation, Extra-dimensional Mediation, ...) allow/require precise calculations.
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The apparent unification of gauge

couplings in the MSSM invites us to

extrapolate the soft masses up to high

scales, to see if they obey some

Organizing Principle.



What is the Organizing Principle behind SUSY breaking?

A reasonable working hypothesis is the Minimal Flavor-Respecting

Supersymmetric Standard Model . It is neither too painfully general, nor too

naively specific:

General MSSM
105 new parameters

MFRSSM
no new flavor or CP violation

Minimal Supergravity (sic)

Gauge-Mediated SUSY Breaking

Anomaly-Mediated SUSY Breaking

Stuff not thought of yet

MFRSSM parameter count:

3 gaugino masses M1, M2, M3

5 sfermion (mass)2 m
2

Q̃
, m

2

ũ, m
2

d̃
, m

2

L̃
, m

2

ẽ

3 (scalar)3 couplings Au0, Ad0, Ae0

3 Higgs mass parameters µ, b, m
2

Hu
, m

2

Hd
(but MZ known)

1 input RG scale Q0

Total: 15 new parameters beyond the Standard Model



Gaugino Mass Unification is a popular and recurring theme.

M1(Q) = M2(Q) = M3(Q) ≡ m1/2 at Q ≈ 2× 1016 GeV,

resulting in

M1 : M2 : M3 = 1 : 2 : 6

for Q near the TeV scale. To test this, we have to relate physical masses to

running masses.

Obstacles at the LHC:

• Neutralinos, Charginos mix

• Not all states observed (Higgsinos, squarks may be out of reach)

• Overall mass scale (MLSP) may be tough to get accurately

• Corrections to the gluino mass are big



Despite the obstacles, the LHC necessarily has a unique role:

• Can see the gluino. (ILC probably can’t.)

• Will probably happen, and soon. (ILC ?)

The determination of the gluino mass is absolutely crucial. It feeds

strongly into any attempt to connect TeV scale physics with

high-scale Organizing Principles in SUSY. Under almost any set of

assumptions, the uncertainty in the gluino mass will dominate the

error in this effort, in the long run.

Goal: reduce purely theoretical sources of uncertainty to a
negligible level, if possible.



TeV-scale SUSY will provide an interesting laboratory for quantum field theory:

• Fundamental scalar particles

• No new dimensionless couplings in Lagrangian

• QCD coupling is perturbative at the TeV scale, but still strong enough to

require multi-loop calculations

– Corrections to Higgs masses at 1 loop go like y2
t , at 2 loops go like y2

t g2
3 .

– Corrections to gluino mass involve Cg2
3 with C = 3, rather than

C = 4/3 for quarks. So, the QCD coupling for the gluino is effectively

9/4 larger.

– Corrections to squark, quark masses get large effects from the

strongly-coupled, heavy gluino.

Two-loop corrections to masses will be mandatory if SUSY is c orrect.



Some key features of the problem:

1) Two-loop diagrams involve many different mass scales sim ultaneously.

For example:
t̃i

t̃j

t

t

h0

g̃ t̃i t̃j

t

b

C̃k

g̃

Large, diverse, and numerous hierarchies of ratios of squared masses will enter.

Some of these hierarchies can be anticipated in advance, some can’t.

This is a qualitative difficulty generally avoided in multiloop calculations in the

Standard Model, where one knows in advance that

m2
s ≪ m2

c ≪ m2
b ≪ m2

t ,

and calculations are organized around exploiting these hierarchies when doing

multi-loop integrals.



2) To explore Organizing Principles, work in non-decoupled SUSY with

mass-independent renormalization scheme

On-shell schemes are useful, as are effective theories in which some heavier

superpartners are integrated out. Some problems are easier in those schemes.

However:

• For the goal of running up to higher renormalization scales, we will want to

know the running parameters in the full theory.

• Global fits can relate the directly measured observables to running DR input

parameters.

• It is not so clear in advance what the best on-shell scheme input parameters

will be. (For example, in the Higgs sector, A0 mass or H± mass? For

neutralinos and charginos, should the input parameters be masses, or mass

differences, or some even more complicated kinematic function?)



For example, several LHC studies have remarked on the precision available from

Ñ2 → ℓℓ̃→ ℓ+ℓ−Ñ1.

The dilepton invariant mass distribution looks like:

Events/GeV

MℓℓMmax
ℓℓ

The edgepoint is at

Mmax
ℓℓ = mÑ2

(1−m2
ℓ̃
/m2

Ñ2

)1/2(1−m2
Ñ1

/m2
ℓ̃
)1/2.

Building an on-shell scheme around this measurement as an input doesn’t seem

pleasant to me.



3) Methods should be generic, reuseable from start to finish.

To avoid wasted effort, do calculations for scalars, fermions, vectors

in a general perturbative field theory. Then apply to Higgs, squarks,

sleptons, and to quarks, gluino, charginos, neutralinos, etc., or, ???

After all, SUSY might not be the correct answer, or it might be

an incomplete answer.



To calculate physical masses

Evaluate self-energy = sum of 1-particle irreducible Feynman diagrams:

Π(s) = Π(1)(s) + Π(2)(s) + . . .

where s = the external momentum invariant.

The complex pole mass

spole = M2 − iΓM

is the solution for complex s of:

spole = m2
tree + Π(spole)

= m2
tree + Π(1)(m2

tree)
[
1 + Π(1)′(m2

tree)
]

+ Π(2)(m2
tree) + . . .

The pole mass is gauge invariant at each order in perturbation theory, can be

related to kinematic masses as measured at colliders.



There are a large but finite number of 2-loop, two-point
Feynman diagrams. Why not just do them once, for a
general theory, and get it over with?



Method:

• Reduce all self-energies in general theory to a few basis integrals

• Basis integrals contain DR (or MS) counter-terms, so finite.

• Numerically evaluate basis integrals quickly and reliably for arbitrary masses.

Tarasov’s basis and recurrence relations:

S T U M (“Master integral”)

Can always reduce 2-loop self-energies to a linear combination of these, with

coefficients rational functions of:

s = p2 = external momentum invariant

x, y, z, . . . = internal propagator masses



To evaluate basis integrals:

Values at s = 0 are known analytically, in terms of logs, polylogs.

∂

∂s
(basis integral) = (another self-energy integral)

= (linear combination of basis integrals)

So, we have a set of coupled, first-order, linear differential equations.

Consider the Master integral M(x, y, z, u, v):
x y

z u
v

and the basis integrals obtained from it by removing propagators:

U(x, z, u, v), U(y, u, z, v), U(z, x, y, v), U(u, y, x, v),

S(x, u, v), T (x, u, v), T (u, x, v), T (v, x, u),

S(y, z, v), T (y, z, v), T (z, y, v), T (v, y, z)

Call these 13 integrals In, (n = 1, . . . , 13).



Differential equations method for basis integrals

d

ds
In =

∑

m

KnmIm + Cn

Here Knm are rational functions of s and x, y, z . . ., and Cn are one-loop

integrals. These are obtained by using Tarasov’s recursion relations.

Solve for basis integrals In using

Runge-Kutta integration in the

complex s-plane, starting from

known values at s = 0. Re[s]

Im[s]

thresholds

Method implemented for S, T, U type integrals by Caffo, Czyz, Laporta, Remiddi.

Dave Robertson and I have extended the method to also work for M :



TSIL= Two-Loop Self-energy Integral Library

D.G. Robertson, SPM, hep-ph/0501132

Program written in C, callable from C++, Fortran

• Basis integrals computed for any values of all masses

and s.

• All integrals from a given master integral obtained

simultaneously in a single numerical computation.

• Checks on the numerical accuracy follow from

changing choice of contour.

• Computation times generically ≪ 1 second on

modern hardware.

• TSIL knows all special cases that have been done

analytically in terms of polylogarithms

In the Hopi culture native to

the American southwest, Tsil is

the Chili Pepper Kachina. The

Kachina are supernatural spirits,

represented by masked figurines

and impersonated by ceremonial

dancers. They communicate

between the tribe and their gods,

who live in the San Francisco

mountains and are never seen

directly.



Using these methods, I’ve computed the 2-loop fermion pole m asses in a

general renormalizable theory with massless gauge bosons

(hep-ph/0509115) .

Each diagram is reduced to a linear

combination of basis integrals,

ready to be computed numerically

using TSIL.

In favorable cases with only one

or two distinct mass scales, the

results are analytical in terms of

polylogarithms.

Special case applications within the

MSSM include the top quark mass,

neutralino and chargino masses,

and the gluino.

BFS BFV MSSFFS MSFFSF VFSSSS

VSFFFS VFSSFF YFSSS MV SFFS MV FFSF

MSSFFV VFSSSV VSFFFV VV FFFS YFSSV (∗)

VV FFFV MV FFV F MV V FFV VFV V V V YFV V V (∗)

VFV V FF VFV V SS YFV V S

+ fermion mass insertions

+ ghost diagrams

+ counterterms



Checks on the calculation of 2-loop fermion pole masses:

• Independent of gauge-fixing parameter

Individual diagrams depend on ξ; cancels in pole mass

• Pole mass is renormalization group invariant

Checked analytically at 2-loop order; numerical check below

• Absence of divergent logs on shell

Individual diagrams have log(1− p2/m2), divergent as p2 → m2;

must and do cancel in pole mass

• Checks in (unphysical) supersymmetric limit

Agrees with earlier calculation of scalar pole mass (SPM hep-ph/0502168)



Gluino pole mass at 2-loop order

(Y. Yamada, hep-ph/0506262; SPM, hep-ph/0509115)

The full formulas are a little too complicated to be presented in a talk, but are in

the second paper. A C program based on TSIL can be obtained at:

zippy.physics.niu.edu/gluinopole/

Instead, I’ll just show some simple special approximations.

In the following, squarks are always assumed to be degenerate and quarks to be

massless, for simplicity. Also,

αs, M3, and msquark

refer to running parameters in the DR scheme, evaluated at a renormalization

scale Q = M3(Q).

The pole mass Mpole
g̃ is computed in terms of these.



Example: In the special case of degenerate running masses, M3 = msquark,

the result for the pole mass simplifies and can be written analytically:

Mpole
g̃ = M3

[
1 +

αs

4π
9 +

(αs

4π

)2 {
54ζ(3) + π2(53− 36 ln 2)− 90

}
+ . . .

]

= M3

[
1 + 0.716 αs + 1.59 α2

s + . . .
]

(M3 and αs are running parameters evaluated at Q = M3 in non-decoupled

theory.)

However, the corrections for heavier squarks are quite larg e. . .



Dependence of gluino pole mass correction on the squark mass es
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For heavier squarks, part of the

large corrections come from large

logarithms that can be resummed

using the renormalization group.

For msquark ≫M3:

Mpole
g̃ = M3

[
1 + 0.955(L + 1)αs + (0.46L2 + 1.53L + 0.90)α2

s + . . .
]

where L ≡ ln(msquark/M3).

Obvious Questions: How big is the theoretical error? Can we e stimate the

3-loop corrections? Is perturbation theory under control?



How NOT to estimate theoretical error: RG scale dependence

Run αS , M3 from Q0 to a new RG scale Q, recompute pole mass:

Red = 1-loop, Blue = 2-loop
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← msquark/M3 = 3

← msquark/M3 = 1.5

← msquark/M3 = 0.9

Scale dependence of 2-loop result is < 1%.

But, the 2-loop correction is much larger than the 1-loop sca le dependence!

Dependence of the computation on the choice of RG scale signi ficantly
underestimates the true theoretical error.



A trivial estimate of theoretical error due to 3-loop correc tion:

(Mg̃ to order α2
s)

2 − (M2
g̃ to order α2

s) 6= 0

There is an unavoidable ambiguity in the pole mass at any give n order in

perturbation theory, of order the next order in perturbatio n theory.

In this case, it can be interpreted as a theoretical error in Mg̃ , corresponding to:

∆Mg̃

Mg̃
∼ α3

s





0.8 + 2.3L + 1.9L2 + 0.5L3 (for large L)

1.2 (for L = 0)

of order a few tenths of a percent for reasonable L = ln(msquark/M3).

However, when L is not small, we don’t have to accept this error.

We can do better. . .



Three-loop gluino mass corrections for heavy squarks

Exploit the fact that beta functions are easier to compute, known to≥3-loop

order. Let the running parameters in the full MSSM be αs, M3, and in the

effective theory with squarks decoupled, α̂s, M̂3.

?

Mtop

Mg̃

Msquarks

L = ln(
Msquarks

M3

)

Standard Model: 4-loop QCD beta function known

3-loop α̂s and M̂3 beta functions known (same as “Split SUSY”)

2-loop M
pole
g̃ known in terms of α̂s and M̂3

2-loop threshold corrections give (α̂s, M̂3)↔ (αs, M3)

Full MSSM, no decoupling: 4-loop SUSYQCD beta function known



Using the effective field theory matching and RG running technique, one obtains

all terms of order

αn
s Ln, αn

s Ln−1, αn
s Ln−2

for all n. The 3-loop pole mass for the gluino is:

Mpole
g̃ = M3

[
1 + 0.955 (L + 1) αs

+ (0.46L2 + 1.53L + 0.90) α2
s

+ (0.19L3 + 0.32L2 + 1.61L + ??? ) α3
s

+ O(M2
3 /m2

Q̃
) + O(α4

s)
]

• The “leading log” approximation is bad unless L is VERY large.

• Only a real 3-loop pole mass calculation (with at least two distinct non-zero

mass scales, so hard) can tell us what ??? is.

• Circumstantial evidence leads me to wager that ??? is not much larger in

magnitude than 1 (but I can’t even tell you the sign).



Three-loop log-enhanced effects on the gluino pole mass
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The three-loop log corrections are

only shown for msquarks/M3 >

1.5, where the approximation

starts to become meaningful.

The actual 3-loop correction involves a non-log-enhanced piece, not captured in

this analysis. However, circumstantially, this seems likely to be well under 1%.

There are inevitable experimental uncertainties in M
pole
g̃ and αS and the

individual squark masses and mixing angles.



RG scale dependence revisited:

Red = 1-loop, Blue = 2-loop, Black = partial 3-loop
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← msquark/M3 = 3

← msquark/M3 = 1.5

← msquark/M3 = 0.9

As expected, the 3-loop logs greatly reduce the scale dependence of the

calculated pole mass.

But, as we have seen, this proves little.



Is it worth pursuing further

perturbative corrections for

the gluino pole mass?

I have my doubts. The full

2-loop plus the 3-loop log-

enhanced terms should be

enough. . .

(Anyway, why risk this?)



2-loop corrections to scalar self-

energies and pole masses in

a general renormalizable theory

(hep-ph/0502168)

(Approximation: vector boson

masses neglected in digrams with

more than one vector propagator.)

Applications to Higgs masses,

slepton masses and squark

masses in the MSSM.

+ fermion mass insertions + ghosts

+ counterterms



SUSYQCD corrections to squark masses in MSSM

Example: In the special case of degenerate running masses, mQ̃ = mg̃ = Q,

the result for the pole mass simplifies:

M
2

Q̃
= m

2

Q̃

[
1 +

αs

4π

(
32

3

)
+

(
αs

4π

)
2
{

112

3
+

664π2

27
+

32π2ln2

9
−

16ζ(3)

3

}]

= m
2

Q̃

[
1 + 0.849 αs + 1.89 α

2

s

]

There are no large logs here (only one mass scale!), so this illustrates the intrinsic

size of typical SUSYQCD 1-loop (∼ 4%) and 2-loop (∼ 1%) corrections to the

squark masses.

Here, it is not so clear that 3-loop effects are negligible for light top squarks

measured at an ILC. But that is a different Workshop. . .



Renormalization scale ( Q) dependence of calculated squark pole mass
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Squark mixing, quark masses, and

electroweak effects neglected; all

squarks taken degenerate with each

other and gluino at tree level.

Dashed lines are ±2% variation of αs.

Remaining scale dependence (from 3 loops and beyond) is small.

However, 2-loop correction is much larger than 1-loop scale dependence.

So, as usual, this proves little.



Dependence of squark mass correction on the gluino mass
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A large part of the squark mass correction is due to the gluino mass.

In realistic models, effects due to variation in squark masses, top and bottom

Yukawa effects, electroweak effects are significant, too. The general formulas (not

shown here) take care of that.



Outlook

• Two-loop calculations for masses in supersymmetry are necessary, possible

• I favor a Strategy based on:

– non-decoupled MSSM, using mass-independent DR scheme

(complementary to on-shell scheme and effective field theory calculations)

– Reusable, generic calculations

– Efficient computations of basis two-loop integrals

• 2-loop corrections to gluino, squark masses are now known, typical remaining

uncertainties should be <∼ 1% in most cases

• For large mass hierarchies msquark/M3, new 3-loop corrections are

worthwhile

• Some further 3-loop calculations (probably for h0, maybe for gluino, squarks)

might still be necessary


